Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Allergic asthma is a risk factor for human cardiovascular diseases

Abstract

Asthma is an allergic airway disease in which type 2-mediated inflammation has a pathogenic role. Cardiovascular diseases (CVDs) are type 1-dominant inflammatory diseases in which type 2 cytokines often have a protective role. However, clinical studies demonstrate that allergic asthma and associated allergies are essential risk factors for CVD, including coronary heart diseases, aortic diseases, peripheral arterial diseases, pulmonary embolism, right ventricular dysfunction, atrial fibrillation, cardiac hypertrophy and even hypertension. Mast cells, eosinophils, inflammatory cytokines and immunoglobulin (Ig)E accumulate in asthmatic lungs and in the injured heart and vasculature of patients with CVD. Clinical studies show that many anti-asthmatic therapies affect the risk of CVD. As such, allergic asthma and CVD may share common pathogenic mechanisms. Preclinical investigations indicate that anti-asthmatic drugs have therapeutic potential in certain CVDs. In this Review, we discuss how asthma and allied allergic conditions may contribute to the prevalence, incidence and progression of CVD and vice versa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Asthma, asthma medications and asthma-relevant allergies are risk factors for CVD.
Fig. 2: Allergic asthma or hyper-responsiveness promotes mouse atherogenesis and AAA growth and vice versa.
Fig. 3: Angiogenesis in asthmatic lungs.
Fig. 4: Pathogenic role of adipose tissues in CVD and allergic asthma.
Fig. 5: EOS function in CVD and asthma.
Fig. 6: IgE functions in asthma and CVD.

Similar content being viewed by others

References

  1. Kuruvilla, M. E., Lee, F. E. & Lee, G. B. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin. Rev. Allergy Immunol. 56, 219–233 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fahy, J. V. Type 2 inflammation in asthma—present in most, absent in many. Nat. Rev. Immunol. 15, 57–65 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Iribarren, C., Tolstykh, I. V. & Eisner, M. D. Are patients with asthma at increased risk of coronary heart disease? Int. J. Epidemiol. 33, 743–748 (2004).

    Article  PubMed  Google Scholar 

  4. Robinette, C. D. & Fraumeni, J. F. Jr. Asthma and subsequent mortality in World War II veterans. J. Chronic Dis. 31, 619–624 (1978).

    Article  CAS  PubMed  Google Scholar 

  5. Carter, P. et al. Association of cardiovascular disease with respiratory disease. J. Am. Coll. Cardiol. 73, 2166–2177 (2019).

    Article  PubMed  Google Scholar 

  6. Van Eeden, S., Leipsic, J., Paul Man, S. F. & Sin, D. D. The relationship between lung inflammation and cardiovascular disease. Am. J. Respir. Crit. Care Med. 186, 11–16 (2012).

    Article  PubMed  CAS  Google Scholar 

  7. Tattersall, M. C. et al. Asthma predicts cardiovascular disease events: the multi-ethnic study of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 35, 1520–1525 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fernandes, J. L. et al. Increased TH1 activity in patients with coronary artery disease. Cytokine 26, 131–137 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Knutsson, A. et al. Associations of interleukin-5 with plaque development and cardiovascular events. JACC Basic Transl. Sci. 4, 891–902 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Magnan, A. O. et al. Assessment of the TH1/TH2 paradigm in whole blood in atopy and asthma. Increased IFN-γ-producing CD8+ T cells in asthma. Am. J. Respir. Crit. Care Med. 161, 1790–1796 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Stern, S., Behar, S. & Gottlieb, S. Cardiology patient pages. Aging and diseases of the heart. Circulation 108, e99–e101 (2003).

    Article  PubMed  Google Scholar 

  12. Powell-Wiley, T. M. et al. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 143, e984–e1010 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Moore, W. C. et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am. J. Respir. Crit. Care Med. 181, 315–323 (2010).

    Article  PubMed  Google Scholar 

  14. Peters, M. C. et al. Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts. Lancet Respir. Med. 4, 574–584 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ridker, P. M. & Rane, M. Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease. Circ. Res. 128, 1728–1746 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Koh, K. K., Park, S. M. & Quon, M. J. Leptin and cardiovascular disease: response to therapeutic interventions. Circulation 117, 3238–3249 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kern, P. A., Ranganathan, S., Li, C., Wood, L. & Ranganathan, G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 280, E745–E751 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Lumeng, C. N. & Saltiel, A. R. Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 121, 2111–2117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liao, Y. H. et al. Interleukin-17A contributes to myocardial ischemia/reperfusion injury by regulating cardiomyocyte apoptosis and neutrophil infiltration. J. Am. Coll. Cardiol. 59, 420–429 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Singh, S. et al. Hyperinsulinemia adversely affects lung structure and function. Am. J. Physiol. Lung Cell. Mol. Physiol. 310, L837–L845 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Belke, D. D. et al. Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression. J. Clin. Invest. 109, 629–639 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Quirt, J., Hildebrand, K. J., Mazza, J., Noya, F. & Kim, H. Asthma. Allergy Asthma Clin. Immunol. 14, 50 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Gordon, E. D. et al. Alternative splicing of interleukin-33 and type 2 inflammation in asthma. Proc. Natl Acad. Sci. USA 113, 8765–8770 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Strand, L. B., Tsai, M. K., Wen, C. P., Chang, S. S. & Brumpton, B. M. Is having asthma associated with an increased risk of dying from cardiovascular disease? A prospective cohort study of 446 346 Taiwanese adults. BMJ Open 8, e019992 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Colak, Y., Afzal, S., Nordestgaard, B. G. & Lange, P. Characteristics and prognosis of never-smokers and smokers with asthma in the Copenhagen General Population Study. A prospective cohort study. Am. J. Respir. Crit. Care Med. 192, 172–181 (2015).

    Article  PubMed  Google Scholar 

  26. Lee, H. M., Truong, S. T. & Wong, N. D. Association of adult-onset asthma with specific cardiovascular conditions. Respir. Med. 106, 948–953 (2012).

    Article  PubMed  Google Scholar 

  27. He, X. et al. Adults with current asthma but not former asthma have higher all-cause and cardiovascular mortality: a population-based prospective cohort study. Sci. Rep. 11, 1329 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Iribarren, C., Tolstykh, I. V., Miller, M. K., Sobel, E. & Eisner, M. D. Adult asthma and risk of coronary heart disease, cerebrovascular disease, and heart failure: a prospective study of 2 matched cohorts. Am. J. Epidemiol. 176, 1014–1024 (2012).

    Article  PubMed  Google Scholar 

  29. Pollevick, M. E. et al. The relationship between asthma and cardiovascular disease: an examination of the Framingham Offspring Study. Chest 159, 1338–1345 (2021).

    Article  PubMed  Google Scholar 

  30. Tattersall, M. C. et al. Late-onset asthma predicts cardiovascular disease events: the Wisconsin Sleep Cohort. J. Am. Heart Assoc. 5, e003448 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ingebrigtsen, T. S., Marott, J. L., Vestbo, J., Nordestgaard, B. G. & Lange, P. Coronary heart disease and heart failure in asthma, COPD and asthma–COPD overlap. BMJ Open Respir. Res. 7, e000470 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cepelis, A. et al. Asthma, asthma control and risk of acute myocardial infarction: HUNT study. Eur. J. Epidemiol. 34, 967–977 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Bang, D. W. et al. Asthma status and risk of incident myocardial infarction: a population-based case–control study. J. Allergy Clin. Immunol. Pract. 4, 917–923 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Raita, Y. et al. Risk of acute myocardial infarction and ischemic stroke in patients with asthma exacerbation: a population-based, self-controlled case series study. J. Allergy Clin. Immunol. Pract. 8, 188–194 (2020).

    Article  PubMed  Google Scholar 

  35. Cazzola, M. et al. Cardiovascular disease in asthma and COPD: a population-based retrospective cross-sectional study. Respir. Med. 106, 249–256 (2012).

    Article  PubMed  Google Scholar 

  36. Hung, M. J., Mao, C. T., Hung, M. Y. & Chen, T. H. Impact of asthma on the development of coronary vasospastic angina: a population-based cohort study. Medicine 94, e1880 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yilmaz, M. et al. Investigation of the relationship between asthma and subclinical atherosclerosis by carotid/femoral intima media and epicardial fat thickness measurement. J. Asthma 55, 50–56 (2018).

    Article  PubMed  Google Scholar 

  38. Tattersall, M. C. et al. Asthma is associated with carotid arterial injury in children: the Childhood Origins of Asthma (COAST) Cohort. PLoS ONE 13, e0204708 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Munakata, M. Brachial-ankle pulse wave velocity in the measurement of arterial stiffness: recent evidence and clinical applications. Curr. Hypertens. Rev. 10, 49–57 (2014).

    Article  PubMed  Google Scholar 

  40. Sun, W. X., Jin, D., Li, Y. & Wang, R. T. Increased arterial stiffness in stable and severe asthma. Respir. Med. 108, 57–62 (2014).

    Article  PubMed  Google Scholar 

  41. Steinmann, M. et al. Arterial stiffness is increased in asthmatic children. Eur. J. Pediatr. 174, 519–523 (2015).

    Article  PubMed  Google Scholar 

  42. Tuleta, I. et al. Asthma is associated with atherosclerotic artery changes. PLoS ONE 12, e0186820 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Liu, C. L. et al. Asthma associates with human abdominal aortic aneurysm and rupture. Arterioscler. Thromb. Vasc. Biol. 36, 570–578 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Majoor, C. J. et al. Risk of deep vein thrombosis and pulmonary embolism in asthma. Eur. Respir. J. 42, 655–661 (2013).

    Article  PubMed  Google Scholar 

  45. Baysal, S. S. & Has, M. Assessment of biventricular function with speckle tracking echocardiography in newly-diagnosed adult-onset asthma. J. Asthma 59, 306–314 (2020).

  46. Abdelmohsen, G. et al. Evaluation of cardiac function in pediatric patients with mild to moderate bronchial asthma in the era of cardiac strain imaging. Pediatr. Pulmonol. 54, 1905–1913 (2019).

    Article  PubMed  Google Scholar 

  47. Staerk, L., Sherer, J. A., Ko, D., Benjamin, E. J. & Helm, R. H. Atrial fibrillation: epidemiology, pathophysiology, and clinical outcomes. Circ. Res. 120, 1501–1517 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chan, W. L. et al. The association of asthma and atrial fibrillation—a nationwide population-based nested case–control study. Int. J. Cardiol. 176, 464–469 (2014).

    Article  PubMed  Google Scholar 

  49. Enright, P. L., Ward, B. J., Tracy, R. P. & Lasser, E. C. Asthma and its association with cardiovascular disease in the elderly. The Cardiovascular Health Study Research Group. J. Asthma 33, 45–53 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Sun, D. et al. Uric acid is associated with metabolic syndrome in children and adults in a community: the Bogalusa Heart Study. PLoS ONE 9, e89696 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Sun, D. et al. A history of asthma from childhood and left ventricular mass in asymptomatic young adults: the Bogalusa Heart Study. JACC Heart Fail. 5, 497–504 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dogra, S., Ardern, C. I. & Baker, J. The relationship between age of asthma onset and cardiovascular disease in Canadians. J. Asthma 44, 849–854 (2007).

    Article  PubMed  Google Scholar 

  53. Christiansen, S. C. et al. Hypertension and asthma: a comorbid relationship. J. Allergy Clin. Immunol. Pract. 4, 76–81 (2016).

    Article  PubMed  Google Scholar 

  54. Ferguson, S. et al. Factors associated with systemic hypertension in asthma. Lung 192, 675–683 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Corren, J. Allergic rhinitis and asthma: how important is the link? J. Allergy Clin. Immunol. 99, S781–S786 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Ravnborg, N. et al. Prevalence of asthma in patients with atopic dermatitis: a systematic review and meta-analysis. J. Am. Acad. Dermatol. 84, 471–478 (2021).

    Article  PubMed  Google Scholar 

  57. Rhee, T. M., Choi, E. K., Han, K. D., Lee, S. R. & Oh, S. Impact of the combinations of allergic diseases on myocardial infarction and mortality. J. Allergy Clin. Immunol. Pract. 9, 872–880 (2021).

    Article  PubMed  Google Scholar 

  58. Silverberg, J. I. Association between adult atopic dermatitis, cardiovascular disease, and increased heart attacks in three population-based studies. Allergy 70, 1300–1308 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Silverberg, J. I. et al. Association of atopic dermatitis with allergic, autoimmune, and cardiovascular comorbidities in US adults. Ann. Allergy Asthma Immunol. 121, 604–612 (2018).

    Article  PubMed  Google Scholar 

  60. Houser, S. M., Weng, C. & Liu, Y. C. A patient with an allergy emergency. JAMA Otolaryngol. Head Neck Surg. 141, 382–385 (2015).

    Article  PubMed  Google Scholar 

  61. Motosue, M. S., Bellolio, M. F., Van Houten, H. K., Shah, N. D. & Campbell, R. L. Risk factors for severe anaphylaxis in the United States. Ann. Allergy Asthma Immunol. 119, 356–361 (2017).

    Article  PubMed  Google Scholar 

  62. Wang, L. et al. Allergic asthma accelerates atherosclerosis dependent on TH2 and TH17 in apolipoprotein E deficient mice. J. Mol. Cell. Cardiol. 72, 20–27 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Liu, C. L. et al. Allergic lung inflammation promotes atherosclerosis in apolipoprotein E-deficient mice. Transl. Res. 171, 1–16 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Gao, S. et al. Allergic asthma aggravated atherosclerosis increases cholesterol biosynthesis and foam cell formation in apolipoprotein E-deficient mice. Biochem. Biophys. Res. Commun. 519, 861–867 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Al-Harbi, N. O. et al. Oxidative airway inflammation leads to systemic and vascular oxidative stress in a murine model of allergic asthma. Int. Immunopharmacol. 26, 237–245 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Harrington, J. Cardiac-specific β-blockers and asthma: an end to fear? Respirology 26, 216–217 (2021).

    Article  PubMed  Google Scholar 

  67. Huang, K. Y. et al. Do β-adrenergic blocking agents increase asthma exacerbation? A network meta-analysis of randomized controlled trials. Sci. Rep. 11, 452 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hanania, N. A. et al. The safety and effects of the β-blocker, nadolol, in mild asthma: an open-label pilot study. Pulm. Pharmacol. Ther. 21, 134–141 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Barrese, V. & Taglialatela, M. New advances in β-blocker therapy in heart failure. Front. Physiol. 4, 323 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Salpeter, S. R., Ormiston, T. M. & Salpeter, E. E. Cardiovascular effects of β-agonists in patients with asthma and COPD: a meta-analysis. Chest 125, 2309–2321 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Appleton, S. L. et al. Cardiovascular disease risk associated with asthma and respiratory morbidity might be mediated by short-acting β2-agonists. J. Allergy Clin. Immunol. 123, 124–130 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Au, D. H., Lemaitre, R. N., Curtis, J. R., Smith, N. L. & Psaty, B. M. The risk of myocardial infarction associated with inhaled β-adrenoceptor agonists. Am. J. Respir. Crit. Care Med. 161, 827–830 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Green, D. J., Jones, H., Thijssen, D., Cable, N. T. & Atkinson, G. Flow-mediated dilation and cardiovascular event prediction: does nitric oxide matter? Hypertension 57, 363–369 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Moore, L. E. et al. Acute effects of salbutamol on systemic vascular function in people with asthma. Respir. Med. 155, 133–140 (2019).

    Article  PubMed  Google Scholar 

  75. Fisher, A. A., Davis, M. W. & McGill, D. A. Acute myocardial infarction associated with albuterol. Ann. Pharmacother. 38, 2045–2049 (2004).

    Article  PubMed  Google Scholar 

  76. Reddy, Y. N. V. et al. The β-adrenergic agonist albuterol improves pulmonary vascular reserve in heart failure with preserved ejection fraction. Circ. Res. 124, 306–314 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Snyder, E. M. et al. Effects of an inhaled β2-agonist on cardiovascular function and sympathetic activity in healthy subjects. Pharmacotherapy 31, 748–756 (2011).

    Article  PubMed  Google Scholar 

  78. Fanta, C. H. Asthma. N. Engl. J. Med. 360, 1002–1014 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Hilleman, D. E., Malesker, M. A., Morrow, L. E. & Schuller, D. A systematic review of the cardiovascular risk of inhaled anticholinergics in patients with COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 4, 253–263 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gershon, A. et al. Cardiovascular safety of inhaled long-acting bronchodilators in individuals with chronic obstructive pulmonary disease. JAMA Intern. Med. 173, 1175–1185 (2013).

    Article  PubMed  Google Scholar 

  81. Pujades-Rodriguez, M., Morgan, A. W., Cubbon, R. M. & Wu, J. Dose-dependent oral glucocorticoid cardiovascular risks in people with immune-mediated inflammatory diseases: a population-based cohort study. PLoS Med. 17, e1003432 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Varas-Lorenzo, C., Rodriguez, L. A., Maguire, A., Castellsague, J. & Perez-Gutthann, S. Use of oral corticosteroids and the risk of acute myocardial infarction. Atherosclerosis 192, 376–383 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Lefebvre, P. et al. Acute and chronic systemic corticosteroid-related complications in patients with severe asthma. J. Allergy Clin. Immunol. 136, 1488–1495 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Yeh, J. J., Yang, Y. C., Hsu, C. Y. & Kao, C. H. Effect of bronchodilator and steroid use on heart disease and stroke risks in a bronchiectasis–chronic obstructive pulmonary disease overlap cohort: a propensity score matching study. Front. Pharmacol. 10, 1409 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shin, J., Yoon, H. Y., Lee, Y. M., Ha, E. & Lee, J. H. Inhaled corticosteroids in COPD and the risk for coronary heart disease: a nationwide cohort study. Sci. Rep. 10, 18973 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Camargo, C. A., Barr, R. G., Chen, R. & Speizer, F. E. Prospective study of inhaled corticosteroid use, cardiovascular mortality, and all-cause mortality in asthmatic women. Chest 134, 546–551 (2008).

    Article  PubMed  Google Scholar 

  87. Huiart, L., Ernst, P., Ranouil, X. & Suissa, S. Low-dose inhaled corticosteroids and the risk of acute myocardial infarction in COPD. Eur. Respir. J. 25, 634–639 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Suissa, S., Assimes, T., Brassard, P. & Ernst, P. Inhaled corticosteroid use in asthma and the prevention of myocardial infarction. Am. J. Med. 115, 377–381 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Ayodele, O. A., Cabral, H. J., McManus, D. D. & Jick, S. S. Glucocorticoids and risk of venous thromboembolism in asthma patients aged 20–59 years in the United Kingdom’s CPRD 1995–2015. Clin. Epidemiol. 14, 83–93 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Hoxha, M. et al. Montelukast use decreases cardiovascular events in asthmatics. Front. Pharmacol. 11, 611561 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Allayee, H. et al. The effect of montelukast and low-dose theophylline on cardiovascular disease risk factors in asthmatics. Chest 132, 868–874 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Ingelsson, E., Yin, L. & Back, M. Nationwide cohort study of the leukotriene receptor antagonist montelukast and incident or recurrent cardiovascular disease. J. Allergy Clin. Immunol. 129, 702–707 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Iribarren, C. et al. Cardiovascular and cerebrovascular events among patients receiving omalizumab: results from EXCELS, a prospective cohort study in moderate to severe asthma. J. Allergy Clin. Immunol. 139, 1489–1495 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Yalcin, A. D., Cilli, A., Bisgin, A., Strauss, L. G. & Herth, F. Omalizumab is effective in treating severe asthma in patients with severe cardiovascular complications and its effects on sCD200, d-dimer, CXCL8, 25-hydroxyvitamin D and IL-1β levels. Expert Opin. Biol. Ther. 13, 1335–1341 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Rodrigo, G. J., Neffen, H. & Castro-Rodriguez, J. A. Efficacy and safety of subcutaneous omalizumab vs placebo as add-on therapy to corticosteroids for children and adults with asthma: a systematic review. Chest 139, 28–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Quinta, J. B. et al. Late Breaking Abstract—Cardiovascular adverse events of drugs targeting IL-5 in severe asthma: a pharmacovigilance study. Eur. Respir. J. 56, 3692 (2020).

    Google Scholar 

  97. Song, T., Jones, D. M. & Homsi, Y. Therapeutic effect of anti-IL-5 on eosinophilic myocarditis with large pericardial effusion. BMJ Case Rep. 2017, bcr2016218992 (2017).

  98. Leon-Ferre, R. A., Weiler, C. R. & Halfdanarson, T. R. Hypereosinophilic syndrome presenting as an unusual triad of eosinophilia, severe thrombocytopenia, and diffuse arterial thromboses, with good response to mepolizumab. Clin. Adv. Hematol. Oncol. 11, 317–319 (2013).

    PubMed  Google Scholar 

  99. Villani, A. P. et al. Vascular inflammation in moderate-to-severe atopic dermatitis is associated with enhanced TH2 response. Allergy 76, 3107–3121 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. He, H. et al. Tape-strip proteomic profiling of atopic dermatitis on dupilumab identifies minimally invasive biomarkers. Front. Immunol. 11, 1768 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Drugs for asthma: mast-cell stabilisers. BMJ 282, 587–588 (1981).

  102. Sun, J. et al. Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat. Med. 13, 719–724 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Sun, J. et al. Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice. J. Clin. Invest. 117, 3359–3368 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wegmann, M. Targeting eosinophil biology in asthma therapy. Am. J. Respir. Cell Mol. Biol. 45, 667–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Korn, S. et al. Integrated safety and efficacy among patients receiving benralizumab for up to 5 years. J. Allergy Clin. Immunol. Pract. 9, 4381–4392 (2021).

    Article  PubMed  Google Scholar 

  106. Khurana, R., Simons, M., Martin, J. F. & Zachary, I. C. Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation 112, 1813–1824 (2005).

    Article  PubMed  Google Scholar 

  107. Barbato, A. et al. Epithelial damage and angiogenesis in the airways of children with asthma. Am. J. Respir. Crit. Care Med. 174, 975–981 (2006).

    Article  PubMed  Google Scholar 

  108. Tigani, B. et al. Lung inflammation and vascular remodeling after repeated allergen challenge detected noninvasively by MRI. Am. J. Physiol. Lung Cell. Mol. Physiol. 292, L644–L653 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Tormanen, K. R., Uller, L., Persson, C. G. & Erjefalt, J. S. Allergen exposure of mouse airways evokes remodeling of both bronchi and large pulmonary vessels. Am. J. Respir. Crit. Care Med. 171, 19–25 (2005).

    Article  PubMed  Google Scholar 

  110. Bateman, E. D. et al. Global strategy for asthma management and prevention: GINA executive summary. Eur. Respir. J. 31, 143–178 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Wang, K., Liu, C. T., Wu, Y. H., Feng, Y. L. & Bai, H. L. Budesonide/formoterol decreases expression of vascular endothelial growth factor (VEGF) and VEGF receptor 1 within airway remodelling in asthma. Adv. Ther. 25, 342–354 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Lee, S. Y., Paik, S. Y. & Chung, S. M. Neovastat (AE-941) inhibits the airway inflammation and hyperresponsiveness in a murine model of asthma. J. Microbiol. 43, 11–16 (2005).

    CAS  PubMed  Google Scholar 

  113. Kim, S. R., Lee, K. S., Park, S. J., Jeon, M. S. & Lee, Y. C. Inhibition of p38 MAPK reduces expression of vascular endothelial growth factor in allergic airway disease. J. Clin. Immunol. 32, 574–586 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Holguin, F. et al. Obesity and asthma: an association modified by age of asthma onset. J. Allergy Clin. Immunol. 127, 1486–1493 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Antonopoulos, A. S. & Antoniades, C. The role of epicardial adipose tissue in cardiac biology: classic concepts and emerging roles. J. Physiol. 595, 3907–3917 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Elliot, J. G. et al. Fatty airways: implications for obstructive disease. Eur. Respir. J. 54, 1900857 (2019).

    Article  PubMed  Google Scholar 

  117. Schipper, H. S., Prakken, B., Kalkhoven, E. & Boes, M. Adipose tissue-resident immune cells: key players in immunometabolism. Trends Endocrinol. Metab. 23, 407–415 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Desai, D. et al. Elevated sputum interleukin-5 and submucosal eosinophilia in obese individuals with severe asthma. Am. J. Respir. Crit. Care Med. 188, 657–663 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Peters, M. C. & Fahy, J. V. Type 2 immune responses in obese individuals with asthma. Am. J. Respir. Crit. Care Med. 188, 633–634 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Stark, K. & Massberg, S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat. Rev. Cardiol. 18, 666–682 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Bazan-Socha, S. et al. Asthma is associated with enhanced thrombin formation and impaired fibrinolysis. Clin. Exp. Allergy 46, 932–944 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Sneeboer, M. M. S. et al. Prothrombotic state in patients with severe and prednisolone-dependent asthma. J. Allergy Clin. Immunol. 137, 1727–1732 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Bisgaard, H. Role of leukotrienes in asthma pathophysiology. Pediatr. Pulmonol. 30, 166–176 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. De Caterina, R. & Zampolli, A. From asthma to atherosclerosis—5-lipoxygenase, leukotrienes, and inflammation. N. Engl. J. Med. 350, 4–7 (2004).

    Article  PubMed  Google Scholar 

  125. Stouthard, J. M. et al. Interleukin-6 stimulates coagulation, not fibrinolysis, in humans. Thromb. Haemost. 76, 738–742 (1996).

    Article  CAS  PubMed  Google Scholar 

  126. Ridker, P. M. et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 397, 2060–2069 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. van der Poll, T. et al. Activation of coagulation after administration of tumor necrosis factor to normal subjects. N. Engl. J. Med. 322, 1622–1627 (1990).

    Article  PubMed  Google Scholar 

  128. Chung, K. F. Targeting the interleukin pathway in the treatment of asthma. Lancet 386, 1086–1096 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Attaway, A., Ayache, M., Velani, S. & McKell, J. Insights into asthma therapies, cardiovascular effects, and mechanisms from recent clinical trials. Am. J. Respir. Crit. Care Med. 196, 920–922 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Hinks, T. S. et al. Innate and adaptive T cells in asthmatic patients: relationship to severity and disease mechanisms. J. Allergy Clin. Immunol. 136, 323–333 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Duvall, M. G. et al. Natural killer cell-mediated inflammation resolution is disabled in severe asthma. Sci. Immunol. 2, aam5446 (2017).

    Article  Google Scholar 

  132. Xia, N. et al. A unique population of regulatory T cells in heart potentiates cardiac protection from myocardial infarction. Circulation 142, 1956–1973 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Engelbertsen, D. et al. T-helper 2 immunity is associated with reduced risk of myocardial infarction and stroke. Arterioscler. Thromb. Vasc. Biol. 33, 637–644 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Shah, S. A., Page, C. P. & Pitchford, S. C. Platelet–eosinophil interactions as a potential therapeutic target in allergic inflammation and asthma. Front. Med. 4, 129 (2017).

    Article  Google Scholar 

  135. Liu, J. et al. Eosinophils improve cardiac function after myocardial infarction. Nat. Commun. 11, 6396 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Liu, C. L. et al. Eosinophils protect mice from angiotensin-II perfusion-induced abdominal aortic aneurysm. Circ. Res. 128, 188–202 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Loffler, W. [Scientific raisins from 125 years SMW (Swiaa Medical Weekly). 2nd international medical week dedicated in Switzerland. Luzern, 31 August–5 September 1936. Fibroplastic parietal endocarditis with eosinophilia. An unusual disease. 1936]. Schweiz. Med. Wochenschr. 125, 1837–1840 (1995).

  138. Tai, P. C. et al. Deposits of eosinophil granule proteins in cardiac tissues of patients with eosinophilic endomyocardial disease. Lancet 1, 643–647 (1987).

    Article  CAS  PubMed  Google Scholar 

  139. Davis, B. P. et al. Association of eosinophilic esophagitis and hypertrophic cardiomyopathy. J. Allergy Clin. Immunol. 137, 934–936 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Colazzo, F., Gelosa, P., Tremoli, E., Sironi, L. & Castiglioni, L. Role of the cysteinyl leukotrienes in the pathogenesis and progression of cardiovascular diseases. Mediators Inflamm. 2017, 2432958 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Sakata, Y. et al. Elevation of the plasma histamine concentration in the coronary circulation in patients with variant angina. Am. J. Cardiol. 77, 1121–1126 (1996).

    Article  CAS  PubMed  Google Scholar 

  142. Niccoli, G. et al. Eosinophil cationic protein: a new biomarker of coronary atherosclerosis. Atherosclerosis 211, 606–611 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Uderhardt, S. et al. Enzymatic lipid oxidation by eosinophils propagates coagulation, hemostasis, and thrombotic disease. J. Exp. Med. 214, 2121–2138 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Atkinson, J. B., Robinowitz, M., McAllister, H. A. & Virmani, R. Association of eosinophils with cardiac rupture. Hum. Pathol. 16, 562–568 (1985).

    Article  CAS  PubMed  Google Scholar 

  145. Diny, N. L. et al. Eosinophil-derived IL-4 drives progression of myocarditis to inflammatory dilated cardiomyopathy. J. Exp. Med. 214, 943–957 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chihara, J. et al. Possible release of eosinophil granule proteins in response to signaling from intercellular adhesion molecule-1 and its ligands. Int. Arch. Allergy Immunol. 108, 52–54 (1995).

    Article  CAS  PubMed  Google Scholar 

  147. Hernnas, J. et al. Eosinophil cationic protein alters proteoglycan metabolism in human lung fibroblast cultures. Eur. J. Cell Biol. 59, 352–363 (1992).

    CAS  PubMed  Google Scholar 

  148. Kakino, T., Yokoyama, H. & Eshima, K. Significance of troponin I level as a marker of disease activity in the management of acute necrotizing eosinophilic myocarditis with normal peripheral eosinophil count: a case report. Eur. Heart J. Case Rep. 2, yty139 (2018).

    PubMed  PubMed Central  Google Scholar 

  149. Javaheri, A. & Rader, D. J. Apolipoprotein A-I and cholesterol efflux: the good, the bad, and the modified. Circ. Res. 114, 1681–1683 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Barochia, A. V. et al. Serum apolipoprotein A-I and large high-density lipoprotein particles are positively correlated with FEV1 in atopic asthma. Am. J. Respir. Crit. Care Med. 191, 990–1000 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Barochia, A. V. et al. High density lipoproteins and type 2 inflammatory biomarkers are negatively correlated in atopic asthmatics. J. Lipid Res. 58, 1713–1721 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Carlomagno, G. et al. Serum soluble ST2 and interleukin-33 levels in patients with pulmonary arterial hypertension. Int. J. Cardiol. 168, 1545–1547 (2013).

    Article  PubMed  Google Scholar 

  153. Ikutani, M. et al. Elimination of eosinophils using anti-IL-5 receptor α antibodies effectively suppresses IL-33-mediated pulmonary arterial hypertrophy. Immunobiology 223, 486–492 (2018).

    Article  CAS  PubMed  Google Scholar 

  154. Cabon, Y. et al. Comparison of anti-interleukin-5 therapies in patients with severe asthma: global and indirect meta-analyses of randomized placebo-controlled trials. Clin. Exp. Allergy 47, 129–138 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Ha, E. H. et al. Endothelial Sox17 promotes allergic airway inflammation. J. Allergy Clin. Immunol. 144, 561–573 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Verbrugge, F. H., Tang, W. H. & Hazen, S. L. Protein carbamylation and cardiovascular disease. Kidney Int. 88, 474–478 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wang, Z. et al. Eosinophil peroxidase catalyzed protein carbamylation participates in asthma. J. Biol. Chem. 291, 22118–22135 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Karakaya, Z., Cavkaytar, O., Tosun, O. & Arga, M. Subclinical cardiovascular dysfunction in children and adolescents with asthma. J. Asthma 59, 451–461 (2020).

  159. Konishi, T. et al. Prognostic value of eosinophil to leukocyte ratio in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. J. Atheroscler. Thromb. 24, 827–840 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Shah, A. D., Denaxas, S., Nicholas, O., Hingorani, A. D. & Hemingway, H. Low eosinophil and low lymphocyte counts and the incidence of 12 cardiovascular diseases: a CALIBER cohort study. Open Heart 3, e000477 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Robinson, D. S. The role of the mast cell in asthma: induction of airway hyperresponsiveness by interaction with smooth muscle? J. Allergy Clin. Immunol. 114, 58–65 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Kovanen, P. T., Kaartinen, M. & Paavonen, T. Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation 92, 1084–1088 (1995).

    Article  CAS  PubMed  Google Scholar 

  163. Shi, G. P., Bot, I. & Kovanen, P. T. Mast cells in human and experimental cardiometabolic diseases. Nat. Rev. Cardiol. 12, 643–658 (2015).

    Article  CAS  PubMed  Google Scholar 

  164. Wang, J. et al. Pharmaceutical stabilization of mast cells attenuates experimental atherogenesis in low-density lipoprotein receptor-deficient mice. Atherosclerosis 229, 304–309 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wang, J. et al. IgE stimulates human and mouse arterial cell apoptosis and cytokine expression and promotes atherogenesis in Apoe−/− mice. J. Clin. Invest. 121, 3564–3577 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wang, J. et al. IgE actions on CD4+ T cells, mast cells, and macrophages participate in the pathogenesis of experimental abdominal aortic aneurysms. EMBO Mol. Med. 6, 952–969 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Liu, C. L. et al. Allergic lung inflammation aggravates angiotensin II-induced abdominal aortic aneurysms in mice. Arterioscler. Thromb. Vasc. Biol. 36, 69–77 (2016).

    Article  PubMed  CAS  Google Scholar 

  168. Jaramillo, R. et al. Relation between objective measures of atopy and myocardial infarction in the United States. J. Allergy Clin. Immunol. 131, 405–411 (2013).

    Article  PubMed  Google Scholar 

  169. Magen, E., Mishal, J. & Vardy, D. Selective IgE deficiency and cardiovascular diseases. Allergy Asthma Proc. 36, 225–229 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Magen, E., Schlesinger, M., David, M., Ben-Zion, I. & Vardy, D. Selective IgE deficiency, immune dysregulation, and autoimmunity. Allergy Asthma Proc. 35, e27–e33 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The studies were supported by the Hainan Province Science and Technology special fund (ZDYF2020214 to J.G.), the National Natural Science Foundation of China (81770487, 91939107 and 82170440 to J.G.), the National Science Fund for Distinguished Young Scholars of Hainan Medical University (JBGS202104 to J.G.), the Key Laboratory of Emergency and Trauma (Hainan Medical University) of the Ministry of Education (KLET-201917 to J.G. and KLET-202019 to Y.Z.), the National Heart, Lung, and Blood Institute (HL151627 and HL157073 to G.-P.S.; HL34636 and HL80472 to P.L.) and the National Institute of Neurological Disorders and Stroke (AG063839 to G.-P.S.).

Author information

Authors and Affiliations

Authors

Contributions

J.G., Y.Z. and G.-P.S. drafted the manuscript and prepared the figures and tables; T.L. prepared all the art work; B.D.L. and P.L. read and edited the manuscript.

Corresponding author

Correspondence to Guo-Ping Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks Douglas Mann, Susetta Finotto and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Zhang, Y., Liu, T. et al. Allergic asthma is a risk factor for human cardiovascular diseases. Nat Cardiovasc Res 1, 417–430 (2022). https://doi.org/10.1038/s44161-022-00067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-022-00067-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing