Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide specificity of prime editors in plants

Abstract

Although prime editors (PEs) have the potential to facilitate precise genome editing in therapeutic, agricultural and research applications, their specificity has not been comprehensively evaluated. To provide a systematic assessment in plants, we first examined the mismatch tolerance of PEs in plant cells and found that the editing frequency was influenced by the number and location of mismatches in the primer binding site and spacer of the prime editing guide RNA (pegRNA). Assessing the activity of 12 pegRNAs at 179 predicted off-target sites, we detected only low frequencies of off-target edits (0.00~0.23%). Whole-genome sequencing of 29 PE-treated rice plants confirmed that PEs do not induce genome-wide pegRNA-independent off-target single-nucleotide variants or small insertions/deletions. We also show that ectopic expression of the Moloney murine leukemia virus reverse transcriptase as part of the PE does not change retrotransposon copy number or telomere structure or cause insertion of pegRNA or messenger RNA sequences into the genome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect of mismatched pegRNA on prime editing in rice protoplasts.
Fig. 2: Prime editing efficiencies at endogenous on-target and off-target sites.
Fig. 3: pegRNA-dependent off-target prime editing events analyses via WGS in rice plants.
Fig. 4: pegRNA-independent off-target analyses of prime editing events via WGS in rice plants.
Fig. 5: Analysis of retrotransposons and telomerase activities in rice.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available in the article and supplementary figures and tables or are available from the corresponding author upon reasonable request. For sequence data, rice LOC_Os identifiers (http://rice.plantbiology.msu.edu/) are as follows: LOC_Os03g54790 (OsALS), LOC_Os03g05730 (OsCDC48), LOC_Os08g03290 (OsGAPDH), LOC_Os01g55540 (OsAAT), LOC_Os05g22940 (OsACC), LOC_Os09g26999 (OsDEP1), LOC_Os06g04280 (OsEPSPS), LOC_Os08g39890 (OsIPA1), LOC_Os08g03290 (OsGAPDH) and LOC_Os03g08570 (OsPDS). The NCBI GenBank identifiers are AP005292 and AE017097 (OsTos17). The deep sequencing and genome sequencing data have been deposited in two NCBI BioProject databases (accession codes PRJNA702625 and PRJNA636219). Source data are provided with this paper.

References

  1. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li, G., Liu, Y. G. & Chen, Y. Genome-editing technologies: the gap between application and policy. Sci. China Life Sci. 62, 1534–1538 (2019).

    Article  PubMed  Google Scholar 

  3. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Gao, C. Genome engineering for crop improvement and future agriculture. Cell 184, 1621–1635 (2021).

  5. Zhu, H., Li, C. & Gao, C. Applications of CRISPR–Cas in agriculture and plant biotechnology. Nat. Rev. Mol. Cell Bio. 21, 661–677 (2020).

    Article  CAS  Google Scholar 

  6. Liu, Y. et al. Efficient generation of mouse models with the prime editing system. Cell Discov. 6, 27 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bosch, J. A., Birchak, G. & Perrimon, N. Precise genome engineering in Drosophila using prime editing. Proc. Natl Acad. Sci. USA 118, e2021996118 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Lin, Q. et al. Prime genome editing in rice and wheat. Nat. Biotechnol. 38, 582–585 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Veillet, F. et al. Prime editing is achievable in the tetraploid potato, but needs improvement. Preprint at bioRxiv https://doi.org/10.1101/2020.06.18.159111 (2020).

  10. Jiang, Y. et al. Prime editing efficiently generates W542L and S621I double mutations in two ALS genes of maize. Genome Biol. 21, 257 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, L. et al. Spelling changes and fluorescent tagging with prime editing vectors for plants. Preprint at bioRxiv https://doi.org/10.1101/2020.07.16.206276 (2020).

  12. Jin, S. et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292–295 (2019).

    CAS  PubMed  Google Scholar 

  13. Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289–292 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, J., Hong, S., Chen, W., Zuo, E. & Yang, H. Advances in detecting and reducing off-target effects generated by CRISPR-mediated genome editing. J. Genet. Genomics 46, 513–521 (2019).

    Article  PubMed  Google Scholar 

  15. Tang, X. et al. A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biol. 19, 59 (2018).

    Article  CAS  Google Scholar 

  16. Fu et al. High-frequency off-target mutagenesis induced by CRISPR–Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mali, P. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833–838 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pattanayak, V. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31, 839–843 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim, D. et al. Digenome-seq: genome-wide profiling of CRISPR–Cas9 off-target effects in human cells. Nat. Methods 12, 237–243 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, D. et al. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat. Biotechnol. 35, 475–480 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Bae, S., Park, J. & Kim, J. S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jin, S. et al. Rationally designed APOBEC3B cytosine base editors with improved specificity. Mol. Cell. 79, 728–740 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wilm, A. et al. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res. 40, 11189–11201 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim, S. et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat. Methods 15, 591–594 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Mitsuhara, I. et al. Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol. 37, 49–59 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Robinson, J. T. et al. Integrative Genomics Viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gaudelli et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hirochika, H., Sugimoto, K., Otsuki, Y., Tsugawa, H. & Kanda, M. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl Acad. Sci. USA 93, 7783–7788 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Piffanelli, P. et al. Large-scale characterization of Tos17 insertion sites in a rice T-DNA mutant library. Plant Mol. Biol. 65, 587–601 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mizuno, H. et al. Characterization of chromosome ends on the basis of the structure of TrsA subtelomeric repeats in rice (Oryza sativa L.). Mol. Genet. Genomics 280, 19–24 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Demeulemeester, J., De Rijck, J., Gijsbers, R. & Debyser, Z. Retroviral integration: site matters: mechanisms and consequences of retroviral integration site selection. Bioessays 37, 1202–1214 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tsuruyama, T., Hiratsuka, T. & Yamada, N. Hotspots of MLV integration in the hematopoietic tumor genome. Oncogene 36, 1169–1175 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Toki, S. et al. Expression of a maize ubiquitin gene promoter-bar chimeric gene in transgenic rice plants. Plant Physiol. 100, 1503–1507 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR–Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Tycko, J., Myer, V. E. & Hsu, P. D. Methods for optimizing CRISPR–Cas9 genome editing specificity. Mol. Cell 63, 355–370 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schmid-Burgk, J. L. et al. Highly parallel profiling of Cas9 variant specificity. Mol. Cell 78, 794–800 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR–Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chuai, G. H., Wang, Q. L. & Liu, Q. In silico meets in vivo: towards computational CRISPR-based sgRNA design. Trends Biotechnol. 35, 12–21 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Kim, N. et al. Prediction of the sequence-specific cleavage activity of Cas9 variants. Nat. Biotechnol. 38, 1328–1336 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, X. et al. SeqCor: correct the effect of gRNA sequences in CRISPR/Cas9 screenings by machine learning algorithm. J. Genet. Genomics https://doi.org/10.1016/j.jgg.2020.10.007 (2020).

  44. Shan, Q. et al. Targeted genome modification of crop plants using a CRISPR–Cas system. Nat. Biotechnol. 31, 686–688 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Zong, Y. et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat. Biotechnol. 36, 950–953 (2018).

    Article  CAS  Google Scholar 

  46. Shan, Q. et al. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol. Plant 6, 1365–1368 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, T. et al. BIGpre: a quality assessment package for next-generation sequencing data. Genom. Proteom. Bioinf. 9, 238–244 (2011).

    Article  Google Scholar 

  48. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Su, L., Li, A., Li, H., Chu, C. & Qiu, J. L. Direct modulation of protein level in Arabidopsis. Mol. Plant 6, 1711–1714 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (31788103 and 31971370), the National Key Research and Development Program of China (2016YFD0100602), the Strategic Priority Research Program of the Chinese Academy of Sciences (Precision Seed Design and Breeding, XDA24020100), the Chinese Academy of Sciences (QYZDY-SSW-SMC030) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2017140).

Author information

Authors and Affiliations

Authors

Contributions

C.G. supervised the project. C.G., S.J. and Y.F.L. designed the experiment. S.J., Q.L., Z.Z., G.L. and K.C. performed the experiments. Y.F.L., S.J. and Y.J.L. performed the bioinformatics analyses. C.G., J.-L.Q., S.J. and Q.L. wrote the manuscript.

Corresponding author

Correspondence to Caixia Gao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Peer review information Nature Biotechnology thanks Nicole Gaudelli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17, Tables 1–16 and Sequences

Reporting Summary

Supplementary Table 1

Primers used in this study

Supplementary Data 1

FACS data

Source data

Source Data Supplementary Fig. 1

Source Data for Supplementary Fig. 1b

Source Data Supplementary Fig. 13a

Source Data for Supplementary Fig. 13a

Source Data Supplementary Fig. 13b

Source Data for Supplementary Fig. 13b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, S., Lin, Q., Luo, Y. et al. Genome-wide specificity of prime editors in plants. Nat Biotechnol 39, 1292–1299 (2021). https://doi.org/10.1038/s41587-021-00891-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-021-00891-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research