Skip to main content
Log in

Nuclear interactions and medicine

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

What does antimatter have to do with medical diagnosis? Why can nuclear decays be used to treat tumour? And how can the radiation emitted by the nuclei help doctors to discover our diseases? In modern medicine, science and technology are now a constant presence, even if it is often not evident to the patient–s eye. Nuclear physics is no less important and plays an important role both in the treatment and in the diagnosis. This paper will try to highlight this role by pinpointing this hidden (but not too much) connection and find out some of the many places where nuclear physics is at work in our hospitals. Among the many possibilities the role of nuclear physics in the cure of tumours is given, by making reference to the newest technique of radiotherapy, that is the use of hadron beams (mainly protons and carbon ions), to control deep-seated tumours. Changing completely the landscape, a hint of the impact of nuclear interaction on astronauts is given. In spite of the very different environment the same nuclear mechanism, nuclear fragmentation, is at work and drives both the amount of radiation absorbed by the astronauts or the shielding design of the spacecraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W.R. Leo, Techniques for Nuclear and Particle Physics Experiments (Springer-Verlag, Berlin, Heidelberg, 1987)

  2. M. Durante, H. Paganetti, Rep. Prog. Phys. 79, 096702 (2016)

    Article  ADS  Google Scholar 

  3. J. Hüfner, K. Shäfer, B. Schürmann, Phys. Rev. C 12, 1888 (1975)

    Article  Google Scholar 

  4. H.L. Bradt, B. Peters, Phys. Rev. 77, 54 (1950)

    Article  ADS  Google Scholar 

  5. L. Sihver, D. Mancusi, Radiat. Meas. 44, 3846 (2009)

    Article  Google Scholar 

  6. G. Battistoni, I. Mattei, S. Muraro, Adv. Phys. X 1, 661 (2016)

    Google Scholar 

  7. T.T. Böhlen et al., Phys. Med. Biol. 55, 5833 (2010)

    Article  Google Scholar 

  8. A. Mairani et al., Phys. Med. Biol. 55, 4273 (2010)

    Article  Google Scholar 

  9. M.B. Chadwick et al., Nucl. Data 112, 2887 (2011)

    Article  ADS  Google Scholar 

  10. JENDL, https://doi.org/wwwndc.jaea.go.jp/jendl/jendl.html

  11. EXFOR, https://doi.org/www-nds.iaea.org/exfor/exfor.html

  12. A. Ferrari, CERN2005-10, INFN/TC_05/11, SLAC-R-773L (2005)

  13. T.T. Böhlen et al., Nucl. Data Sheets 120, 211 (2014)

    Article  ADS  Google Scholar 

  14. A. Ferrari, P.R. Sala, in Proceedings of the Workshop on Nuclear Reaction Data and Nuclear Reactors Physics, Design and Safety, edited by A. Gandini, G. Reffo, Vol. 2 (World Scientific, 1998) p. 424 https://doi.org/10.1142/3319

  15. R. Serber, Phys. Rev. 72, 1114 (1947)

    Article  ADS  Google Scholar 

  16. H.W. Bertini, ORNL-TM-4134, Oak Ridge (1974)

  17. J.J. Griffin, Phys. Rev. Lett. 17, 478 (1966)

    Article  ADS  Google Scholar 

  18. M. Blann, Phys. Rev. C 28, 1648 (1983)

    Article  ADS  Google Scholar 

  19. E. Fermi, Prog. Theor. Phys. 5, 570 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  20. R.R. Wilson, Radiology 47, 487 (1946)

    Article  Google Scholar 

  21. T. Haberer, GSI Report 94-09 (1994)

  22. H. Paganetti, Phys. Med. Biol. 59, 419 (2014)

    Article  Google Scholar 

  23. F. Tommasino et al., Int. J. Part. Thery 2, 428 (2016)

    Article  Google Scholar 

  24. M.C. Morone et al., Phys. Med. Biol. 53, 6045 (2008)

    Article  Google Scholar 

  25. L. Sihver et al., Jpn. J. Med. Phys. 18, 1 (1998)

    ADS  Google Scholar 

  26. F. Tommasino, M. Durante, Cancers 7, 353 (2015)

    Article  Google Scholar 

  27. https://pandora.infn.it/public/036a26

  28. A. Knopf, A. Lomax, Phys. Med. Biol. 58, 131 (2013)

    Article  Google Scholar 

  29. H. Paganetti, Phys. Med. Biol. 57, 99 (2012)

    Article  Google Scholar 

  30. C. Agodi et al., Nucl. Instrum. Methods B 283, 1 (2012)

    Article  ADS  Google Scholar 

  31. G.W. Bennett et al., Science 200, 1151 (1978)

    Article  ADS  Google Scholar 

  32. A.C. Kraan, Front. Oncol. 5, 150 (2015)

    Article  Google Scholar 

  33. K. Parodi, W. Enghardt, T. Haberer, Phys. Med. Biol. 47, 21 (2002)

    Article  Google Scholar 

  34. W. Enghardt et al., Radiother. Oncol. 73, S96 (2004)

    Article  Google Scholar 

  35. T. Nishio et al., Int. J. Rad. Oncol. Biol. Phys. 76, 277 (2010)

    Article  Google Scholar 

  36. F. Fiedler et al., Acta Oncol. Stockholm Sweden 47, 1077 (2008)

    Article  Google Scholar 

  37. A. Knopf et al., Phys. Med. Biol. 54, 4477 (2009)

    Article  Google Scholar 

  38. J. Bauer et al., Radiother. Oncol. 107, 218 (2013)

    Article  Google Scholar 

  39. C.H. Min et al., Appl. Phys. Lett. 89, 183517 (2006)

    Article  ADS  Google Scholar 

  40. E. Testa et al., Nucl. Instrum. Methods B 267, 993 (2009)

    Article  ADS  Google Scholar 

  41. C. Agodi et al., JINST 7, P03001 (2012)

    Article  Google Scholar 

  42. I. Mattei et al., Phys. Med. Biol. 62, 1438 (2017)

    Article  Google Scholar 

  43. I. Mattei et al., JINST 10, P10034 (2015)

    Article  Google Scholar 

  44. J.C. Polf et al., Phys. Med. Biol. 54, 731 (2009)

    Article  Google Scholar 

  45. J. Verburg, J. Seco, Phys. Med. Biol. 59, 7089 (2014)

    Article  Google Scholar 

  46. G. Llosá et al., Front. Oncol. 6, 14 (2016)

    Article  Google Scholar 

  47. F. Hueso-González et al., Phys. Med. Biol. 60, 6247 (2015)

    Article  Google Scholar 

  48. C. Richter et al., Radiother. Oncol. 118, 232 (2016)

    Article  Google Scholar 

  49. U. Amaldi et al., Nucl. Instrum. Methods A 617, 248 (2010)

    Article  ADS  Google Scholar 

  50. P. Henriquet et al., Phys. Med. Biol. 57, 4655 (2012)

    Article  Google Scholar 

  51. C. Agodi et al., Phys. Med. Biol. 57, 5667 (2012)

    Article  Google Scholar 

  52. K. Gwosch et al., Phys. Med. Biol. 58, 3755 (2013)

    Article  Google Scholar 

  53. L. Piersanti et al., Phys. Med. Biol. 59, 1857 (2014)

    Article  Google Scholar 

  54. M. Marafini et al., Acta Physica Pol. A 127, 1465 (2015)

    Article  Google Scholar 

  55. V. Ferrero et al., Sci. Rep. 8, 4100 (2008)

    Article  ADS  Google Scholar 

  56. G. Traini et al., Physica Medica 34, 18 (2017)

    Article  Google Scholar 

  57. M. Marafini et al., Phys. Med. Biol. 62, 3299 (2017)

    Article  Google Scholar 

  58. K. Gunzert-Marx et al., Radiat. Prot. Dosim. 110, 595 (2004)

    Article  Google Scholar 

  59. T. Kurosawa et al., Nucl. Sci. Eng. 132, 30 (1999)

    Article  Google Scholar 

  60. H.R. Schelin et al., Nucl. Sci. Eng. 113, 184 (1993)

    Article  Google Scholar 

  61. NuPECC, Nuclear Physics for Medicine, Report 2014

  62. D. Satoh et al., Nucl. Instrum. Methods Phys. Res. A 583, 515 (2007)

    Article  ADS  Google Scholar 

  63. M. Durante, F.A. Cucinotta, Nat. Rev. Cancer 8, 472 (2008)

    Article  Google Scholar 

  64. G.D. Badhwar, F.A. Cucinotta, P.M. O–Neill, Radiat. Res. 134, 9 (1993)

    Article  ADS  Google Scholar 

  65. M. Durante, F.A. Cucinotta, Rev. Mod. Phys. 83, 1245 (2011)

    Article  ADS  Google Scholar 

  66. C. Zeitlin et al., Science 340, 1080 (2013)

    Article  ADS  Google Scholar 

  67. C. Lobascio et al., Health Phys. 94, 242 (2008)

    Article  Google Scholar 

  68. J. Miller et al., Radiat. Res. 159, 381 (2003)

    Article  ADS  Google Scholar 

  69. J.W. Norbury et al., Radiat. Meas. 47, 315 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Patera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patera, V., Mattei, I. Nuclear interactions and medicine. Eur. Phys. J. Plus 134, 12 (2019). https://doi.org/10.1140/epjp/i2019-12484-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12484-6

Navigation