Skip to main content
Log in

Strong turbulence, self-organization and plasma confinement

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

This paper elucidates the close connections between hydrodynamic models of two-dimensional fluids and reduced models of plasma dynamics in the presence of a strong magnetic field. The key element is the similarity of the Coriolis force to the Lorentz force. The reduced plasma model, the Hasegawa–Mima equation, is equivalent to the two-dimensional ion vortex equation. The paper discusses the history of the Hasegawa–Mima model and that of a related reduced system called the Hasegawa–Wakatani model. The 2D fluid ↔ magnetized plasma analogy is exploited to argue that magnetized plasma turbulence exhibits a dual cascade, including an inverse cascade of energy. Generation of ordered mesoscopic flows in plasmas (akin to zonal jets) is also explained. The paper concludes with a brief explanation of the relevance of the quasi-2D dynamics to aspects of plasma confinement physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Biglari, H., P.H. Diamond and P.W. Terry. 1990. Influence of sheared poloidal rotation on edge turbulence. Phys. Plasmas 2: 1–4

    Google Scholar 

  2. Biskamp, D., E. Schwarz and J.F. Drake. 1996. Two-dimensional electron magnetohydrodynamic turbulence. Phys. Rev. Lett. 76: 1264–1268

    Article  ADS  Google Scholar 

  3. Charney, J.G. 1948. On the scale of atmospheric motions, Vol. 17. Geofysiske Publikasjoner, Oslo

  4. Davis, M.S., M.E. Mauel, D.T. Garnier and J. Kesner. 2014. Pressure profiles of plasmas confined in the field of a magnetic dipole. Plasma Phys. Control. Fusion 56: 095021

    Article  ADS  Google Scholar 

  5. Diamond, P. and Y.-B. Kim. 1991. Theory of mean poloidal flow generation by turbulence. Phys. Plasma 3: 1626–1633

    Google Scholar 

  6. Diamond, P., M. Rosenbluth, E. Sanchez, et al. 2000. In search of the elusive zonal flow using cross-bicoherence analysis. Phys. Rev. Lett. 84: 4842–4845

    Article  ADS  Google Scholar 

  7. Diamond, P.H., S.-I. Itoh, K. Itoh and T.S. Hahm. 2005. Zonal flow – a review. Plasma Phys. Control. Fusion 47: R35

    Article  Google Scholar 

  8. Diamond, P.H., A. Hasegawa and K. Mima. 2011. Vorticity dynamics, drift wave turbulence, and zonal flows: a look back and a look ahead. Plasma Phys. Control. Fusion 53: 12001

    Article  Google Scholar 

  9. Fujisawa, A. 2009. A review of zonal flow plasma experiments. Nucl. Fusion 49: 013001

    Article  ADS  Google Scholar 

  10. Galtier, S. and A. Bhattacharjee. 2003. Anisotropic weak whistler wave turbulence in electron magnetohydrodynamics. Phys. Plasmas 10: 3065

    Article  ADS  Google Scholar 

  11. Hamada, Y., T. Watari, A. Nishizawa, O. Yamagishi, K. Narihara, Y. Kawasumi, T. Ido, M. Kojima, K. Toi and the JIPPT-IIU Group. 2012. Regions of kinetic geodesic acoustic modes and streamers in JIPPT-IIU tokamak plasmas. Nucl. Fusion 52: 063023

    Article  ADS  Google Scholar 

  12. Hasegawa, A. 1983. A test of self-organization hypothesis in Jovian and Saturnian wind systems. J. Phys. Soc. Jpn. 52: 1930–1934

    Article  ADS  Google Scholar 

  13. Hasegawa, A. 1985. Self-organization processes in continuous media. Adv. Phys. 34: 1–42

    Article  ADS  MathSciNet  Google Scholar 

  14. Hasegawa, A. 1987. A dipole field fusion reaction. Comm. Plasma Phys. Control. Fusion 11: 147–151

    Google Scholar 

  15. Hasegawa, A. and L. Chen. 1975. Kinetic process of plasma heating due to Alfvén wave excitation. Phys. Rev. Lett. 35: 370–373

    Article  ADS  Google Scholar 

  16. Hasegawa, A. and K. Mima. 1977. Stationary spectrum of strong turbulence in magnetized nonuniform plasma. Phys. Rev. Lett. 39: 205–208

    Article  ADS  Google Scholar 

  17. Hasegawa, A. and K. Mima. 1978. Pseudo-three-dimensional turbulence in magnetized nonuniform plasma. Phys. Fluids 21: 87–92

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Hasegawa, A. and M. Wakatani. 1983. Plasma edge turbulence. Phys. Rev. Lett. 50: 682–686

    Article  ADS  MATH  Google Scholar 

  19. Hasegawa, A. and M. Wakatani. 1987. Self-organization of electrostatic turbulence in a cylindrical plasma. Phys. Rev. Lett. 59: 1581–1584

    Article  ADS  Google Scholar 

  20. Hasegawa, A., C.G. Maclennan and Y. Kodama. 1979. Nonlinear behavior and turbulence spectra of drift waves and Rossby waves. Phys. Fluids 22: 2122–2129

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Hoppensteadt, F. 2006. Predator-prey model. Scholarpedia 1: 1563

    Article  ADS  Google Scholar 

  22. Kawazura, Y., Z. Yoshida, M. Nishiura, H. Saitoh, Y. Yano, T. Nogami, N. Sato, M. Yamasaki, A. Kashyap and T. Mushiake. 2015. Observation of particle acceleration in laboratory magnetosphere. Phys. Plasmas 22: 112503

    Article  ADS  Google Scholar 

  23. Kikuchi, M. and M. Azumi. 2015. Frontier in fusion research II: introduction to modern tokamak physics. Springer International Publishing, Switzerland

  24. Kolmogorov, A.N. 1941. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30: 299–303

    ADS  MathSciNet  Google Scholar 

  25. Kraichnan, R.H. 1967. Inertial range in two-dimensional turbulence. Phys. Fluids 10: 1417–1423

    Article  ADS  MathSciNet  Google Scholar 

  26. Mazzucato,E. 1976. Small-scale density fluctuations in the adiabatic toroidal compressor. Phys. Rev. Lett. 36: 792–795

    Article  ADS  Google Scholar 

  27. Mima, K. and Y.C. Lee. 1980. Modulational instability of strongly dispersive drift waves and formation of convective cells. Phys. Fluids 23: 105–108

    Article  ADS  Google Scholar 

  28. Nagashima, Y., S.-I Ito, S. Shinohara, M. Fukao, A. Fujisawa, K. Terasaka, Y. Kawai, G.R. Tynan, P.H. Diamond, M. Yagi, S. Inagaki, T. Yamada and K. Itoh. 2009. Observation of the parametric-modulational instability between the drift-wave fluctuation and azimuthally symmetric sheared radial electric field oscillation in a cylindrical laboratory plasma. Phys. Plasmas 16: 020706

    Article  ADS  Google Scholar 

  29. Onsager, L. 1949. Statistical hydrodynamics. Nuovo Cim. 6: 279–287

    Article  ADS  MathSciNet  Google Scholar 

  30. Rosenbluth, M.N. and F.L. Hinton. 1998. Poloidal flow driven ion-temperature-gradient turbulent in tokamaks. Phys. Rev. Lett. 80: 724–727

    Article  ADS  Google Scholar 

  31. Rossby, C.-G. 1939. Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res. 2: 38–55

    Article  Google Scholar 

  32. Sagdeev, R.Z. and A.A. Galeev. 1969. Nonlinear plasma theory (T.M. O’Neil and D.L. Book, eds.). W.A. Benjamin, New York

  33. Schrödinger, E. 1944. What is life? The physical aspect of the living cell. Cambridge University Press, Cambridge

  34. Slusher, R.E. and C.M. Surko. 1978. Study of density fluctuations in the absorption of oxygen on silicon. Phys. Rev. Lett. 40: 400–403

    Article  ADS  Google Scholar 

  35. Surko, C.M. and R.E. Slusher. 1976. Study of the density fluctuations in the adiabatic toroidal compressor scattering tokamak using CO2 laser. Phys. Rev. Lett. 37: 1747–1750

    Article  ADS  Google Scholar 

  36. Taniuti, T. and H. Washimi H. 1968. Self-trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma. Phys. Rev. Lett. 21: 209–212

    Article  ADS  Google Scholar 

  37. Tynan G.R., R.A. Moyer, M.J. Burin and C. Holland. 2001. On the nonlinear turbulentdynamics of shear-flow decorrelation and zonal flow generation. Phys. Plasmas 8: 2691–2699

    Article  ADS  Google Scholar 

  38. Wakatani, M. and A. Hasegawa. 1984. A collisional drift wave description of plasma edge turbulence. Phys. Fluids 27: 611–618

    Article  ADS  MATH  Google Scholar 

  39. Williams, G.P. 1978. Planetary circulations: 1. Barotropic representation of Jovian and terrestrial turbulence. J. Atmos. Sci. 35: 1399–1426

    Article  ADS  Google Scholar 

  40. Xiao, Y., I. Holod, W. Zhang, S. Klasky and Z. Lin. 2010. Fluctuation characteristic and transport properties of collisionless trapped electron mode turbulence. Phys. Plasmas 17: 022302

    Article  ADS  Google Scholar 

  41. Zakharov, V.E. 1972. Collapse of Langmuir waves. Sov. Phys. JETP-USSR 35: 908–914

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunioki Mima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasegawa, A., Mima, K. Strong turbulence, self-organization and plasma confinement. EPJ H 43, 499–521 (2018). https://doi.org/10.1140/epjh/e2018-90033-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2018-90033-4

Navigation