Skip to main content
Log in

Energy and spin relaxations in drift transport of carriers: effects of polar optical hot phonon generation

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the energy and spin relaxations in drift transport of electrons in n-doped GaAs. Stating from the rate of change of phonon occupancy in a relaxation time approximation and the electronic power dissipated in a drifted Maxwellian distribution, the hot phonon generation in high field transport and its effect in electronic spin relaxation are investigated. The scattering is confined to polar optical phonon incorporated by implementing the Ehrenreich’s variational approach in the scattering process. It is found that a finite phonon lifetime can reduce the energy relaxation rate and hence can increase the momentum relaxation rate, resulting in lowering the mobility or delaying the runaway to higher fields, where the effect increases with electron density. The electron spin is found to relax with a frequency of sub-THz, and the spin lifetime (τs) is found to decrease with increasing the strength of the drifting field. However, a high field completely depolarizes the electron spin due to an increase of the spin precession frequency of the hot electrons via the longitudinal polar optical phonon scattering. It is also found that τs increases with increasing the moderately n-doping density up to about 1 × 1017 cm−3 or decreasing the crystal temperature. However, a high density decreases it abruptly. The results are discussed on the basis of the Dyakonov–Perel (DP) spin relaxation mechanism.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.I. Dyakonov, V.I. Perel, Phys. Lett. A 35, 459 (1971)

    Article  ADS  Google Scholar 

  2. M.I. Dyakonov, A.V. Khaetskii, Spin Hall effect, in Spin Physics in Semiconductors, edited by M.I. Dyakonov (Springer, Berlin, 2008)

  3. S.D. Sarma, Am. Sci. 89, 516 (2001)

    Article  ADS  Google Scholar 

  4. D.D. Awschalom, D. Loss, N. Samarth, Eds., Semiconductor Spintronics and Quantum Computation (Springer, Berlin, 2002)

  5. M. Idrish Miah, J. Optoelectron. Adv. Mater. 10, 2487 (2008)

    Google Scholar 

  6. J.M. Kikkawa, D.D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998)

    Article  ADS  Google Scholar 

  7. M. Idrish Miah, Appl. Phys. Lett. 92, 092104 (2008)

    Article  ADS  Google Scholar 

  8. M. Idrish Miah, J. Phys. Chem. B 113, 6800 (2009)

    Article  Google Scholar 

  9. R.J. Elliott, Phys. Rev. 96, 266 (1954)

    Article  ADS  Google Scholar 

  10. G.L. Bir, A.G. Aronov, G.E. Pikus, Sov. Phys. JETP 42, 705 (1976)

    ADS  Google Scholar 

  11. G.E. Pikus, A.N. Titkov, in Optical Orientation, Modern Problems in Condensed Matter Science, edited by F. Meier, B.P. Zakharchenya (North-, Amsterdam, 1984), Vol. 8

  12. M. Idrish Miah, Opt. Photonics Lett. 6, 1350005 (2013)

    Article  Google Scholar 

  13. G. Dresselhaus, Phys. Rev. 100, 580 (1955)

    Article  ADS  Google Scholar 

  14. Y.A. Bychkov, E.I. Rashba, J. Phys. C: Solid State Phys. 17, 6039 (1984)

    Article  ADS  Google Scholar 

  15. I.V. Kityk, Phys. Solid State 33, 1026 (1991)

    Google Scholar 

  16. S. Adachi, GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties (World Scientific, Singapore, 1994)

  17. E.M. Conwell, High Field Transport in Semiconductor (Academic Press, New York, 1967)

  18. R. Stratton, J. Phys. Soc. Jpn. 17, 590 (1962)

    Article  ADS  Google Scholar 

  19. J. Shah, A. Pinczuk, H.L. Stormer, A.C. Gossard, W. Wiegmann, Appl. Phys. Lett. 42, 55 (1983)

    Article  ADS  Google Scholar 

  20. M. Lundstrom, in Fundamentals of Carrier Transport, edited by G.W. Neudeck, F.P. Pierret, Modular Series on Solid State Devices (Addison-Wesley, Boston, 1990), Vol. 10

  21. E. Ehrenreich, Phys. Rev. 120, 1951 (1960)

    Google Scholar 

  22. E. Ehrenreich, J. Phys. Chem. Solids 8, 130 (1959)

    Article  ADS  Google Scholar 

  23. H. Sanada, I. Arata, Y. Ohno, Z. Chen, K. Kayanuma, Y. Oka, F. Matsukura, H. Ohno, in The Second International Conference on Physics and Application of Spin Related Phenomena in Semiconductors, Würzburg, Germany, 2002

  24. A.A. Kiselev, K.W. Kim, Appl. Phys. Lett. 81, 3586 (2003)

    Google Scholar 

  25. M. Idrish Miah, Mater. Chem. Phys. 128, 548 (2011)

    Article  Google Scholar 

  26. M. Idrish Miah, E. MacA Gray, Curr. Opin. Solid State Mater. Sci. 14, 49 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Idrish Miah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idrish Miah, M. Energy and spin relaxations in drift transport of carriers: effects of polar optical hot phonon generation. Eur. Phys. J. B 91, 315 (2018). https://doi.org/10.1140/epjb/e2018-90519-4

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90519-4

Keywords

Navigation