Skip to main content
Log in

Neuronal devices: understanding neuronal cultures through percolation helps prepare for the next step

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Cultures of dissociated neurons are an invaluable experimental tool in studying neuronal networks at an intermediate scale in an in vitro controlled physico-chemical environment. Moreover, current micro-fabrication techniques allow the design of a custom connectivity between subpopulations, which could make it possible to carry out computations with devices involving living cells. The quorum percolation (QP) model has been designed in the context of neurobiology to describe bursts of activity occurring in neuronal cultures from the point of view of collective phenomena rather than from a dynamical synchronization approach. Such a model is well suited to describe triggered activity in neuronal devices, and its generic character points at the necessity of heavily structured devices to go beyond collective bursting. We derive a continuous extension of the QP model, seen as information propagation on a non-metric directed graph, and discuss how its critical behavior might give insight on the connectivity of neuronal networks. The link with metric graphs, embedded in a two-dimensional space, is tackled by the introduction of a geometrical model based upon a random walk, where axon growth is constrained by obstacles such as walls and channels. This provides a starting point for the construction of neuronal devices in vitro capable of more complex behaviors. Lastly, we show how simulations of bursts with a dynamical adaptive integrate-and-fire model can be interpreted in terms of QP, confirming the robustness of this synchronized behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Eckmann, O. Feinerman, L. Gruendlinger, E. Moses, J. Soriano, T. Tlusty, Phys. Rep. 449, 54 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  2. M.E. Raichle, Trend. Neurosci. 32, 118 (2009)

    Article  Google Scholar 

  3. P. Guevara, D. Duclap, C. Poupon, L. Marrakchi-Kacem, P. Fillard, D. Le Bihan, M. Leboyer, J. Houenou, J.F. Mangin, NeuroImage 61, 1083 (2012)

    Article  Google Scholar 

  4. I. Breskin, J. Soriano, E. Moses, T. Tlusty, Phys. Rev. Lett. 97, 188102 (2006)

    Article  ADS  Google Scholar 

  5. G.W. Gross, B.K. Rhoades, H.M.E. Azzazy, W. Ming-Chi, Biosensors, Bioelectronics 10, 553 (1995)

    Article  Google Scholar 

  6. R. Renault, Emergent design of neuronal devices, Ph.D. thesis, Université Paris-Diderot, Paris, 2015

  7. R. Renault, N. Sukenik, S. Descroix, L. Malaquin, J.-L. Viovy, J.-M. Peyrin, S. Bottani, P. Monceau, E. Moses, M. Vignes, PLoS One 10, 1 (2015)

    Google Scholar 

  8. J.-M. Peyrin, B. Deleglise, L. Saias, M. Vignes, P. Gougis, S. Magnifico, S. Betuing, M. Pietri, J. Caboche, P. Vanhoutte, J.-L. Viovy, B. Brugg, Lab on a Chip 11, 3663 (2011)

    Article  Google Scholar 

  9. S. Stern, M. Segal, E. Moses, EBioMedicine 2, 1048 (2015)

    Article  Google Scholar 

  10. I. Canals, J. Soriano, G. Orlandi et al., Stem Cell Rep. 5, 546 (2015)

    Article  Google Scholar 

  11. T. DeMarse, K. Dockendorf, in Proceedings 2005 International Joint Conference on Neural Networks (IEEE Montreal, Montreal, Que., Canada, 2005), Vol. 3, pp. 1548–1551.

  12. J. Soriano, M. Rodríguez Martínez, T. Tlusty, E. Moses, Proc. Natl. Acad. Sci. U.S.A. 105, 13758 (2008)

    Article  ADS  Google Scholar 

  13. Y. Penn, M. Segal, E. Moses, Proc. Natl. Acad. Sci. U.S.A. 12, 3341 (2016)

    Article  ADS  Google Scholar 

  14. E.M. Izhikevich, Dynamical systems in neuroscience (MIT Press, Cambridge, Massachusetts, 2007)

  15. A. Arenas, J. Kurths, Y. Moreno, Phys. Rep. 469, 1 (2008)

    Article  Google Scholar 

  16. O. Cohen, A. Keselman, E. Moses, J. Soriano, T. Tlusty, Europhys. Lett. 89, 1 (2010)

    Article  Google Scholar 

  17. L. Hernandez-Navarro, J.G. Orlandi, B. Cerruti, E. Vives, J. Soriano, Phys. Rev. Lett. 118, 208101 (2017)

    Article  ADS  Google Scholar 

  18. R. Koene, B. Tijms, P. van Hees, F. Postma, A. de Ridder, G.J. Ramakers, J. Van Pelt, A. Van Ooyen, Neuroinformatics 7, 195 (2009)

    Article  Google Scholar 

  19. B. Torben-Nielsen, E. De Schutter, Front. Neuroanat. 8, 92 (2014)

    Article  Google Scholar 

  20. T. Tlusty, J.-P. Eckmann, J. Phys. A 42, 205004 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Métens, P. Monceau, R. Renault, S. Bottani, Phys. Rev. E 93, 032112 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  22. D. Stauffer, A. Aharony, Introduction to Percolation Theory (Taylor & Francis, London, 1994)

  23. R. Renault, P. Monceau, S. Bottani, S. Métens, Physica A 414, 352 (2014)

    Article  ADS  Google Scholar 

  24. R. Brette, W. Gerstner, J. Neurophysiol. 94, 3637 (2005)

    Article  Google Scholar 

  25. S. Bottani, Phys. Rev. Lett. 74, 4189 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Bottani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monceau, P., Métens, S., Fardet, T. et al. Neuronal devices: understanding neuronal cultures through percolation helps prepare for the next step. Eur. Phys. J. Spec. Top. 227, 1015–1028 (2018). https://doi.org/10.1140/epjst/e2018-800072-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-800072-1

Navigation