Skip to main content
Log in

Modelling of non-premixed turbulent combustion with Conditional Moment Closure (CMC)

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Conditional Moment Closure (CMC), an advanced turbulent reacting flow method, has been applied to the challenging cases with a varying degree of turbulence-chemistry interactions. The CMC approach may be used either in the RAMS or LES context, this is reviewed in the first part of this paper, while the second part is dedicated to applications on Sandia piloted jet flames D and F and lifted hydrogen jet flame. In case of the Sandia piloted jet flame D, the RANS-CMC simulation results are in agreement with the experimental data. On the other hand, when one comes to the results for the Sandia flame F, extinction is not captured. These discrepancies are attributed to the use of RANS in combination with the boundary conditions set in CMC. However, in case of turbulent lifted jet flame in vitiated co-flow, the LES-CMC model is able to capture the axial and radial profiles of mixture fraction, temperature and major species. The lift-off height is found to be very sensitive to the co-flow temperature as well as the co-flow velocity. The LES-CMC results highlight the potential of the technique to simulate the problems which involve complex turbulence-chemistry interactions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Echekki, E. Mastorakos (Editors), Turbulent Combustion Modeling: Advances, New Trends and Perspectives, Vol. 95: Fluid mechanics and its applications (Springer, 2011)

  2. D. Jenny, P. Roekaerts, N. Beishuizen, Prog. Energy Combust. Sci. 38, 846 (2012)

    Article  Google Scholar 

  3. I. Blomgren, F. Rosen, A. Yanagihara, H. Stanković, I. Sakata, Combust. Flame 161, 541 (2014)

    Article  Google Scholar 

  4. R. Cabra, T. Myhrvold, J.Y. Chen, R.W. Dibble, A.N. Karpetis, R.S. Barlow, Proc. Combust. Inst. 29, 1881 (2002)

    Article  Google Scholar 

  5. T. Poinsot, D. Veynante, Theoretical and Numerical Combustion (Edwards, 2001)

  6. S.B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000)

  7. H. Pitsch, Annu. Rev. Fluid Mech. 38, 453 (2006)

    Article  ADS  Google Scholar 

  8. D. Veynante, L. Vervisch, Prog. Energy Combust. Sci. 28, 193 (2002)

    Article  Google Scholar 

  9. R.W. Bilger, Combust. Sci. Technol. 13, 155 (1976)

    Article  Google Scholar 

  10. H. Pitsch, N. Peters, Combust. Flame 114, 26 (1998)

    Article  Google Scholar 

  11. N. Branley, W.P. Jones, Combust. Flame 127, 1914 (2001)

    Article  Google Scholar 

  12. F. Di Mare, W.P. Jones, K.R. Menzies, Combust. Flame 137, 278 (2004)

    Article  Google Scholar 

  13. H. Pitsch, M. Chen, N. Peters, Proc. Combust. Inst. 27, 1057 (1998)

    Article  Google Scholar 

  14. H. Pitsch, H. Steiner, Phys. Fluids 12, 2541 (2000)

    Article  ADS  Google Scholar 

  15. M. Ihme, H. Pitsch, Combust. Flame 155, 70 (2008)

    Article  Google Scholar 

  16. M. Ihme, C.S. See, Combust. Flame 157, 1850 (2010)

    Article  Google Scholar 

  17. C.D. Pierce, P. Moin, J. Fluid. Mech. 504, 73 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  18. A.Y. Klimenko, R.W. Bilger, Prog. Energy Combust. Sci. 25, 595 (1999)

    Article  Google Scholar 

  19. A. Tyliszczak, D.E. Cavaliere, E. Mastorakos, Flow Turbul. Combust. 92, 237 (2014)

    Article  Google Scholar 

  20. I. Stanković, E. Mastorakos, B. Merci, Flow Turbul. Combust. 90, 583 (2013)

    Article  Google Scholar 

  21. A. Garmory, E. Mastorakos, Proc. Combust. Inst. 35, 1207 (2015)

    Article  Google Scholar 

  22. W.K. Bushe, H. Steiner, Phys. Fluids 15, 1564 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  23. R.W. Grout, W.K. Bushe, C. Blair, Combust. Theory Model. 11, 1009 (2007)

    Article  ADS  Google Scholar 

  24. J.W. Labahn, C.B. Devaud, Combust. Theory Model. 17, 960 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  25. M. Wang, J. Huang, W.K. Bushe, Proc. Combust. Inst. 31, 1701 (2007)

    Article  Google Scholar 

  26. J. Huang, W.K. Bushe, Combust. Theory Model. 11, 977 (2007)

    Article  ADS  Google Scholar 

  27. C.W. Lee, E. Mastorakos, Combust. Theory Model. 12, 1153 (2008)

    Article  ADS  Google Scholar 

  28. R.S. Cant, E. Mastorakos, An Introduction to Turbulent Reacting Flows (Imperial College Press, 2008)

  29. S.B. Pope, Prog. Energy Combust. Sci. 11, 119 (1985)

    Article  ADS  Google Scholar 

  30. A.R. Masri, S.B. Pope, Combust. Flame 81, 13 (1990)

    Article  Google Scholar 

  31. R. Cabra, J.Y. Chen, R.W. Dibble, A.N. Karpetis, R.S. Barlow, Combust. Flame 143, 491 (2005)

    Article  Google Scholar 

  32. M.R.H. Sheikhi, T.R. Grozda, P. Givi, S.B. Pope, Phys. Fluids 15, 2321 (2003)

    Article  ADS  Google Scholar 

  33. W.P. Jones, S. Navarro-Martinez, O. Rohl, Proc. Combust. Inst. 31, 1765 (2007)

    Article  Google Scholar 

  34. M.R. Roomina, R.W. Bilger, Combust. Flame 125, 1176 (2001)

    Article  Google Scholar 

  35. S. Sreedhara, Y. Lee, Kang Y. Huh, D.H. Ahn, Combust. Flame 152, 282 (2007)

    Article  Google Scholar 

  36. E. Mastorakos, R.W. Bilger, Phys. Fluids 10, 1246 (1998)

    Article  ADS  Google Scholar 

  37. S. Navarro-Martinez, A. Kronenburg, Proc. Combust. Inst. 31, 1721 (2007)

    Article  Google Scholar 

  38. A. Kronenburg, E. Mastorakos, The conditional moment closure model, in Turbulent Combustion Modelling, Advances, New Trends and Perspectives, edited by T. Echekki, E. Mastarakos (Springer, 2011)

  39. G. De Paola, E. Mastorakos, Y.M. Wright, K. Boulouchos, Combust. Sci. Technol. 180, 883 (2008)

    Article  Google Scholar 

  40. I.S. Kim, E. Mastorakos, Proc. Combust. Inst. 30, 911 (2005)

    Article  Google Scholar 

  41. S.H. Kim, H. Pitsch, Phys. Fluids 18, 07510 (2006)

    Google Scholar 

  42. Y.M. Wright, G. De Paola, K. Boulouchos, E. Mastorakos, Combust. Flame 143, 402 (2005)

    Article  Google Scholar 

  43. S.H. Kim, H. Pitsch, Phys. Fluids 18, 105103 (2005)

    Article  ADS  Google Scholar 

  44. S. Navarro-Martinez, A. Kronenburg, F. Di Mare, Flow Turbul. Combust. 75, 245 (2005)

    Article  Google Scholar 

  45. A. Garmory, E. Mastorakos, Proc. Combust. Inst. 33, 1673 (2011)

    Article  Google Scholar 

  46. A. Triantafyllidis, E. Mastorakos, R.L.G.M. Eggels, Combust. Flame 156, 2328 (2009)

    Article  Google Scholar 

  47. S. Navarro-Martinez, A. Kronenburg, Proc. Combust. Inst. 32, 1509 (2009)

    Article  Google Scholar 

  48. S. Sreedhara, K.N. Lakshmisha, Proc. Combust. Inst. 28, 25 (2000)

    Article  Google Scholar 

  49. R.M. Woolley Yunardi, M. Fairweather, Combust. Flame 152, 360 (2008)

    Article  Google Scholar 

  50. E. Mastorakos, R.W. Bilger, Phys. Fluids 10, 1246 (1998)

    Article  ADS  Google Scholar 

  51. A.Y. Klimenko, R.W. Bilger, Prog. Energy Combust. Sci. 25, 595 (1999)

    Article  Google Scholar 

  52. C.B. Devaud, K.N.C. Bray, Combust. Flame 132, 102 (2003)

    Article  Google Scholar 

  53. E.E. O'Brien, T.L. Jiang, Phys. Fluids 3, 3121 (1991)

    Article  ADS  Google Scholar 

  54. N. Peters, Turbulent Combustion (Cambridge University Press, Cambridge, 2000)

  55. C. Pera, J. Reveillon, L. Vervisch, P. Domingo, Combust. Flame 146, 635 (2006)

    Article  Google Scholar 

  56. S.S. Girimaji, Y. Zhou, Phys. Fluids 8, 1224 (1996)

    Article  ADS  Google Scholar 

  57. C.D. Pierce, P. Moin, Phys. Fluids 10, 3041 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  58. A. Triantafyllidis, E. Mastorakos, Flow Turbul. Combust. 84, 481 (2010)

    Article  Google Scholar 

  59. R.S. Barlow, J.H. Frank, Proc. Combust. Inst. 27, 1087 (1998)

    Article  Google Scholar 

  60. R.L. Gordon, A.R. Masri, S.B. Pope, G.M. Goldin, Combust. Theory Model. 11, 351 (2007)

    Article  ADS  Google Scholar 

  61. I. Stanković, A. Triantafyllidis, E. Mastorakos, C. Lacor, B. Merci, Flow Turbul. Combust. 86, 689 (2011)

    Article  Google Scholar 

  62. I. Stanković, Numerical simulations of hydrogen auto-ignition in Tubulent flows, PhD Thesis, Ghent University (2011)

  63. J.W. Labahn, I. Stanković, B. Merci, C.B. Devaud, Combust. Flame 181, 172 (2017)

    Article  Google Scholar 

  64. A. Triantafyllidis, Large Eddy Simulations of spark ignition process with the CMC method, PhD Thesis, University of Cambridge, Department of Engineering (2009)

  65. I.S. Kim, E. Mastorakos, Flow Turbul. Combust. 76, 133 (2006)

    Article  Google Scholar 

  66. C.N. Markides, G. De Paola, E. Mastorakos, Exp. Therm. Fluid Sci. 31, 393 (2007)

    Article  Google Scholar 

  67. B. Van Leer, J. Comput. Phys. 14, 361 (1974)

    Article  ADS  Google Scholar 

  68. J.H. Ferziger, M. Perić, Computational Methods for Fluid Dynamics (Springer, 2002)

  69. H. Pitsch, H. Steiner, Phys. Fluids 12, 2541 (2000)

    Article  ADS  Google Scholar 

  70. P.J. Coelho, N. Peters, Combust. Flame 124, 444 (2001)

    Article  Google Scholar 

  71. M. Ihme, H. Pitsch, Combust. Flame 155, 90 (2008)

    Article  Google Scholar 

  72. K. Xiao, D. Schmidt, U. Maas, Proc. Combust. Inst. 28, 157 (2000)

    Article  Google Scholar 

  73. R. Mustata, L. Valiño, C. Jiménez, W.P. Jones, S. Bondi, Combust. Flame 145, 88 (2006)

    Article  Google Scholar 

  74. R.P. Lindstedt, S.A. Louloudi, E.M. Váos, Proc. Combust. Inst. 28, 149 (2000)

    Article  Google Scholar 

  75. J. Xu, S.B. Pope, Combust. Flame 123, 281 (2000)

    Article  Google Scholar 

  76. W.P. Jones, V.N. Prasad, Combust. Flame 157, 1621 (2010)

    Article  Google Scholar 

  77. Y. Ge, M.J. Cleary, A.Y. Klimenko, Proc. Combust. Inst. 33, 1401 (2011)

    Article  Google Scholar 

  78. A. Kronenburg, M. Kostka, Combust. Flame 143, 342 (2005)

    Article  Google Scholar 

  79. S. Navarro-Martinez, A. Kronenburg, F. Di Mare, Flow Turbul. Combust. 75, 245 (2005)

    Article  Google Scholar 

  80. A. Garmory, E. Mastorakos, Int. J. Heat Fluid Flow 39, 53 (2013)

    Article  Google Scholar 

  81. S.H. Kim, K.Y. Huh, Combust. Flame 138, 336 (2004)

    Article  Google Scholar 

  82. R.R. Cao, S.B. Pope, A.R. Masri, Combust. Flame 142, 438 (2005)

    Article  Google Scholar 

  83. I. Stanković, B. Merci, Therm. Sci. 17, 763 (2013)

    Article  Google Scholar 

  84. I. Stanković, B. Merci, Combust. Theory Model. 15, 409 (2011)

    Article  ADS  Google Scholar 

  85. E. Mastorakos, Prog. Energy Combust. Sci. 35, 57 (2009)

    Article  Google Scholar 

  86. J. Li, Z. Zhao, A. Kazakov, F.L. Dryer, Int. J. Chem. Kinet. 36, 566 (2004)

    Article  Google Scholar 

  87. W.P. Jones, S. Navarro-Martinez, Combust. Flame 150, 170 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Stanković.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanković, I. Modelling of non-premixed turbulent combustion with Conditional Moment Closure (CMC). Eur. Phys. J. E 41, 150 (2018). https://doi.org/10.1140/epje/i2018-11757-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11757-9

Keywords

Navigation