Skip to main content
Log in

Determining phoretic mobilities with Onsager’s reciprocal relations: Electro- and thermophoresis revisited

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We use a hydrodynamic reciprocal approach to phoretic motion to derive general expressions for the electrophoretic and thermophoretic mobility of weakly charged colloids in aqueous electrolyte solutions. Our approach shows that phoretic motion can be understood in terms of the interfacial transport of thermodynamic excess quantities that arises when a colloid is kept stationary inside a bulk fluid flow. The obtained expressions for the mobilities are extensions of previously known results as they can account for different hydrodynamic boundary conditions at the colloidal surface, irrespective of how the colloid-fluid interaction range compares to the colloidal radius.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.v. Smoluchowski, Bull. Int. Acad. Sci. Crac. 3, 184 (1903)

    Google Scholar 

  2. E. Hückel, Phys. Z. 25, 204 (1924)

    Google Scholar 

  3. B. Derjaguin, Y. Yalamov, J. Colloid Sci. 20, 555 (1965)

    Article  Google Scholar 

  4. E. Ruckenstein, J. Colloid Interface Sci. 83, 77 (1981)

    Article  ADS  Google Scholar 

  5. J.N. Agar, C.Y. Mou, J.L. Lin, J. Phys. Chem. 93, 2079 (1989)

    Article  Google Scholar 

  6. J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989)

    Article  ADS  Google Scholar 

  7. A. Parola, R. Piazza, Eur. Phys. J. E 15, 255 (2004)

    Article  Google Scholar 

  8. A. Ajdari, L. Bocquet, Phys. Rev. Lett. 96, 186102 (2006)

    Article  ADS  Google Scholar 

  9. A. Würger, Phys. Rev. Lett. 98, 138301 (2007)

    Article  ADS  Google Scholar 

  10. J.K. Dhont, S. Wiegand, S. Duhr, D. Braun, Langmuir 23, 1674 (2007)

    Article  Google Scholar 

  11. A.S. Khair, T.M. Squires, Phys. Fluids 21, 042001 (2009)

    Article  ADS  Google Scholar 

  12. J.F. Brady, J. Fluid Mech. 667, 216 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  13. S. Semenov, M. Schimpf, J. Phys. Chem. B 119, 3510 (2015)

    Article  Google Scholar 

  14. J. Morthomas, A. Würger, J. Phys.: Condens. Matter 21, 035103 (2009)

    ADS  Google Scholar 

  15. P. Gaspard, R. Kapral, J. Chem. Phys. 148, 134104 (2018)

    Article  ADS  Google Scholar 

  16. R. Piazza, J. Phys.: Condens. Matter 16, S4195 (2004)

    ADS  Google Scholar 

  17. J.K.G. Dhont, W.J. Briels, Eur. Phys. J. E 25, 61 (2008)

    Article  Google Scholar 

  18. J. Burelbach, D. Frenkel, I. Pagonabarraga, E. Eiser, Eur. Phys. J. E 41, 7 (2018)

    Article  Google Scholar 

  19. S.R. De Groot, P. Mazur, Non-Equilibrium Thermodynamics (Courier Corporation, 2013)

  20. R. Barber, D. Emerson, Analytical Solution of Low Reynolds Number Slip Flow Past a Sphere (Council for the Central Laboratory of the Research Councils, 2000)

  21. N.V. Churaev, B.V. Derjaguin, V.M. Muller, Surface Forces (Consultants Bureau, New York, 1987)

  22. S. Fayolle, T. Bickel, A. Würger, Phys. Rev. E 77, 041404 (2008)

    Article  ADS  Google Scholar 

  23. J. Morthomas, A. Würger, Eur. Phys. J. E 27, 425 (2008)

    Article  Google Scholar 

  24. L. Onsager, Phys. Rev. Lett. 37, 405 (1931)

    ADS  Google Scholar 

  25. L. Onsager, Phys. Rev. Lett. 38, 2265 (1931)

    ADS  Google Scholar 

  26. J. Burelbach, PhD Thesis, University of Cambridge (2018) https://doi.org/10.17863/CAM.21479

  27. L. Landau, E. Lifshitz, Fluid Mechanics (London, 1959)

  28. J. Burelbach, D.B. Brückner, D. Frenkel, E. Eiser, Soft Matter 14, 7446 (2018)

    Article  ADS  Google Scholar 

  29. R. Piazza, A. Parola, J. Phys.: Condens. Matter 20, 153102 (2008)

    ADS  Google Scholar 

  30. A. Würger, Rep. Prog. Phys. 73, 126601 (2010)

    Article  ADS  Google Scholar 

  31. S.A. Putnam, D.G. Cahill, Langmuir 21, 5317 (2005)

    Article  Google Scholar 

  32. L.D. Landau, J. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz, J. Sykes, Electrodynamics of Continuous Media, Vol. 8 (Elsevier, 2013)

  33. A. Würger, Phys. Rev. Lett. 101, 108302 (2008)

    Article  ADS  Google Scholar 

  34. S. Duhr, D. Braun, Proc. Natl. Acad. Sci. U.S.A. 2006, 19678 (2006)

    Article  ADS  Google Scholar 

  35. M. Reichl, PhD Thesis, Ludwig Maximilian University of Munich (2014)

  36. L. Galla, A.J. Meyer, A. Spiering, A. Sischka, M. Mayer, A.R. Hall, P. Reimann, D. Anselmetti, Nano Lett. 14, 4176 (2014)

    Article  ADS  Google Scholar 

  37. N. Takeyama, K. Nakashima, J. Solut. Chem. 17, 305 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Burelbach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burelbach, J., Stark, H. Determining phoretic mobilities with Onsager’s reciprocal relations: Electro- and thermophoresis revisited. Eur. Phys. J. E 42, 4 (2019). https://doi.org/10.1140/epje/i2019-11769-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11769-y

Keywords

Navigation