Skip to main content
Log in

Capillarity-driven migration of small objects: A critical review

  • Topical Review
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The phenomena on the capillarity-driven migration of small objects are full of interest for both scientific and engineering communities, and a critical review is thereby presented. The small objects mentioned here deal with the non-deformable objects, such as particles, rods, disks and metal sheets; and besides them, the soft objects are considered, such as droplets and bubbles. Two types of interfaces are analyzed, i.e., the solid-fluid interface and the fluid-fluid interface. Due to the easily deformable properties of the soft objects and distorted interfacial shapes induced by small objects, a more convenient way to obtain the driving force is through the potential energy of the system. The asymmetric factors causing the object migration include the asymmetric configuration of the interface, and the difference between the interfacial tensions. Finally, a simple outlook on the potential applications of small object migration is made. These behaviors may cast new light on the design of microfluidics and new devices, environment cleaning, oil and gas displacement and mineral industries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Jurin, Philos. Trans. R. Soc. Lond. 30, 739 (1718)

    Google Scholar 

  2. S. Liu, S. Li, J. Liu, Eur. Phys. J. E 41, 46 (2018)

    ADS  Google Scholar 

  3. P.G. De Gennes, Rev. Mod. Phys. 57, 827 (1985)

    ADS  MathSciNet  Google Scholar 

  4. D. Quéré, Physica A 313, 32 (2002)

    ADS  Google Scholar 

  5. Q. Yuan, Y.P. Zhao, Phys. Rev. Lett. 104, 246101 (2010)

    ADS  Google Scholar 

  6. Q. Yuan, Y.P. Zhao, Proc. R. Soc. A 468, 310 (2012)

    ADS  Google Scholar 

  7. J. Yang, Q. Yuan, Y.P. Zhao, Int. J. Heat Mass Transfer 118, 201 (2018)

    Google Scholar 

  8. A. Otten, S. Herminghaus, Langmuir 20, 2405 (2004)

    Google Scholar 

  9. W. Barthlott, C. Neinhuis, Planta 202, 1 (1997)

    Google Scholar 

  10. D.L. Hu, B. Chan, J.W. Bush, Nature 424, 663 (2003)

    ADS  Google Scholar 

  11. J. Liu, J. Sun, Y. Mei, Appl. Phys. Lett. 104, 231607 (2014)

    ADS  Google Scholar 

  12. C.W. Wu, X.Q. Kong, D. Wu, Phys. Rev. E 76, 017301 (2007)

    ADS  Google Scholar 

  13. N.J. Mlot, C.A. Tovey, D.L. Hu, Proc. Natl. Acad. Sci. U.S.A. 108, 7669 (2011)

    ADS  Google Scholar 

  14. M. Prakash, D. Quéré, J.W. Bush, Science 320, 931 (2008)

    ADS  Google Scholar 

  15. J. Li et al., J. Mech. Behav. Biomed. 77, 331 (2018)

    Google Scholar 

  16. K.K. Lau et al., Nano Lett. 3, 1701 (2003)

    ADS  Google Scholar 

  17. L. Zhai et al., Nano Lett. 4, 1349 (2004)

    ADS  MathSciNet  Google Scholar 

  18. E. Hosono et al., J. Am. Chem. Soc. 127, 13458 (2005)

    Google Scholar 

  19. T. Onda et al., Langmuir 12, 2125 (1996)

    Google Scholar 

  20. J.L. Liu, X.Q. Feng, Acta Mech. Sin. 28, 928 (2012)

    ADS  Google Scholar 

  21. B. Roman, J. Bico, J. Phys.: Condens. Matter 22, 493101 (2010)

    Google Scholar 

  22. X.Y. Ji et al., Appl. Phys. Lett. 100, 263104 (2012)

    ADS  Google Scholar 

  23. N. Chakrapani et al., Proc. Natl. Acad. Sci. U.S.A. 101, 4009 (2004)

    ADS  Google Scholar 

  24. J.L. Liu et al., J. Phys. D Appl. Phys. 40, 5564 (2007)

    ADS  Google Scholar 

  25. É. Lorenceau, D. Quéré, J. Fluid Mech. 510, 29 (2004)

    ADS  Google Scholar 

  26. C. Lv et al., Phys. Rev. Lett. 113, 026101 (2014)

    ADS  Google Scholar 

  27. L. Jian-Lin et al., Chin. Phys. Lett. 24, 3210 (2007)

    ADS  Google Scholar 

  28. P. Renvoisé et al., EPL 86, 64003 (2009)

    ADS  Google Scholar 

  29. J. Ju et al., Nat. Commun. 3, 1247 (2012)

    ADS  Google Scholar 

  30. C. Luo, Langmuir 31, 11809 (2015)

    Google Scholar 

  31. L. Guo, G.H. Tang, Int. J. Heat Mass Transfer 84, 198 (2015)

    Google Scholar 

  32. S. Zhang et al., Small 13, 1602992 (2017)

    Google Scholar 

  33. T. Xu et al., ACS Nano 10, 10681 (2016)

    Google Scholar 

  34. H. Zhou et al., Small 14, 1801335 (2018)

    Google Scholar 

  35. Y. Zheng et al., Nature 463, 640 (2010)

    ADS  Google Scholar 

  36. H. Bai et al., Adv. Mater. 22, 5521 (2010)

    Google Scholar 

  37. Y. Chen et al., Sci. Rep.-UK 3, 2927 (2013)

    Google Scholar 

  38. Y. Chen et al., Sci. Rep.-UK 6, 19978 (2016)

    ADS  Google Scholar 

  39. C. Luo, X. Heng, M. Xiang, Langmuir 30, 8373 (2014)

    Google Scholar 

  40. J. Zhang, Y. Han, Langmuir 23, 6136 (2007)

    Google Scholar 

  41. X. Heng, C. Luo, Langmuir 31, 2743 (2015)

    Google Scholar 

  42. M.A. Rubega, Ibis 139, 488 (1997)

    Google Scholar 

  43. H. Chen et al., Nature 532, 85 (2016)

    ADS  Google Scholar 

  44. S. Li, J. Liu, J. Hou, Sci. Rep.-UK 6, 37888 (2016)

    ADS  Google Scholar 

  45. C. Li et al., Angew. Chem. Int. Ed. 55, 14988 (2016)

    Google Scholar 

  46. X.P. Zheng et al., J. Colloid Interface Sci. 323, 133 (2008)

    ADS  Google Scholar 

  47. Y.J. Yin et al., Appl. Math. Mech. 32, 533 (2011)

    Google Scholar 

  48. L. Courbin et al., Nat. Mater. 6, 661 (2007)

    ADS  Google Scholar 

  49. E. Chen et al., J. Adhes. Sci. Technol. 30, 2265 (2016)

    Google Scholar 

  50. E. Chen, Q. Yuan, Y.P. Zhao, Soft Matter 14, 6198 (2018)

    ADS  Google Scholar 

  51. Q. Yuan, Y.P. Zhao, J. Fluid Mech. 716, 171 (2013)

    ADS  Google Scholar 

  52. Q. Yuan, Y.P. Zhao, Sci. Rep.-UK 3, 1944 (2013)

    ADS  Google Scholar 

  53. Q. Yuan, X. Huang, Y.P. Zhao, Phys. Fluids 26, 092104 (2014)

    ADS  Google Scholar 

  54. G. Fang et al., Langmuir 24, 11651 (2008)

    Google Scholar 

  55. Y.H. Lai, J.T. Yang, D.B. Shieh, Lab Chip 10, 499 (2010)

    Google Scholar 

  56. L. Xu, Z. Li, S. Yao, Appl. Phys. Lett. 101, 064101 (2012)

    ADS  Google Scholar 

  57. J.S. Lee, J.Y. Moon, J.S. Lee, Appl. Therm. Eng. 72, 104 (2014)

    Google Scholar 

  58. Y. Lin et al., Adv. Mater. Interfaces 5, 1800962 (2018)

    Google Scholar 

  59. C. Liu et al., Adv. Mater. 26, 6086 (2014)

    ADS  Google Scholar 

  60. R.W. Style et al., Proc. Natl. Acad. Sci. U.S.A. 110, 12541 (2013)

    ADS  Google Scholar 

  61. M. Zhao et al., Proc. Natl. Acad. Sci. U.S.A. 115, 1748 (2018)

    ADS  Google Scholar 

  62. L.E. Scriven, C.V. Sternling, Nature 187, 186 (1960)

    ADS  Google Scholar 

  63. J. Thomson, Philos. Mag. 10, 330 (1855)

    Google Scholar 

  64. N.J. Cira, A. Benusiglio, M. Prakash, Nature 519, 446 (2015)

    ADS  Google Scholar 

  65. H. Haidara, L. Vonna, J. Schultz, J. Chem. Phys. 107, 630 (1997)

    ADS  Google Scholar 

  66. L.W. Schwartz et al., J. Eng. Math. 50, 157 (2004)

    Google Scholar 

  67. M. Grunze, Science 283, 41 (1999)

    ADS  Google Scholar 

  68. J. Bico, D. Quere, Europhys. Lett. 51, 546 (2000)

    ADS  Google Scholar 

  69. J. Bico, D. Quéré, J. Fluid Mech. 467, 101 (2002)

    ADS  Google Scholar 

  70. Y.S. Ryazantsev et al., J. Colloid Interface Sci. 527, 180 (2018)

    ADS  Google Scholar 

  71. J. Chen, Z. Dagan, C. Maldarelli, J. Fluid Mech. 233, 405 (1991)

    ADS  Google Scholar 

  72. N.O. Young, J.S. Goldstein, M.J. Block, J. Fluid Mech. 6, 350 (1959)

    ADS  Google Scholar 

  73. R. Sun, W.R. Hu, J. Colloid Interface Sci. 255, 375 (2002)

    ADS  Google Scholar 

  74. M. Hasan, R. Balasubramaniam, J. Thermophys. Heat Transfer 3, 87 (1989)

    Google Scholar 

  75. A. Mazouchi, G.M. Homsy, Phys. Fluids 12, 542 (2000)

    ADS  Google Scholar 

  76. S.K. Wilson, Phys. Fluids 5, 2064 (1993)

    ADS  MathSciNet  Google Scholar 

  77. A.L. Yarin, W. Liu, D.H. Reneker, J. Appl. Phys. 91, 4751 (2002)

    ADS  Google Scholar 

  78. F. Brochard, Langmuir 5, 432 (1989)

    Google Scholar 

  79. S. Mettu, M.K. Chaudhury, Langmuir 24, 10833 (2008)

    Google Scholar 

  80. C. Gao et al., Adv. Funct. Mater. 28, 1803072 (2018)

    Google Scholar 

  81. A.R. Parker, C.R. Lawrence, Nature 414, 33 (2001)

    ADS  Google Scholar 

  82. S. Daniel, M.K. Chaudhury, J.C. Chen, Science 291, 633 (2001)

    ADS  Google Scholar 

  83. N. Moumen, R.S. Subramanian, J.B. McLaughlin, Langmuir 22, 2682 (2006)

    Google Scholar 

  84. M.K. Chaudhury, G.M. Whitesides, Science 256, 1539 (1992)

    ADS  Google Scholar 

  85. P.T. Kühn, B.S. de Miranda, P. van Rijn, Adv. Mater. 27, 7401 (2015)

    Google Scholar 

  86. B. Chandesris, U. Soupremanien, N. Dunoyer, Colloid Surf. A 434, 126 (2013)

    Google Scholar 

  87. M. Zhang et al., Adv. Mater. 27, 5057 (2015)

    Google Scholar 

  88. M.M. Weislogel, AIChE J. 43, 645 (1997)

    Google Scholar 

  89. C.D. Bain, G.M. Whitesides, Langmuir 5, 1370 (1989)

    Google Scholar 

  90. S. Deng et al., Sci. Rep.-UK 7, 45687 (2017)

    ADS  Google Scholar 

  91. S.W. Lee, D.Y. Kwok, P.E. Laibinis, Phys. Rev. E 65, 051602 (2002)

    ADS  Google Scholar 

  92. S.W. Lee, P.E. Laibinis, J. Am. Chem. Soc. 122, 5395 (2000)

    Google Scholar 

  93. Y. Sumino et al., Phys. Rev. E 72, 041603 (2005)

    ADS  Google Scholar 

  94. Y. Sumino et al., Phys. Rev. Lett. 94, 068301 (2005)

    ADS  Google Scholar 

  95. F.D. Dos Santos, T. Ondarcuhu, Phys. Rev. Lett. 75, 2972 (1995)

    ADS  Google Scholar 

  96. P.G. De Gennes, Physica A 249, 196 (1998)

    ADS  Google Scholar 

  97. X. Yao et al., Soft Matter 8, 5988 (2012)

    ADS  Google Scholar 

  98. K. Ichimura, S.K. Oh, M. Nakagawa, Science 288, 1624 (2000)

    ADS  Google Scholar 

  99. M.M. Nicolson, Math. Proc. Cambridge 45, 288 (1949)

    ADS  Google Scholar 

  100. F. Ghezzi, J.C. Earnshaw, J. Phys.: Condens. Matter 9, L517 (1997)

    ADS  Google Scholar 

  101. P.A. Kralchevsky, K. Nagayama, Adv. Colloid Interface Sci. 85, 145 (2000)

    Google Scholar 

  102. R. McGorty et al., Mater. Today 13, 34 (2010)

    Google Scholar 

  103. O.D. Velev et al., Langmuir 9, 3702 (1993)

    Google Scholar 

  104. M. Oettel, A. Dominguez, S. Dietrich, Phys. Rev. E 71, 051401 (2005)

    ADS  Google Scholar 

  105. B.J. Park, E.M. Furst, Soft Matter 7, 7676 (2011)

    ADS  Google Scholar 

  106. M.A. Gharbi et al., Soft Matter 7, 1467 (2011)

    ADS  Google Scholar 

  107. L.H. Ong, K.L. Yang, J. Phys. Chem. B 120, 825 (2016)

    Google Scholar 

  108. N. Bowden et al., Science 276, 233 (1997)

    Google Scholar 

  109. G.M. Whitesides, B. Grzybowski, Science 295, 2418 (2002)

    ADS  Google Scholar 

  110. L. Botto et al., Soft Matter 8, 9957 (2012)

    ADS  Google Scholar 

  111. N.B. Bowden et al., Accounts Chem. Res. 34, 231 (2001)

    Google Scholar 

  112. K.D. Danov et al., J. Colloid Interface Sci. 287, 121 (2005)

    ADS  Google Scholar 

  113. K.D. Danov, P.A. Kralchevsky, Adv. Colloid Interface Sci. 154, 91 (2010)

    Google Scholar 

  114. D. Stamou, C. Duschl, D. Johannsmann, Phys. Rev. E 62, 5263 (2000)

    ADS  Google Scholar 

  115. B.J. Park, T. Brugarolas, D. Lee, Soft Matter 7, 6413 (2011)

    ADS  Google Scholar 

  116. S. Cappelli et al., Langmuir 33, 696 (2017)

    Google Scholar 

  117. L.C. Bradley et al., Curr. Opin. Colloid Interface Sci. 30, 25 (2017)

    Google Scholar 

  118. J. Lucassen, Colloid Surface 65, 131 (1992)

    Google Scholar 

  119. S. Dasgupta, Langmuir 30, 11873 (2014)

    Google Scholar 

  120. J.C. Loudet et al., Phys. Rev. Lett. 94, 018301 (2005)

    ADS  Google Scholar 

  121. E.A. Van Nierop, M.A. Stijnman, S. Hilgenfeldt, Europhys. Lett. 72, 671 (2005)

    ADS  Google Scholar 

  122. B. Madivala, J. Fransaer, J. Vermant, Langmuir 25, 2718 (2009)

    Google Scholar 

  123. J.C. Loudet, B. Pouligny, EPL 85, 28003 (2009)

    ADS  Google Scholar 

  124. J.H. Lim et al., Langmuir 34, 384 (2017)

    Google Scholar 

  125. Z. Zhang et al., J. Am. Chem. Soc. 133, 392 (2010)

    Google Scholar 

  126. L. Botto et al., Soft Matter 8, 4971 (2012)

    ADS  Google Scholar 

  127. E.P. Lewandowski et al., Langmuir 26, 15142 (2010)

    Google Scholar 

  128. J.Y. Wang et al., J. Am. Chem. Soc. 134, 5801 (2011)

    Google Scholar 

  129. I.B. Liu et al., Proc. Natl. Acad. Sci. U.S.A. 112, 6336 (2015)

    ADS  Google Scholar 

  130. D.Y.C. Chan, J.D. Henry jr., L.R. White, J. Colloid Interface Sci. 79, 410 (1981)

    ADS  Google Scholar 

  131. A. Tao, P. Sinsermsuksakul, P. Yang, Nat. Nanotechnol. 2, 435 (2007)

    ADS  Google Scholar 

  132. G. Soligno, M. Dijkstra, R. van Roij, Phys. Rev. Lett. 116, 258001 (2016)

    ADS  Google Scholar 

  133. T.G. Anjali, M.G. Basavaraj, Langmuir 33, 791 (2017)

    Google Scholar 

  134. H.K. Lee, Chem. Mater. 29, 6563 (2017)

    Google Scholar 

  135. N. Bowden et al., J. Am. Chem. Soc. 121, 5373 (1999)

    Google Scholar 

  136. N. Bowden, S.R. Oliver, G.M. Whitesides, J. Phys. Chem. B 104, 2714 (2000)

    Google Scholar 

  137. N. Bowden et al., Langmuir 17, 1757 (2001)

    Google Scholar 

  138. B.A. Grzybowski et al., J. Phys. Chem. B 105, 404 (2001)

    Google Scholar 

  139. J.A. Ferrar et al., Soft Matter 14, 3902 (2018)

    ADS  Google Scholar 

  140. S.M. Kang et al., Soft Matter 12, 5847 (2016)

    ADS  Google Scholar 

  141. H. Wu, N. Bowden, G.M. Whitesides, Appl. Phys. Lett. 75, 3222 (1999)

    ADS  Google Scholar 

  142. A.B.D. Brown, C.G. Smith, A.R. Rennie, Phys. Rev. E 62, 951 (2000)

    ADS  Google Scholar 

  143. Y. Yu et al., Langmuir 23, 10546 (2007)

    Google Scholar 

  144. E.P. Lewandowski et al., Soft Matter 5, 886 (2009)

    ADS  Google Scholar 

  145. L. Yao et al., Soft Matter 9, 779 (2013)

    ADS  Google Scholar 

  146. M. Frenkel et al., Langmuir 34, 6388 (2018)

    Google Scholar 

  147. I. Legchenkova et al., Surf. Innov. 6, 231 (2018)

    Google Scholar 

  148. D.L. Hu, J.W. Bush, Nature 437, 733 (2005)

    ADS  Google Scholar 

  149. V.M. Ortega-Jiménez, S. Arriaga-Ramirez, R. Dudley, Biol. Lett. 12, 20160279 (2016)

    Google Scholar 

  150. S. Li et al., Colloid Surf. A 469, 252 (2015)

    ADS  Google Scholar 

  151. L. Yao et al., J. Colloid Interface Sci. 449, 436 (2015)

    ADS  Google Scholar 

  152. I.B. Liu et al., Phys. Rev. Fluids 2, 100501 (2017)

    ADS  Google Scholar 

  153. N. Sharifi-Mood, I.B. Liu, K.J. Stebe, Soft Matter 11, 6768 (2015)

    ADS  Google Scholar 

  154. M. Cavallaro et al., Proc. Natl. Acad. Sci. U.S.A. 108, 20923 (2011)

    ADS  Google Scholar 

  155. I.B. Liu, N. Sharifi-Mood, K.J. Stebe, Philos. Trans. R. Soc. A 374, 20150133 (2016)

    ADS  Google Scholar 

  156. J. Liu, S. Li, J. Hou, Soft Matter 12, 2221 (2016)

    ADS  Google Scholar 

  157. S.J. Sowerby et al., J. Microsc. 244, 230 (2011)

    Google Scholar 

  158. E.P. Lewandowski et al., Langmuir 24, 9302 (2008)

    Google Scholar 

  159. G. Falkovich et al., Nature 435, 1045 (2005)

    ADS  Google Scholar 

  160. A. Würger, Phys. Rev. E 74, 041402 (2006)

    ADS  MathSciNet  Google Scholar 

  161. X. Dou, S. Li, J. Liu, Appl. Phys. Lett. 111, 081602 (2017)

    ADS  Google Scholar 

  162. P.A. Kralchevsky, N.D. Denkov, Curr. Opin. Colloid Inerface Sci. 6, 383 (2001)

    Google Scholar 

  163. C. Zeng et al., Soft Matter 8, 8582 (2012)

    ADS  Google Scholar 

  164. P.Y. Kim et al., Soft Matter 14, 2131 (2018)

    ADS  Google Scholar 

  165. J. Guzowski, M. Tasinkevych, S. Dietrich, Eur. Phys. J. E 33, 219 (2010)

    Google Scholar 

  166. J. Guzowski, M. Tasinkevych, S. Dietrich, Soft Matter 7, 4189 (2011)

    ADS  Google Scholar 

  167. J. Guzowski, M. Tasinkevych, S. Dietrich, Phys. Rev. E 84, 031401 (2011)

    ADS  Google Scholar 

  168. M. Lee, M. Xia, B.J. Park, Materials 9, 138 (2016)

    ADS  Google Scholar 

  169. P.F. Noble et al., J. Am. Chem. Soc. 126, 8092 (2004)

    Google Scholar 

  170. N. Li, arXiv:1602.07179 (2016)

  171. N. Li et al., Langmuir 33, 600 (2016)

    Google Scholar 

  172. C. Van Der Wel et al., Sci. Rep.-UK 6, 32825 (2016)

    ADS  Google Scholar 

  173. A. Domínguez, M. Oettel, S. Dietrich, J. Chem. Phys. 128, 114904 (2008)

    ADS  Google Scholar 

  174. J. Léandri, A. Würger, J. Colloid Interface Sci. 405, 249 (2013)

    ADS  Google Scholar 

  175. C. Blanc et al., Phys. Rev. Lett. 111, 058302 (2013)

    ADS  Google Scholar 

  176. P. Galatola, J.B. Fournier, Soft Matter 10, 2197 (2014)

    ADS  Google Scholar 

  177. P. Galatola, Phys. Rev. E 93, 022604 (2016)

    ADS  Google Scholar 

  178. D. Ershov et al., Proc. Natl. Acad. Sci. U.S.A. 110, 9220 (2013)

    ADS  Google Scholar 

  179. L. Rayleigh, Proc. R. Soc. London 47, 364 (1889)

    Google Scholar 

  180. S. Nakata et al., Langmuir 13, 4454 (1997)

    Google Scholar 

  181. Y. Hayashima, M. Nagayama, S. Nakata, J. Phys. Chem. B 105, 5353 (2001)

    Google Scholar 

  182. M.I. Kohira et al., Langmuir 17, 7124 (2001)

    Google Scholar 

  183. S. Nakata, K. Matsuo, Langmuir 21, 982 (2005)

    Google Scholar 

  184. N.J. Suematsu et al., J. Phys. Chem. C 114, 9876 (2010)

    Google Scholar 

  185. N.J. Suematsu et al., Langmuir 30, 8101 (2014)

    Google Scholar 

  186. M. Frenkel et al., Appl. Phys. Lett. 110, 131604 (2017)

    ADS  Google Scholar 

  187. K. Nagai et al., Phys. Rev. E 71, 065301 (2005)

    ADS  Google Scholar 

  188. S. Oshima et al., Anal. Sci. 30, 441 (2014)

    Google Scholar 

  189. C. Luo, H. Li, X. Liu, J. Micromech. Microeng. 18, 067002 (2008)

    ADS  Google Scholar 

  190. E. Bormashenko et al., J. Phys. Chem. C 119, 9910 (2015)

    Google Scholar 

  191. A. Musin et al., J. Colloid Interface Sci. 479, 182 (2016)

    ADS  Google Scholar 

  192. R. Sharma, S.T. Chang, O.D. Velev, Langmuir 28, 10128 (2012)

    Google Scholar 

  193. M. Su, Appl. Phys. Lett. 90, 144102 (2007)

    ADS  Google Scholar 

  194. M.M. Hanczyc, Philos. Trans. R. Soc. B 366, 2885 (2011)

    Google Scholar 

  195. A. Diguet et al., Angew. Chem. Int. Ed. 48, 9281 (2009)

    Google Scholar 

  196. S. Tanaka, Y. Sogabe, S. Nakata, Phys. Rev. E 91, 032406 (2015)

    ADS  Google Scholar 

  197. S. Miura et al., Langmuir 30, 7977 (2014)

    Google Scholar 

  198. M.M. Hanczyc et al., J. Am. Chem. Soc. 129, 9386 (2007)

    Google Scholar 

  199. T. Toyota et al., J. Am. Chem. Soc. 131, 5012 (2009)

    Google Scholar 

  200. G. Zhao, M. Pumera, Lab Chip 14, 2818 (2014)

    Google Scholar 

  201. I. Lagzi et al., J. Am. Chem. Soc. 132, 1198 (2010)

    Google Scholar 

  202. A. Suzuki, in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2012) p. 2180, https://doi.org/10.1109/IROS.2012.6385738

  203. C.C. Maass et al., Annu. Rev. Condens. Matter Phys. 7, 171 (2016)

    ADS  Google Scholar 

  204. C. Jin, C. Krüger, C.C. Maass, Proc. Natl. Acad. Sci. U.S.A. 114, 5089 (2017)

    ADS  Google Scholar 

  205. H. Hu, R.G. Larson, J. Phys. Chem. B 110, 7090 (2006)

    Google Scholar 

  206. M. Paven et al., Adv. Funct. Mater. 26, 3199 (2016)

    Google Scholar 

  207. N. Kavokine et al., Angew. Chem. Int. Ed. 55, 11183 (2016)

    Google Scholar 

  208. C. Song et al., Soft Matter 10, 2679 (2014)

    ADS  Google Scholar 

  209. G.M. Whitesides, Nature 442, 368 (2006)

    ADS  Google Scholar 

  210. E.K. Sackmann, A.L. Fulton, D.J. Beebe, Nature 507, 181 (2014)

    ADS  Google Scholar 

  211. A. Terray, J. Oakey, D.W. Marr, Science 296, 1841 (2002)

    ADS  Google Scholar 

  212. A.G. Yiotis et al., AICHE J. 50, 2721 (2004)

    Google Scholar 

  213. R. Farajzadeh et al., Adv. Colloid Interface Sci. 183, 1 (2012)

    Google Scholar 

  214. H. Zhang, A. Nikolov, D. Wasan, Energy Fuel 28, 3002 (2014)

    Google Scholar 

  215. L. Wen, Y. Tian, L. Jiang, Angew. Chem. Int. Ed. 54, 3387 (2015)

    Google Scholar 

  216. B.J. Shean, J.J. Cilliers, Int. J. Min. Process. 100, 57 (2011)

    Google Scholar 

  217. M.S. Reddy et al., J. Hazard. Mater. 147, 1051 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, S. Capillarity-driven migration of small objects: A critical review. Eur. Phys. J. E 42, 1 (2019). https://doi.org/10.1140/epje/i2019-11759-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11759-1

Keywords

Navigation