
Paul HERNAULT
phernault@quarkslab.com

Fuzzing binaries using Dynamic Instrumentation
French-Japan cybersecurity workshop Kyoto - April 23-25, 2019



Presentation

2 / 53



Presentation

acid@kyoto:˜$ whoami

I Paul HERNAULT, engineer at Quarkslab

I Vulnerability research, Fuzzing, instrumentation

Quarkslab

I French cybersecurity company (30˜ engineers)

I Focused on
I Vulnerability research, offensive security, systems analysis

I Services, Research, Products

3 / 53



Vulnerability research at Quarkslab

What are we looking at?

I Desktop (Windows/Linux/macOS)

I Mobile (Android/iOS/Trustzones)

I Embedded systems (Routers, media (STB), IoT, cars (ECU))

I . . .

We love to find vulnerabilities

I Code review

I Reverse engineering

I Fuzzing (This talk!)

4 / 53



Fuzzing at Quarkslab

Fuzzing: definition

Fuzzing (fuzz testing) is an automated technique used to discover errors
and security loopholes in programs. It works by inputting “random”
data to the target, in an attempt to make it crash.

Fuzzing: in picture

5 / 53



Fuzzing at Quarkslab

Why fuzzing?

I Pros
I Efficient way to find vulns in code
I Fuzzing as a background task (fire and forget)

I Cons
I Requires tailored tools
I Not exhaustive

6 / 53



Our take at Fuzzing

Reuse existing tools

I Small company, building a fuzzer is time-consuming

I Reuse and adapt existing frameworks
I Lots of open-source fuzzers

Our needs

I Smart (guided fuzzer)

I Multi-platform (Windows, macOS, Linux)

I Multi-architecture (x86, x86 64, ARM, ARM64)

I Binary fuzzing

7 / 53



Review and Benchmarks

Looking for the perfect fuzzer

I Review of the code

I Benchmarking fuzzers
I Speed / Efficiency

I State of the tool
I Support for multi-[platform|architecture] and binary fuzzing
I Development state

A note on benchmarking fuzzers

I Benchmarking is hard
I Lacks references (LogicBombs, LAVA)
I Results differ from one run to another (due to randomness)
I Hard to simulate real-world programs

I Interpretation of results may require in-depth analysis

8 / 53



The perfect fuzzer

There is no perfect fuzzer. . .

I No fuzzer fulfills all of our needs
I Lacks architecture supports (AFL)
I Lacks binary fuzzing (Honggfuzz)
I Not efficient (Radamsa)
I . . .

So what?

I Build upon one of them

I Tweak them to fit our needs

I We tried both AFL and Honggfuzz

9 / 53



Fuzzing binaries with AFL

About AFL

I We tried AFL for ˜1 year
I Good results but. . .

I Coding glue is not enough. We need to modify the fuzzer itself
I AFL lacks modern features
I AFL is not maintained, not modular nor flexible

Why switching?

I We needed something more flexible
I State of the Art on Fuzzing concluded Honggfuzz was better suited

for us

I Our experience on AFL helped a lot on Honggfuzz/QBDI

10 / 53



Our choice: Honggfuzz

Honggfuzz

I Tool developed by Robert Swiecki (Google) since 2010

I Supports ARM, ARM64, x86, x86 64

I Supports Linux, Android, macOS, Windows

I Modular, flexible, written in C

I Efficient and modern fuzzing strategies

One downside

I No binary fuzzing :(
I There is a mode with hardware-based features for fuzzing binaries, but it’s

not efficient, nor cross[architecture|platform]

I What is the difference between source and binary fuzzing?

11 / 53



Understanding modern fuzzers
internals

Source-based fuzzing

I Most fuzzers provide their tweaked compiler
I e.g. AFL: afl-gcc, Honggfuzz: hfuzz

I Adds instrumentation code at various locations during compilation
I Tracks coverage (basic blocks)
I Tracks specific instructions (comparisons, divisions)
I Tracks function calls

What is the use of instrumentation?

I Determines if an input is interesting (good coverage? reaches deep
blocks?)

I Updates a corpus of inputs

I Mutates the corpus to discover the binary, and bugs

12 / 53



Fuzzers static instrumentation

Figure: Compilation [without—with] instrumentation

13 / 53



How to use instrumentation

Callbacks and bitmap

I There are instrumentation callbacks, used to update a bitmap

I Bitmap is shared between the monitoring process and the target

Simplified bitmap update

I Called on every basic block entry

int bitmap[ARBITRARY_SIZE]; // shared memory

void basicBlockCallback(){

bitmap[H(currentInstructionPointer)]++;

}

What is it used for

I Keep track of reached basic block (and number of time)

I If bitmap is updated, the input is added to the corpus

14 / 53



The use of the instrumentation

Updating bitmap using static instrumentation

15 / 53



The use of the instrumentation

Updating bitmap using static instrumentation

16 / 53



The use of the instrumentation

Updating bitmap using static instrumentation

17 / 53



The use of the instrumentation

Updating bitmap using static instrumentation

18 / 53



The use of the instrumentation

Updating bitmap using static instrumentation

19 / 53



The use of the instrumentation

Updating bitmap using static instrumentation

20 / 53



The use of the instrumentation

Updating bitmap using static instrumentation

21 / 53



The use of the instrumentation

Bitmap state

Updating bitmap using static instrumentation

I Blue input updated the bitmap -> Keep it

22 / 53



The use of the instrumentation

Updating bitmap using static instrumentation

23 / 53



The use of the instrumentation

Updating bitmap using static instrumentation

24 / 53



The use of the instrumentation

Updating bitmap using static instrumentation

25 / 53



The use of the instrumentation

Updating bitmap using static instrumentation

26 / 53



The use of the instrumentation

Updating bitmap using static instrumentation

27 / 53



The use of the instrumentation

Updating bitmap using static instrumentation

28 / 53



The use of the instrumentation

Bitmap state

Updating bitmap using static instrumentation

I Green input updated the bitmap -> keep it

29 / 53



The use of the instrumentation

Figure: Run orange and red

30 / 53



The use of the instrumentation

Bitmap state

Figure: Run orange and red

Updating bitmap using static instrumentation

I Orange input did not update the bitmap -> drop it

I Red input updated the bitmap -> keep it
31 / 53



The use of the instrumentation

Guided fuzzing

I Instrumentation is used to guide the fuzzer

Guided fuzzing: in picture

32 / 53



What about closed-source binaries?

What makes it hard to fuzz binaries?

I We need to inject code
I But we are not compiling the binary

I How can we do that?
I Debugging (slow)
I Emulation (slow)
I Binary rewriting (hard)
I Dynamic Binary Instrumentation \o/ (?)

33 / 53



Introduction of DBI

What is Dynamic Binary Instrumentation

Dynamic Binary Instrumentation (DBI) allows to monitor and analyze the
behaviour of a binary through instrumentation code injected at runtime.
The instrumentation code is injected in the stream of the normal
instructions without the target program knowing.

How it works?

0. The DBI engine is injected in the target program (same address
space)

1. The DBI discovers a basic block.

2. It takes instructions, patches them, and adds instrumentation code.

3. It JITs everything together, and executes it.

4. goto 1

34 / 53



Introduction of DBI: Example

DBI usage: Counting basic blocks

I One easy usage of a DBI, is for profiling
I Counting instructions executed
I Counting basic blocks executed

35 / 53



Introduction of DBI: Example

DBI usage: Counting basic blocks

36 / 53



Introduction of DBI: Example

DBI usage: Counting basic blocks

37 / 53



Introduction of DBI: Example

DBI usage: Counting basic blocks

38 / 53



Introduction of DBI: Example

DBI usage: Counting basic blocks

39 / 53



Introduction of DBI: QBDI

QBDI: QuarkslaB Dynamic binary Instrumentation

I Quarkslab has its own DBI: QBDI
I https://github.com/quarkslab/QBDI/

I Based on LLVM

I Instruction / basic block granularity

How it works?

1. Disassemble

2. Patch

3. Instrument

4. Assemble

5. Execute

40 / 53



Introduction of DBI: QBDI

How it works: in picture?

Disassem
ble

Pat
ch

In
st
ru
m
en
t

Assemble

Ex
ec
ut
e

41 / 53



Mimic Honggfuzz

QBDI callback to simulate Honggfuzz instrumentation

I Dynamic instrumentation allows to inject code at
I every instruction
I every basic block
I specific instructions (mnemonic)

How we use QBDI

I Inject callbacks at the end of basic blocks

I Manually update the bitmap

I Fake Honggfuzz \o/ without modifying the source code!

42 / 53



Mimic Honggfuzz

Mimic Honggfuzz: in picture

43 / 53



Mimic Honggfuzz

Mimic Honggfuzz: in picture

44 / 53



Mimic Honggfuzz

Mimic Honggfuzz: in picture

45 / 53



Mimic Honggfuzz

Mimic Honggfuzz: in picture

46 / 53



Mimic Honggfuzz

Mimic Honggfuzz: in picture

47 / 53



Honggfuzz/QBDI - Demo time

Demo - HF VS blackbox honggfuzz VS HF/QBDI

I Normal update in the first run –> HF compiled

I No update in 2nd –> clang compiled

I Updates in 3rd run –> clang compiled + preload

48 / 53



Honggfuzz/QBDI - Demo time

Demo - HF VS blackbox honggfuzz VS HF/QBDI

1. Static instrumentation (native) –> Compile the binary with
honggfuzz-clang

2. No instrumentation (black box) –> Compile with clang

3. Runtime instrumentation with QBDI –> Compile with clang (and
preload QBDI)

Results

Type of instrumentation Honggfuzz None QBDI

Speed (exec/s) 880 1566 130
Coverage Yes No Yes
Sources needed ? Yes No No

49 / 53



What is to come

In the next episode of: Fuzzing at Qb

I Peformance improvement
I Binary fuzzing has a performance cost, we need to get faster

Results

Type of instrumentation Honggfuzz None QBDI QBDI + FS

Speed (exec/s) 880 1566 130 864
Coverage Yes No Yes Yes
Sources needed ? Yes No No No

50 / 53



What is to come

In the next episode of: Fuzzing at Qb

I Peformance improvement
I Binary fuzzing has a performance cost, we need to get faster

I Symbolic Execution for vulnerability research, we need to be
smarter
I Integrate Triton in HF/QBDI to find hard to reach vulnerabilities

I Windows support
I Windows support is unstable/experimental

I Infrastructure setup
I Scale up our fuzzing potential

51 / 53



Conclusion and questions

What we learned from this journey

1. There are no perfect fuzzers

2. Benchmarking tools (especially fuzzers) is hard

3. R&D is never lost (From AFL to Honggfuzz)

4. Fuzzing on Windows is always a pain :)

Questions

I Thanks for listening!

52 / 53



53 / 53


	Fuzzing binaries using Dynamic Instrumentation

