Skip to main content
Log in

Magnetization curves of deposited finite spin chains

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The characterization and manipulation of deposited magnetic clusters or molecules on surfaces is a prerequisite for their future utilization. In recent years techniques like spin-flip inelastic electron tunneling spectroscopy using a scanning tunneling microscope proved to be very precise in determining e.g. exchange constants in deposited finite spin chains in the meV range. In this article we tackle the problem numerically by investigating the transition from where a pure spin Hamiltonian is sufficient to the point where the interaction with the surface significantly alters the magnetic properties. To this end we study the static, i.e. equilibrium impurity magnetization of antiferromagnetic chains for varying couplings to a conduction electron band of a metal substrate. We show under which circumstances the screening of a part of the system enables one to deduce molecular parameters of the remainder from level crossings in an applied magnetic field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.F. Hirjibehedin, C.P. Lutz, A.J. Heinrich, Science 312, 1021 (2006)

    Article  ADS  Google Scholar 

  2. C.F. Hirjibehedin, C.-Y. Lin, A.F. Otte, M. Ternes, C.P. Lutz, B.A. Jones, A.J. Heinrich, Science 317, 1199 (2007)

    Article  ADS  Google Scholar 

  3. H. Wende et al., Nat. Mater. 6, 516 (2007)

    Article  ADS  Google Scholar 

  4. M. Ternes, A.J. Heinrich, W.-D. Schneider, J. Phys.: Condens. Matter 21, 053001 (2009)

    ADS  Google Scholar 

  5. M. Mannini et al., Nat. Mater. 8, 194 (2009)

    Article  ADS  Google Scholar 

  6. D. Wegner, R. Yamachika, X. Zhang, Y. Wang, T. Baruah, M.R. Pederson, B.M Bartlett, J.R. Long, M.F. Crommie, Phys. Rev. Lett. 103, 087205 (2009)

    Article  ADS  Google Scholar 

  7. M. Bernien et al., Phys. Rev. Lett. 102, 047202 (2009)

    Article  ADS  Google Scholar 

  8. J. Brede, N. Atodiresei, S. Kuck, P. Lazić, V. Caciuc, Y. Morikawa, G. Hoffmann, S. Blügel, R. Wiesendanger, Phys. Rev. Lett. 105, 047204 (2010)

    Article  ADS  Google Scholar 

  9. M. Muenks, P. Jacobson, M. Ternes, K. Kern, Nat. Commun. 8, 14119 (2017)

    Article  ADS  Google Scholar 

  10. D.-J. Choi, R. Robles, S. Yan, J.A.J. Burgess, S. Rolf-Pissarczyk, J.-P. Gauyacq, N. Lorente, M. Ternes, S. Loth, Nano Lett. 17, 6203 (2017)

    Article  ADS  Google Scholar 

  11. L. Schlipf et al., Sci. Adv. 3, e1701116 (2017)

    Article  ADS  Google Scholar 

  12. M. Ternes, Prog. Surf. Sci. 92, 83 (2017)

    Article  ADS  Google Scholar 

  13. X. Chen et al., Phys. Rev. Lett. 101, 197208 (2008)

    Article  ADS  Google Scholar 

  14. R. Bulla, T.A. Costi, T. Pruschke, Rev. Mod. Phys. 80, 395 (2008)

    Article  ADS  Google Scholar 

  15. K.G. Wilson, Rev. Mod. Phys. 55, 583 (1983)

    Article  ADS  Google Scholar 

  16. K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975)

    Article  ADS  Google Scholar 

  17. C. Romeike, M.R. Wegewijs, W. Hofstetter, H. Schoeller, Phys. Rev. Lett. 96, 196601 (2006)

    Article  ADS  Google Scholar 

  18. C. Romeike, M.R. Wegewijs, W. Hofstetter, H. Schoeller, Phys. Rev. Lett. 97, 206601 (2006)

    Article  ADS  Google Scholar 

  19. M. Höck, J. Schnack, Phys. Rev. B 87, 184408 (2013)

    Article  ADS  Google Scholar 

  20. R. Žitko, J. Phys.: Condens. Matter 22, 026002 (2010)

    ADS  Google Scholar 

  21. M. Vojta, R. Bulla, W. Hofstetter, Phys. Rev. B 65, 140405 (2002)

    Article  ADS  Google Scholar 

  22. A.K. Mitchell, T.F. Jarrold, M.R. Galpin, D.E. Logan, J. Phys. Chem. B 117, 12777 (2013)

    Article  Google Scholar 

  23. A.K. Mitchell, T.F. Jarrold, D.E. Logan, Phys. Rev. B 79, 085124 (2009)

    Article  ADS  Google Scholar 

  24. R. Žitko, Phys. Rev. B 81, 115316 (2010)

    Article  ADS  Google Scholar 

  25. C.J. Wright, M.R. Galpin, D.E. Logan, Phys. Rev. B 84, 115308 (2011)

    Article  ADS  Google Scholar 

  26. I.J. Hamad, C. Gazza, J.A. Andrade, A.A. Aligia, P.S. Cornaglia, P. Roura-Bas, Phys. Rev. B 92, 195113 (2015)

    Article  ADS  Google Scholar 

  27. F.B. Anders, A. Schiller, Phys. Rev. Lett. 95, 196801 (2005)

    Article  ADS  Google Scholar 

  28. F.B. Anders, Phys. Rev. Lett. 101, 066804 (2008)

    Article  ADS  Google Scholar 

  29. H.T.M. Nghiem, T.A. Costi, Phys. Rev. B 89, 075118 (2014)

    Article  ADS  Google Scholar 

  30. K. Grove-Rasmussen, G. Steffensen, A. Jellinggaard, M.H. Madsen, R. Žitko, J. Paaske, J. Nygård, Nat. Commun. 9, 2376 (2018)

    Article  ADS  Google Scholar 

  31. S.B. Tooski, B.R. Bułka, R. Žitko, A. Ramšak, Eur. Phys. J. B 87, 145 (2014)

    Article  ADS  Google Scholar 

  32. M. Žonda et al., arXiv:1811.00351 (2018)

  33. R. Žitko, T. Pruschke, Phys. Rev. B 79, 085106 (2009)

    Article  ADS  Google Scholar 

  34. R. Žitko, Comput. Phys. Commun. 180, 1271 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  35. L. Scudiero, D.E. Barlow, U. Mazur, K.W. Hipps, J. Am. Chem. Soc. 123, 4073 (2001)

    Article  Google Scholar 

  36. D.E. Barlow, L. Scudiero, K.W. Hipps, Langmuir 20, 4413 (2004)

    Article  Google Scholar 

  37. A. Zhao et al., Science 309, 1542 (2005)

    Article  ADS  Google Scholar 

  38. L. Gao et al., Phys. Rev. Lett. 99, 106402 (2007)

    Article  ADS  Google Scholar 

  39. S. Stepanow, P.S. Miedema, A. Mugarza, G. Ceballos, P. Moras, J.C. Cezar, C Carbone, F.M.F. de Groot, P. Gambardella, Phys. Rev. B 83, 220401 (2011)

    Article  ADS  Google Scholar 

  40. D. Mentrup, H.-J. Schmidt, J. Schnack, M. Luban, Physica A 278, 214 (2000)

    Article  ADS  Google Scholar 

  41. T.A. Costi et al., Phys. Rev. Lett. 102, 056802 (2009)

    Article  ADS  Google Scholar 

  42. R. Schnalle, J. Schnack, Phys. Rev. B 79, 104419 (2009)

    Article  ADS  Google Scholar 

  43. A.K. Mitchell, E. Sela, D.E. Logan, Phys. Rev. Lett. 108, 086405 (2012)

    Article  ADS  Google Scholar 

  44. R. Žitko, J. Mravlje, K. Haule, Phys. Rev. Lett. 108, 066602 (2012)

    Article  ADS  Google Scholar 

  45. M. Hanl, A. Weichselbaum, T.A. Costi, F. Mallet, L. Saminadayar, C. Bäuerle, J. von Delft, Phys. Rev. B 88, 075146 (2013)

    Article  ADS  Google Scholar 

  46. A.K. Mitchell, M.R. Galpin, S. Wilson-Fletcher, D.E. Logan, R. Bulla, Phys. Rev. B 89, 121105 (2014)

    Article  ADS  Google Scholar 

  47. E. Pavarini, E. Koch, P. Coleman, Many-Body Physics: From Kondo to Hubbard, Autumn School on Correlated Electrons, Jülich, Germany, 21–25 Sep 2015 (Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag, Jülich, 2015), in Modeling and Simulation, Vol. 5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Schnack.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langwald, HT., Schnack, J. Magnetization curves of deposited finite spin chains. Eur. Phys. J. B 92, 56 (2019). https://doi.org/10.1140/epjb/e2019-90671-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90671-3

Keywords

Navigation