Skip to main content
Log in

A wide-range modeling approach for the thermal conductivity and dielectric function of solid and liquid aluminum

  • Regular Article
  • Topical issue
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This study aims at providing a simple method to obtain the electronic thermal conductivity of aluminum over a wide range of temperatures and densities in the crystalline solid as well as the disordered liquid phase. All calculations are based on first order perturbation theory and the pseudo-potential theory without resorting to ab-initio simulations. Wherever possible, the results are compared to experimental data or quantum molecular dynamics simulations. In addition a straightforward approach is demonstrated to estimate the complex permittivity from the Drude model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Bloch, Z. Phys. 59, 208 (1930)

    Article  ADS  Google Scholar 

  2. L. Spitzer, R. Härm, Phys. Rev. 89, 977 (1953)

    Article  ADS  Google Scholar 

  3. M.P. Desjarlais, J.D. Kress, L.A. Collins, Phys. Rev. E 66, 025401 (2002)

    Article  ADS  Google Scholar 

  4. P.L. Silvestrelli, Phys. Rev. B 60, 16382 (1999)

    Article  ADS  Google Scholar 

  5. R.P. Feynman, N. Metropolis, E. Teller, Phys. Rev. 75, 1561 (1949)

    Article  ADS  Google Scholar 

  6. A.F. Nikiforov, V.G. Novikov, V.B. Uvarov, Quantum-statistical self-consistent field models (Springer, 2005)

  7. P. Fromy, C. Deutsch, G. Maynard, Phys. Plasmas 3, 714 (1996)

    Article  ADS  Google Scholar 

  8. N. Mohankumar, A. Natarajan, Phys. Status Solidi B 188, 635 (1995)

    Article  ADS  Google Scholar 

  9. T. Fujimoto, R.W.P. McWhirter, Phys. Rev. A 42, 6588 (1990)

    Article  ADS  Google Scholar 

  10. D.G. Hummer, D. Mihalas, ApJ 331, 794 (1988)

    Article  ADS  Google Scholar 

  11. J.M. Ziman, D. Mihalas, Electrons and phonons (Oxford University Press, 1960)

  12. N.A. Inogamov, Y.V. Petrov, J. Exp. Theor. Phys. 110, 446 (2010)

    Article  ADS  Google Scholar 

  13. Y.V. Petrov, N.A. Inogamov, K.P. Migdal, JETP Lett. 97, 20 (2013)

    Article  ADS  Google Scholar 

  14. J. Bardeen, Phys. Rev. 52, 688 (1937)

    Article  ADS  Google Scholar 

  15. A.O.E. Animalu, V. Heine, Philos. Mag. 12, 1249 (1965)

    Article  ADS  Google Scholar 

  16. J.M. Ziman, Proc. R. Soc. London A 318, 401 (1970)

    Article  ADS  Google Scholar 

  17. A.O.E. Animalu, Phys. Rev. B 8, 3555 (1973)

    Article  ADS  Google Scholar 

  18. J. Lindhard, Kgl. Danske Videnskab. Selskab Mat.-fys. Medd. 28, 8 (1954)

    MathSciNet  Google Scholar 

  19. J. Hubbard, Proc. R. Soc. London A: Math. Phys. Eng. Sci. 243, 336 (1958)

    Article  ADS  Google Scholar 

  20. L. Kleinman, Phys. Rev. 160, 585 (1967)

    Article  ADS  Google Scholar 

  21. S. Ichimaru, K. Utsumi, Phys. Rev. B 24, 7385 (1981)

    Article  ADS  Google Scholar 

  22. J.M. Ziman, Philos. Mag. 6, 1013 (1961)

    Article  ADS  Google Scholar 

  23. J.K. Percus, G.J. Yevick, Phys. Rev. 110, 1 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  24. N.W. Ashcroft, J. Lekner, Phys. Rev. 145, 83 (1966)

    Article  ADS  Google Scholar 

  25. Y.V. Petrov, N.A. Inogamov, A.V. Mokshin, B.N. Galimzyanov, J. Phys.: Conf. Ser. 946, 12096 (2018)

    Google Scholar 

  26. V. Recoules, J.P. Crocombette, Phys. Rev. B 72, 1 (2005)

    Article  Google Scholar 

  27. G.R. Gathers, Int. J. Thermophys. 4, 209 (1983)

    Article  ADS  Google Scholar 

  28. Y.T. Lee, R.M. More, Phys. Fluids 27, 1273 (1984)

    Article  ADS  Google Scholar 

  29. M.E. Povarnitsyn, N.E. Andreev, E.M. Apfelbaum, T.E. Itina, K.V. Khishchenko, O.F. Kostenko, P.R. Levashov, M.E. Veysman, Appl. Surf. Sci. 258, 9480 (2012)

    Article  ADS  Google Scholar 

  30. A.E. Turrell, M. Sherlock, S.J. Rose, J. Comput. Phys. 249, 13 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  31. Y.V. Petrov, K.P. Migdal, N.A. Inogamov, S.I. Anisimov, JETP Lett. 104, 431 (2016)

    Article  ADS  Google Scholar 

  32. V.I. Mazhukin, Laser pulses-theory, technology, and applications (InTech, 2012)

  33. B. Huttner, J. Phys.: Condens. Matter 6, 2459 (1994)

    ADS  Google Scholar 

  34. D. Fisher, M. Fraenkel, Z. Henis, E. Moshe, S. Eliezer, Phys. Rev. E 65, 1 (2002)

    Google Scholar 

  35. N.W. Ashcroft, K. Sturm, Phys. Rev. B 3, 1898 (1971)

    Article  ADS  Google Scholar 

  36. N.A. Inogamov, V.V. Zhakhovskii, S.I. Ashitkov, V.A. Khokhlov, Y.V. Petrov, P.S. Komarov, M.B. Agranat, S.I. Anisimov, K. Nishihara, Appl. Surf. Sci. 255, 9712 (2009)

    Article  ADS  Google Scholar 

  37. J.P. Colombier, P. Combis, E. Audouard, R. Stoian, Phys. Rev. E 77, 1 (2008)

    Article  Google Scholar 

  38. M.E. Povarnitsyn, D.V. Knyazev, P.R. Levashov, Contrib. Plasma Phys. 52, 145 (2012)

    Article  ADS  Google Scholar 

  39. S. Krishnan, P.C. Nordine, Phys. Rev. B 47, 11780 (1993)

    Article  ADS  Google Scholar 

  40. N. Medvedev, Z. Li, V. Tkachenko, B. Ziaja, Phys. Rev. B 95, 014309 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugen Eisfeld.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eisfeld, E., Trebin, HR. & Roth, J. A wide-range modeling approach for the thermal conductivity and dielectric function of solid and liquid aluminum. Eur. Phys. J. Spec. Top. 227, 1575–1590 (2019). https://doi.org/10.1140/epjst/e2019-800165-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800165-5

Navigation