Skip to main content
Log in

Squeezing of nonlinear magnons in obliquely-magnetized nanowires under microwave pumping

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Theoretical studies are reported for the non-classical quantum statistical behavior of bosonic excitations in obliquely-magnetized nanowires under condition of microwave pumping. A dipole-exchange Hamiltonian is employed in which the external magnetic field is transverse to the length of the ferromagnetic nanowire, causing the magnetization to be canted away from the symmetry axis. Using a coherent magnon states representation we obtain explicit results for the temporal evolution of the magnon creation and annihilation operators. Applications are presented in the perpendicular pumping configuration for the initial collapse and then revival of the magnon occupation number, the super-Poissonian magnon-counting statistics, and the magnon squeezing. It is found that all of these processes are enhanced by having an oblique-magnetization state in the nanowire. For comparison, we also present results when the microwave pumping field is in the orientation parallel to the magnetization. It is found that the parallel and perpendicular microwave pumping configurations lead to important differences in the time dependences.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.E. Slusher, L.W. Hollberg, B. Yurke, J.C. Mertz, J.F. Valley, Phys. Rev. Lett. 55, 2409 (1985)

    Article  ADS  Google Scholar 

  2. H. Yuen, J. Shapir, IEEE Trans. Inf. Theory 24, 657 (1978)

    Article  ADS  Google Scholar 

  3. I. Averbukh, M. Shapiro, Phys. Rev. A 47, 5086 (1993)

    Article  ADS  Google Scholar 

  4. S.L. Johnson, P. Beaud, E. Vorobeva, C.J. Milne, E.D. Murray, S. Fahy, G. Ingold, Phys. Rev. Lett. 102, 175503 (2009)

    Article  ADS  Google Scholar 

  5. M. Artoni, J.L. Birman, Phys. Rev. B 44, 3736 (1991)

    Article  ADS  Google Scholar 

  6. R. Auccaise, A.G. Araujo-Ferreira, R.S. Sarthour, I.S. Oliveira, T.J. Bonagamba, I. Roditi, Phys. Rev. Lett. 114, 043604 (2015)

    Article  ADS  Google Scholar 

  7. Z. Jimin, A.V. Bragas, D.J. Lockwood, R. Merlin, Phys. Rev. Lett. 93, 107203 (2004)

    Article  ADS  Google Scholar 

  8. Z. Jimin, A.V. Bragas, R. Merlin, D.J. Lockwood, Phys. Rev. B 73, 184434 (2006)

    Article  ADS  Google Scholar 

  9. F. Peng, Europhys. Lett. 54, 688 (2001)

    Article  ADS  Google Scholar 

  10. J. Wang, Z. Cheng, Y. Ping, J. Wan, A.A. Serga, Y. Zhang, Phys. Lett. A 353, 427 (2006)

    Article  ADS  Google Scholar 

  11. F. Peng, Physica B 334, 183 (2003)

    Article  ADS  Google Scholar 

  12. Z. Haghshenasfard, M.G. Cottam, J. Phys.: Condens. Matter 29, 045803 (2017)

    ADS  Google Scholar 

  13. E. Schlömann, J.J. Green, U. Milano, J. Appl. Phys. 31, S386 (1960)

    Article  Google Scholar 

  14. N. Bloembergen, S. Wang, Phys. Rev. 93, 72 (1954)

    Article  ADS  Google Scholar 

  15. H. Suhl, J. Phys. Chem. Solids 1, 209 (1957)

    Article  ADS  Google Scholar 

  16. M.G. Cottam, A.N. Slavin, in Linear and Nolinear Spin Waves in Magnetic Films and Superlattices, edited by M.G. Cottam (World Scientific, Singapore, 1994), p. 1

  17. D.D. Stancil, A. Prabhakar, in Spin Waves: Theory and Applications (Springer, US, 2009), p. 351

  18. S.M. Rezende, N. Zagury, Phys. Lett. A 29, 47 (1969)

    Article  ADS  Google Scholar 

  19. N. Zagury, S.M. Rezende. Phys. Lett. A 29, 616 (1969)

    Article  ADS  Google Scholar 

  20. S.M. Rezende, in Magnonics: From Fundamentals to Applications, edited by S.O. Demokritov, A.N. Slavin (Springer, US, 2013), p. 39

  21. M.O. Scully, M.S. Zubairy, in Quantum Optics (Cambridge University Press, UK, 1997), p. 656

  22. S.M. Rezende. J. Phys.: Condens. Matter 22, 164211 (2010)

    ADS  Google Scholar 

  23. S.M. Rezende. Phys. Rev. B 79, 174411 (2009)

    Article  ADS  Google Scholar 

  24. S.O. Demokritov, V.E. Demidov, O. Dzyapko, G.A. Melkov, A.A. Serga, B. Hillebrands, A.N. Slavin, Nature 443, 430 (2006)

    Article  ADS  Google Scholar 

  25. V.E. Demidov, O. Dzyapko, S.O. Demokritov, G.A. Melkov, A.N. Slavin. Phys. Rev. Lett. 100, 047205 (2008)

    Article  ADS  Google Scholar 

  26. C.B. de Araujo, S.M. Rezende, Phys. Rev. B 9, 3074 (1974)

    Article  ADS  Google Scholar 

  27. C.B. de Araujo, Phys. Rev. B 10, 3961 (1974)

    Article  ADS  Google Scholar 

  28. N. Zagury, S.M. Rezende, Phys. Rev. B 4, 201 (1971)

    Article  ADS  Google Scholar 

  29. Z. Haghshenasfard, M.G. Cottam, J. Phys.: Condens. Matter 29, 195801 (2017)

    ADS  Google Scholar 

  30. Z. Haghshenasfard, M.G. Cottam, J. Phys.: Condens. Matter 30, 025802 (2018)

    ADS  Google Scholar 

  31. Z. Haghshenasfard, M.G. Cottam, IEEE Trans. Magn. 54, 1300609 (2018)

    Article  Google Scholar 

  32. R.N. Costa Filho, M.G. Cottam, G.A. Farias, Phys. Rev. B 62, 6545 (2000)

    Article  ADS  Google Scholar 

  33. H.T. Nguyen, A. Akbari-Sharbaf, M.G. Cottam, Phys. Rev. B 83, 214423 (2011)

    Article  ADS  Google Scholar 

  34. T. Holstein, H. Primakoff, Phys. Rev. 58, 1098 (1940)

    Article  ADS  Google Scholar 

  35. R.M. White, in Quantum Theory of Magnetism (Springer-Verlag, Berlin, Heidelberg, 2007), p. 359

  36. Z. Haghshenasfard, M.G. Cottam, J. Phys.: Condens. Matter 30, 425802 (2018)

    Google Scholar 

  37. W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954)

    Article  Google Scholar 

  38. A. Kamra, W. Belzig, Phys. Rev. Lett. 116, 146601 (2016)

    Article  ADS  Google Scholar 

  39. W. Belzig, Phys. Rev. B 71, 161301 (2005)

    Article  ADS  Google Scholar 

  40. Y.-S. Park, Y. Ghosh, Y. Chen, A. Piryatinski, P. Xu, N.H. Mack, H.-L. Wang, V.I. Klimov, J.A. Hollingsworth, H. Htoon, Phys. Rev. Lett. 110, 117401 (2013)

    Article  ADS  Google Scholar 

  41. Z. Haghshenasfard, M.G. Cottam, J. Phys.: Condens. Matter 28, 186001 (2016)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Haghshenasfard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghshenasfard, Z., Cottam, M.G. Squeezing of nonlinear magnons in obliquely-magnetized nanowires under microwave pumping. Eur. Phys. J. B 92, 52 (2019). https://doi.org/10.1140/epjb/e2019-90589-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90589-8

Keywords

Navigation