Skip to main content

Advertisement

Log in

Ab initio investigation of structural and electronic properties of selenium and tellurium clusters

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Structural and electronic properties of selenium (Sen; n = 8–31, 35 and 40) and tellurium clusters (Ten; n = 6–24, 30 and 32) have been investigated within the framework of density functional formalism. Genetic algorithm based code USPEX and molecular dynamics have been used to obtain at least 70 distinct equilibrium geometries for each cluster. Strikingly, all the ground state geometries as well as a few low energy structures are ring like, closed one dimensional structures. Despite the fact that the small clusters of these elements tend to have one dimensional geometries, it is unusual to have such stable ring geometries for large clusters of the order of 40 atoms. Our work brings out a very interesting trend of order–disorder–order transitions in the growth pattern of these clusters. Although, the size of the ring increases with an increase in number of atoms, the variation in the bond angles and bond lengths is rather small. Remarkably, binding energy per atom is almost constant. The nature of bonding has been analyzed by examining individual charge densities of all the molecular orbitals. It turns out that the amount of buckling and the angle between three adjacent atoms involved along the ring plays a crucial role in forming covalent bonds in a variety of ways. The pattern of Eigenvalues of all the clusters show a very interesting character. The “bands” are formed out of almost pure atomic orbitals with negligible hybridization between s and p. The lowest n energy levels show text book like tight binding character having constant width. The manifold of p bands is separated from s band by a large gap, a consequence of large separation between atomic s and p levels. Unlike the case of infinite helix we find that all the character of the occupied p bands show all the three components, px, py and pz. Further, non bonding orbitals are found to lie below the HOMO level.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Jena, A.W. Castleman, Proc. Natl. Acad. Sci. U.S.A. 103, 10560 (2006)

    Article  ADS  Google Scholar 

  2. G.A. Somorjai, A.M. Contreras, M. Montano, R.M. Rioux, Proc. Natl. Acad. Sci. U.S.A. 103, 10577 (2006)

    Article  ADS  Google Scholar 

  3. F. Baletto, R. Ferrando, Rev. Mod. Phys. 77, 371 (2005)

    Article  ADS  Google Scholar 

  4. A. Pal, S.N. Shirodkar, S. Gohil, S. Ghosh, U.V. Waghmare, P. Ayyub, Sci. Rep. 3, 2051 (2013)

    Article  ADS  Google Scholar 

  5. M.U. Kahaly, P. Ghosh, S. Narasimhan, U.V. Waghmare, J. Chem. Phys. 128, 044718 (2008)

    Article  ADS  Google Scholar 

  6. D. Hohl, R.O. Jones, R. Car, M. Parrinello, Chem. Phys. Lett. 89, 6823 (1988)

    Google Scholar 

  7. D. Hohl, R.O. Jones, R. Car, M. Parrinello, Chem. Phys. Lett. 139, 540 (1987)

    Article  ADS  Google Scholar 

  8. R.O. Jones, D. Hohl, J. Am. Chem. Soc. 112, 2590 (1990)

    Article  Google Scholar 

  9. R.O. Jones, D. Hohl, J. Quantum Chem. Symp. 24, 141 (1990)

    Article  Google Scholar 

  10. S. Hunsicker, R.O. Jones, G. Ganteför, J. Chem. Phys. 102, 5917 (1995)

    Article  ADS  Google Scholar 

  11. A.A. Demkov, O.F. Sankey, J. Phys.: Condens. Matter 13, 10433 (2001)

    ADS  Google Scholar 

  12. J. Becker, K. Rademann, F. Hensel, Z. Phys. D: At., Mol. Clusters 19, 233 (1991)

    Article  Google Scholar 

  13. B.C. Pan, Phys. Rev. B 65, 085407 (2002)

    Article  ADS  Google Scholar 

  14. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  ADS  Google Scholar 

  15. J.P. Perdew, Phys. Rev. B 33, 8822 (1986)

    Article  ADS  Google Scholar 

  16. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  17. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  18. P. Ghosh, J. Bhattacharjee, U.V. Waghmare, J. Phys. Chem. C 112, 983 (2008)

    Article  Google Scholar 

  19. J. Akola, R.O. Jones, Phys. Rev. B 85, 134103 (2012)

    Article  ADS  Google Scholar 

  20. V. Kaware, K. Joshi, J. Chem. Phys. 141, 054308 (2014)

    Article  ADS  Google Scholar 

  21. S.M. Ghazi, S. Zorriasatein, D.G. Kanhere, J. Phys. Chem. A 113, 2659 (2009)

    Article  Google Scholar 

  22. S. Krishnamurty, K. Joshi, S. Zorriasatein, D.G. Kanhere, J. Chem. Phys. 127, 054308 (2007)

    Article  ADS  Google Scholar 

  23. I. Heidari, S. De, S.M. Ghazi, S. Goedecker, D.G. Kanhere, J. Phys. Chem. A 115, 12307 (2011)

    Article  Google Scholar 

  24. W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)

    Article  ADS  Google Scholar 

  25. G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  26. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  27. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  28. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)

    Article  ADS  Google Scholar 

  29. C.W. Glass, A.R. Oganov, N. Hansen, Comput. Phys. Commun. 175, 713 (2006)

    Article  ADS  Google Scholar 

  30. A.R. Oganov, A.O. Lyakhov, M. Valle, Acc. Chem. Res. 44, 227 (2011)

    Article  Google Scholar 

  31. G.A. Breaux, D.A. Hillman, C.M. Neal, R.C. Benirschke, M.F. Jarrold, J. Am. Chem. Soc. 126, 8628 (2004)

    Article  Google Scholar 

  32. S. Krishnamurty, S. Chacko, D.G. Kanhere, Phys. Rev. B 73, 045406 (2006)

    Article  ADS  Google Scholar 

  33. S. Chacko, K. Joshi, D.G. Kanhere, S.A. Blundell, Phys. Rev. Lett. 92, 135506 (2004)

    Article  ADS  Google Scholar 

  34. A. Aguado, J.M. López, J. Phys. Chem. Lett. B 110, 14020 (2006)

    Article  Google Scholar 

  35. A. Aguado, J.M. López, J. Chem. Phys. 130, 064704 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raman Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, T., Sharma, R., Tamboli, R.A. et al. Ab initio investigation of structural and electronic properties of selenium and tellurium clusters. Eur. Phys. J. B 92, 51 (2019). https://doi.org/10.1140/epjb/e2019-90491-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90491-5

Keywords

Navigation