Skip to main content
Log in

High-order Particle-In-Cell simulations of laser-plasma interaction

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The simulation of laser-plasma interaction via three- dimensional Particle-In-Cell methods based on higher-order schemes is considered. High-order methods allow for drastically reducing the required number of degrees of freedom while still capturing the complex physical nature of non-linear processes. The suitability of high-order methods for the acceleration of protons from thin films by intense short-pulse lasers in terms of accuracy and efficiency is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Daido, M. Nishiuchi, A.S. Pirozhkov, Rep. Prog. Phys. 75, 056401 (2012)

    Article  ADS  Google Scholar 

  2. A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys. 85, 751 (2013)

    Article  ADS  Google Scholar 

  3. M. Nishiuchi, H. Sakaki, T.Z. Esirkepov, K. Nishio, T. Pikuz, A.Y. Faenov, I.Y. Skobelev, R. Orlandi, H. Sako, A. Pirozhkov, et al. , Phys. Plasmas 22, 033107 (2015)

    Article  ADS  Google Scholar 

  4. M. King, R. Gray, H. Powell, R. Capdessus, P. McKenna, Plasma Phys. Controlled Fusion 59, 014003 (2016)

    Article  ADS  Google Scholar 

  5. J. Schreiber, P. Bolton, K. Parodi, Rev. Sci. Instrum. 87, 071101 (2016)

    Article  ADS  Google Scholar 

  6. E. d’Humières, A. Brantov, V.Yu. Bychenkov, V. Tikhonchuk, Phys. Plasmas 20, 023103 (2013)

    Article  ADS  Google Scholar 

  7. A. Brantov, V.Y. Bychenkov, Plasma Phys. Controlled Fusion 59, 034009 (2017)

    Article  ADS  Google Scholar 

  8. A. Brantov, P. Ksenofontov, V.Y. Bychenkov, in 2015 IEEE International Conference on Plasma Sciences (ICOPS) (IEEE, 2015), pp. 1–1

  9. S. Wilks, A. Langdon, T. Cowan, M. Roth, M. Singh, S. Hatchett, M. Key, D. Pennington, A. MacKinnon, R. Snavely, Phys. Plasmas 8, 542 (2001)

    Article  ADS  Google Scholar 

  10. G. Petrov, C. McGuffey, A. Thomas, K. Krushelnick, F. Beg, Plasma Phys. Controlled Fusion 59, 075003 (2017)

    Article  ADS  Google Scholar 

  11. C.K. Birdsall, A.B. Langdon, Plasma physics via computer simulation (Hilger, Bristol, 1991)

  12. R.W. Hockney, J.W. Eastwood, Computer simulation using particles (Taylor & Francis, 1988)

  13. T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell, et al. , Plasma Phys. Controlled Fusion 57, 113001 (2015)

    Article  ADS  Google Scholar 

  14. K.S. Yee, IEEE Trans. Antennas and Propagation (1966), pp. 302–307

  15. J.P. Boris, Proc. 4th Conf. Num. Sim. Plasmas (1970), pp. 3–67

  16. G.B. Jacobs, J.S. Hesthaven, J. Comput. Phys. 214, 96 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. C.-D. Munz, M. Auweter-Kurtz, S. Fasoulas, A. Mirza, P. Ortwein, M. Pfeiffer, T. Stindl, C.R. Mec. 342, 662 (2014)

    Article  ADS  Google Scholar 

  18. J.D. Jackson, Classical electrodynamics, 3rd edn. (Wiley, New York, NY, 1999)

  19. M.H. Carpenter, C.A. Kennedy, NASA technical memorandum 109112 (1994), pp. 1–26

  20. J. Hesthaven, T. Warburton, Texts in applied mathematics (Springer, 2008)

  21. S.M. Copplestone, P. Ortwein, C.D. Munz, IEEE Trans. Plasma Sci. 45, 2 (2017)

    Article  ADS  Google Scholar 

  22. C.-D. Munz, P. Ommes, R. Schneider, Comput. Phys. Commun. 130, 83 (2000)

    Article  ADS  Google Scholar 

  23. C.-D. Munz, P. Omnes, R. Schneider, E. Sonnendrücker, U. Voß, J. Comput. Phys. 161, 484 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Stock, J. Neudorfer, M. Riedlinger, G. Pirrung, G. Gassner, R. Schneider, S. Roller, C.-D. Munz, IEEE Trans. Plasma Sci. 40, 1860 (2012)

    Article  ADS  Google Scholar 

  25. P. Ortwein, T. Binder, S. Copplestone, A. Mirza, P. Nizenkov, M. Pfeiffer, C.-D. Munz, S. Fasoulas, arXiv:1811.05152 (2018)

  26. T. Binder, S. Copplestone, A. Mirza, P. Nizenkov, P. Ortwein, M. Pfeiffer, W. Reschke, C.-D. Munz, S. Fasoulas, arXiv:1811.04742 (2018)

  27. C. Müller, Grundlehren der mathematischen Wissenschaften (Springer-Verlag, 1969)

  28. G. Gassner, D.A. Kopriva, SIAM J. Sci. Comput. 33, 2560 (2011)

    Article  MathSciNet  Google Scholar 

  29. J.Q. Yu, W.J. Ma, C. Lin, X.Q. Yan, Plasma Phys. Controlled Fusion 60, 115007 (2018)

    Article  ADS  Google Scholar 

  30. S. Sonntag, C. Trichet Paredes, J. Roth, H.-R. Trebin, Appl. Phys. A 104, 559 (2011)

    Article  ADS  Google Scholar 

  31. J. Roth, C. Trichet, H.-R. Trebin, S. Sonntag, in High Performance Computing in Science and Engineering ‘10: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2010, edited by W.E. Nagel, D.B. Kröner, M.M. Resch(Springer, Berlin, Heidelberg, 2011), pp. 159–168

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Copplestone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Copplestone, S.M., Pfeiffer, M., Fasoulas, S. et al. High-order Particle-In-Cell simulations of laser-plasma interaction. Eur. Phys. J. Spec. Top. 227, 1603–1614 (2019). https://doi.org/10.1140/epjst/e2019-800160-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800160-y

Navigation