Skip to main content

Advertisement

Log in

Smooth control of HIV/AIDS infection using a robust adaptive scheme with decoupled sliding mode supervision

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this paper, a robust adaptive controller subject to decoupled sliding mode controller as a supervisory controller has been implemented on the HIV infection dynamic model. A five-state dynamic model of HIV is utilized which the measurement of the CD4+T cells and the viral load counts are necessary to estimate all its parameters. Decoupled sliding mode control is a variable structure controller having significant and appropriate features, such as best tracking and regulation performance and robustness and elevate the performance of the controller. Generally, due to the importance of applied treatment strategy to mitigate viral escape, sliding mode control is utilized in accordance with PI control to deliver necessary control inputs. To achieve the least possible chattering, effectual methods such as the transfer function is used. To update the gains of PI control, an adaptation law is then employed. The results demonstrate the suitable performance of the controller via providing proper tracking performance, and also, elimination of the chattering problem and decrease the time of treatment. The number of infected CD4+ T-cells and the number of free virus particles can be controlled in less than five days. The proposed controller is capable of controlling the dynamic behavior of the virus concentration for different patients with the same control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Quax, D.A.M.C. van de Vijver, D. Frentz, P.M.A. Sloot, Eur. Phys. J. Special Topics 222, 1347 (2013)

    Article  ADS  Google Scholar 

  2. H. Chang, A. Astolfi, IEEE Control Syst. 28, 28 (2008)

    Google Scholar 

  3. D.A.M.C. van de Vijver, M.C.F. Prosperi, J.J. Ramasco, Eur. Phys. J. Special Topics 222, 1403 (2013)

    Article  ADS  Google Scholar 

  4. P.K. Roy, Mathematical models for therapeutic approaches to control HIV disease transmission (Springer, Singapore, 2015)

  5. M. Joly, J.M. Pinto, AIChE J. 52, 856 (2006)

    Article  Google Scholar 

  6. K.O. Okosun, M.A. Khan, E. Bonyah, S.T. Ogunlade, Eur. Phys. J. Plus. 132, 363 (2017)

    Article  Google Scholar 

  7. S.M.K. Heris, H. Khaloozadeh, IEEE Trans. Biomed. Eng. 58, 1678 (2011)

    Article  Google Scholar 

  8. M.E. Brandt, G. Chen, IEEE Trans. Biomed. Eng. 48, 754 (2001)

    Article  Google Scholar 

  9. S.S. Ge, Z. Tian, T.H. Lee, IEEE Trans. Biomed. Eng. 52, 353 (2005)

    Article  Google Scholar 

  10. Y. Liu, Feedback linearization and optimal design for the control of an HIV pathogenesis model, in Control and Decision Conference (CCDC), 2015 27th Chinese (IEEE, 2015), pp. 1482–1486

  11. F.L. Biafore, C.E. D’Attellis, Exact Linearisation and Control of a HIV-1 Predator-Prey Model, in Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference (IEEE, 2006), pp. 2367–2370

  12. H. Chang, A. Astolfi, IEEE Trans. Autom. Sci. Eng. 6, 248 (2009)

    Article  Google Scholar 

  13. B.M. Adams, H.T. Banks, M. Davidian, H.-D. Kwon, H.T. Tran, S.N. Wynne, E.S. Rosenberg, J. Comput. Appl. Math. 184, 10 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  14. H. Shim, S.-J. Han, C.C. Chung, S.W. Nam, J.H. Seo, Int. J. Control Autom. Syst. 1, 282 (2003)

    Google Scholar 

  15. G. Pannocchia, M. Laurino, A. Landi, IEEE Trans. Biomed. Eng. 57, 1040 (2010)

    Article  Google Scholar 

  16. M.R. Zarrabi, M.H. Farahi, S. Effati, A.J. Koshkouei, Adv. Model. Optim. 14 (2012)

  17. N.H. Jo, Y. Roh, Biomed. Signal Process. Control. 18, 245 (2015)

    Article  Google Scholar 

  18. J.M. Lemos, M.S. Barão, Arch. Control Sci. 22, 273 (2012)

    Article  MathSciNet  Google Scholar 

  19. W. Assawinchaichote, Biomed. Mater. Eng. 26, S1945 (2015)

    Google Scholar 

  20. A. Kosari, H. Jahanshahi, A. Razavi, J. Aerosp. Eng. 30, 4017011 (2017)

    Article  Google Scholar 

  21. A.I. Dounis, P. Kofinas, C. Alafodimos, D. Tseles, Renew. Energy. 60, 202 (2013)

    Article  Google Scholar 

  22. M.A. Khanesar, O. Kaynak, S. Yin, H. Gao, IEEE Trans. Fuzzy Syst. 23, 205 (2015)

    Article  Google Scholar 

  23. A. Saghafinia, H.W. Ping, M.N. Uddin, K.S. Gaeid, IEEE Trans. Ind. Appl. 51, 692 (2015)

    Article  Google Scholar 

  24. W.M. Bessa, A.S. De Paula, M.A. Savi, Eur. Phys. J. Special Topics 222, 1541 (2013)

    Article  ADS  Google Scholar 

  25. W.-S. Yu, C.-C. Weng, Fuzzy Sets Syst. 248, 1 (2014)

    Article  Google Scholar 

  26. B. Niu, J. Zhu, Y. Su, H. Li, L. Li, Nonlinear Dyn. 73, 1803 (2013)

    Article  Google Scholar 

  27. Y. Li, Q. Xu, IEEE Trans. Control Syst. Technol. 18, 798 (2010)

    Article  Google Scholar 

  28. J.Y. Peng, X.B. Chen, IEEE/ASME Trans. Mechatronics. 19, 88 (2014)

    Article  Google Scholar 

  29. D. Wodarz, M.A. Nowak, Proc. Natl. Acad. Sci. 96, 14464 (1999)

    Article  ADS  Google Scholar 

  30. D. Wodarz, M.A. Nowak, BioEssays. 24, 1178 (2002)

    Article  Google Scholar 

  31. J.H. Ko, W.H. Kim, C.C. Chung, IEEE Trans. Biomed. Eng. 53, 380 (2006)

    Article  Google Scholar 

  32. L.-C. Hung, H.-Y. Chung, Int. J. Approx. Reason. 46, 74 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Jahanshahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahanshahi, H. Smooth control of HIV/AIDS infection using a robust adaptive scheme with decoupled sliding mode supervision. Eur. Phys. J. Spec. Top. 227, 707–718 (2018). https://doi.org/10.1140/epjst/e2018-800016-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-800016-7

Navigation