Skip to main content
Log in

Study of the reaction mechanisms of 136Xe + p and 136Xe + 12C at 1 A GeV with inverse kinematics and large-acceptance detectors

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The reactions 136Xe + p and 136Xe + 12C have been studied in inverse kinematics at 1 A GeV with the SPALADiN setup at GSI. The detection in coincidence of the final-state charged particles (projectile residues, nuclei of charge \( Z \geq 2\) and neutrons was performed with a big-aperture dipole magnet and large-acceptance detectors. This provided an extended coverage of the phase space of decay products of the prefragment formed at the end of the intranuclear cascade. This coincidence measurement, performed on an event-by-event basis permits both an estimate of the excitation energy of the prefragments and a determination of their deexcitation channels. The element production cross sections are compared with existing data and theoretical models. The evolution of observables such as the total multiplicity or the fragment production with the prefragment’s excitation energy is studied for both reactions and compared with models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Wang and the EOS Collaboration, Phys. Rev. Lett. 74, 2646 (1995)

    ADS  Google Scholar 

  2. W.G. Lynch, Annu. Rev. Nucl. Part. Sci. 37, 493 (1987)

    ADS  Google Scholar 

  3. The European Spallation Source, https://doi.org/europeanspallationsource.se

  4. H.A. Abderrahim et al., Nucl. Instrum. Methods A 463, 487 (2001)

    ADS  Google Scholar 

  5. H. Geissel et al., Nucl. Instrum. Methods B 70, 286 (1992)

    ADS  Google Scholar 

  6. J. Hubele et al., Z. Phys. A 340, 263 (1991)

    ADS  Google Scholar 

  7. A. Schüttauf et al., Nucl. Phys. A 607, 457 (1996) and references therein

    ADS  Google Scholar 

  8. E. Le Gentil et al., Phys. Rev. Lett. 100, 022701 (2008)

    ADS  Google Scholar 

  9. W.R. Binns et al., Phys. Rev. C 36, 1870 (1987)

    ADS  Google Scholar 

  10. E. Le Gentil, PhD Thesis, University of Evry (2006)

  11. P. Chesny, SPALADiN target user and safety report (2007)

  12. M. Pfützner et al., Nucl. Instrum. Methods B 86, 213 (1994)

    ADS  Google Scholar 

  13. T. Gorbinet, PhD Thesis, University Paris-Sud (2011)

  14. P. Kreutz, Scientific Report GSI (1988) p. 213.

  15. J. Hubele, Scientific Report GSI (1989) p. 268

  16. T. Blaich et al., Nucl. Instrum. Methods A 314, 136 (1992)

    ADS  Google Scholar 

  17. W. Trautmann and the ALADIN 2000 Collaboration, Int. J. Mod. Phys. E 17, 136 (2008)

    Google Scholar 

  18. C. Sfienti and the ALADIN 2000 Collaboration, Phys. Rev. Lett. 102, 152701 (2009)

    Google Scholar 

  19. P. Pawlowski et al., Nucl. Instrum. Methods A 694, 47 (2012)

    ADS  Google Scholar 

  20. P. Napolitani et al., Phys. Rev. C 76, 064609 (2007)

    ADS  Google Scholar 

  21. J. Jaros et al., Phys. Rev. C 18, 2273 (1978)

    ADS  Google Scholar 

  22. R.K. Tripathi et al., Nucl. Instrum. Methods B 129, 11 (1997)

    ADS  Google Scholar 

  23. GEANT4 Collaboration, https://doi.org/geant4.cern.ch

  24. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

    ADS  Google Scholar 

  25. J. Cugnon et al., Nucl. Phys. A 352, 505 (1981)

    ADS  Google Scholar 

  26. A. Boudard et al., Phys. Rev. C 66, 044615 (2002)

    ADS  Google Scholar 

  27. J. Cugnon et al., J. Korean Phys. Soc. 59, 955 (2011)

    ADS  Google Scholar 

  28. A. Boudard et al., Phys. Rev. C 87, 014606 (2013)

    ADS  Google Scholar 

  29. S. Leray et al., J. Phys. Conf. Series 420, 012065 (2013)

    Google Scholar 

  30. D. Mancusi et al., Phys. Rev. C 90, 054602 (2014)

    ADS  Google Scholar 

  31. J.-J. Gaimard, K.H. Schmidt, Nucl. Phys. A 531, 709 (1991)

    ADS  Google Scholar 

  32. A. Kelic, in Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reaction (IAEA, Trieste, Italy, 2008) p. 181

  33. R.J. Charity et al., Nucl. Phys. A 483, 371 (1988)

    ADS  Google Scholar 

  34. R.J. Charity, Phys. Rev. C 82, 014610 (2010)

    ADS  Google Scholar 

  35. J.P. Bondorf et al., Phys. Rep. 257, 133 (1995)

    ADS  Google Scholar 

  36. D. Mancusi et al., Phys. Rev. C 84, 064605 (2011)

    ADS  Google Scholar 

  37. P. Napolitani et al., J. Phys. G 38, 064609 (2011)

    Google Scholar 

  38. A.A. Kotov et al., Nucl. Phys. A 583, 575 (1995)

    ADS  Google Scholar 

  39. J.B. Natowitz et al., Phys. Rev. C 65, 034618 (2002)

    ADS  Google Scholar 

  40. V.F. Weisskopf, D.H. Ewing, Phys. Rev. 57, 472 (1940)

    ADS  Google Scholar 

  41. W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952)

    ADS  Google Scholar 

  42. L.G. Moretto, Nucl. Phys. A 247, 211 (1975)

    ADS  Google Scholar 

  43. A. Sierk, Phys. Rev. Lett. 55, 582 (1985)

    ADS  Google Scholar 

  44. N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939)

    ADS  Google Scholar 

  45. J.C. David, in SATIF 10 Workshop Proceedings (OECD Publishing, 2011) p. 273

  46. S. Leray et al., J. Korean. Phys. Soc. 59, 791 (2011)

    ADS  Google Scholar 

  47. IAEA benchmark of spallation models, https://doi.org/www-nds.iaea.org/spallations

  48. J. Alcántara-Núñez et al., Phys. Rev. C 92, 054602 (2015)

    Google Scholar 

  49. W.A. Friedman, Phys. Rev. Lett. 60, 2125 (1988)

    ADS  Google Scholar 

  50. D. Mancusi et al., Phys. Rev. C 82, 044610 (2010)

    ADS  Google Scholar 

  51. S. Furihata, Nucl. Instrum. Methods B 171, 251 (2000)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Eric Ducret.

Additional information

Communicated by A. Obertelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbinet, T., Yordanov, O., Ducret, JE. et al. Study of the reaction mechanisms of 136Xe + p and 136Xe + 12C at 1 A GeV with inverse kinematics and large-acceptance detectors. Eur. Phys. J. A 55, 11 (2019). https://doi.org/10.1140/epja/i2019-12683-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12683-8

Navigation