Skip to main content
Log in

Chaos control in biological system using recursive backstepping sliding mode control

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This paper puts forward the control of chaos in the biological system. A new controller based on recursive backstepping sliding mode control is proposed such that it can control the chaotic dynamics in the biological system to stabilize at any position or to track any trajectory that is a smooth function of time. A proportional integral switching surface is proposed to achieve the stability condition of the error dynamics. Unlike the open loop and open plus closed loop control techniques, the design of proposed controller does not require the parameter perturbation. The required stability condition is derived based on Lyapunov stability theory. Simulation is achieved in MATLAB environment. Numerical simulation results are presented in order to show the effective verification of the proposed controller design. Simulation results correspond that the objective of chaos control is achieved successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Frohlich, Int. J. Quantum Chem. 2, 641 (1968)

    Article  ADS  Google Scholar 

  2. H. Frohlich, F. Kremer, in Coherent Excitations in Biological Systems (Springer-Verlag, Berlin, Heidelberg, NewYork, 1983), pp. 101–142

  3. Fr. Kaiser, Z. Naturforsch. 33, 294 (1978)

    Article  ADS  Google Scholar 

  4. S. Jafari, S.M.R.H. Golpayegani, A.H. Jafari, S. Gharibzadeh, Int. J. Gen. Syst. 41, 329 (2012)

    Article  Google Scholar 

  5. S. Jafari, S.M.R.H. Golpayegani, M.R. Darabad, Commun. Nonlinear Sci. Numer. Simul. 18, 811 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Jafari, S.M.R.H. Golpayegani, A.H. Jafari, S. Gharibzadeh, J. Neuropsychiatry Clin. Neurosci. 25, E19 (2013)

    Article  Google Scholar 

  7. S. Jafari, S.M.R.H. Golpayegani, S. Gharibzadeh, Front. Comput. Neurosci. 7, 1 (2013)

    Article  Google Scholar 

  8. Y. Shekofteh, S. Jafari, J.C. Sprott, S.M.R.H. Golpayegani, S. Gharibzadeh, F. Almasganj, Commun. Nonlinear Sci. Numer. Simul. 20, 469 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Aberneth, R.J. Gooding, Physica A 507, 268 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. Fr. Kaiser, Radio Sci. 17, 17S (1982)

    Article  ADS  Google Scholar 

  11. H. Frohlich, in Modern Bioelectrochemistry (Plenum Press, New York, 1986), p. 221

  12. H.G. Enjieu Kadji, J.B. Chabi Orou, R. Yamapi, P. Woafo, Chaos Soliton. Fract. 32, 862 (2007)

    Article  ADS  Google Scholar 

  13. C.H. Miwadinou, A.V. Monwanoua, J. Yovoganc, L.A. Hinvia, P.R. Nwagoum Tuwae, J.B. Chabi Oroua, Chin. J. Phys. 56, 1089 (2018)

    Article  Google Scholar 

  14. H. Resat, L. Petzold, M.F. Pettigrew, Methods Mol. Biol. 541, 311 (2009)

    Article  Google Scholar 

  15. N.B. Janson, Contemp. Phys. 20, 1 (2010)

    Google Scholar 

  16. R. Testylier, T. Dang, EPTCS 92, 16 (2010)

    Article  Google Scholar 

  17. J. Preto, M. Pettini, HAL Archives ID: hal-00662717 (2012)

  18. S. Motta, F. Pappalardo, Brief. Bioinform. 14, 411 (2012)

    Article  Google Scholar 

  19. V. Gorodetskyi, M. Osadchuk, Phys. Lett. A 377, 703 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Singh, N. Kapoor, Adv. Biol. 2014, 703 (2014)

    Google Scholar 

  21. F. Battiston, Chaos 27, 047404 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  22. Y. Scharf, Chaos Soliton. Fract. 95, 42 (2017)

    Article  ADS  Google Scholar 

  23. U. Deichmann, Chaos Soliton. Fract. 99, 1 (2017)

    Article  ADS  Google Scholar 

  24. M. F. Danca, N. Kuznetsov, Chaos Solitons Fract. 103, 144 (2017)

    Article  ADS  Google Scholar 

  25. P.S. Shabestari, S. Panahi, B. Hatef, S. Jafari, J.C. Sprott, Chaos Solitons Fract. 112, 44 (2018)

    Article  ADS  Google Scholar 

  26. H. Shang, Z. Jiang, R. Xu, D. Wang, P. Wu, Y. Chen, Cogn. Syst. Res. (2018), https://doi.org/10.1016/j.cogsys.2018.04.009

  27. U.E. Vincent, Phys. Lett. A 343, 133 (2005)

    Article  ADS  Google Scholar 

  28. P. P. Singh, J. P. Singh, B. K. Roy, IETE J. Res. 63, 1 (2017)

    Article  Google Scholar 

  29. P.P. Singh, B.K. Roy, Ann. Rev. Control 45, 152 (2018)

    Article  Google Scholar 

  30. P.P. Singh, J.P. Singh, B.K. Roy, Int. J. Control Theory Appl. 8, 995 (2015)

    Google Scholar 

  31. P.P. Singh, J.P. Singh, B.K. Roy, Chaos Soliton. Fract. 69, 31 (2014)

    Article  ADS  Google Scholar 

  32. P.P. Singh, J.P. Singh, B.K. Roy, IFAC Proc. 47, 287 (2014)

    Article  Google Scholar 

  33. C.C. Kong, S.H. Chen, Chin. Phys. B 18, 91 (2009)

    Article  ADS  Google Scholar 

  34. P.P. Singh, J.P. Singh, B.K. Roy, Int. J. Control Theory Appl. 9, 171 (2016)

    Google Scholar 

  35. M. Kristic, I. Kanellakopoulos, P. Kokotovic, in Nonlinear and Adaptive Control Design (John Willey and Sons Inc., New York, 1995), pp. 221–248

  36. P.P. Singh, B.K. Roy, in Nonlinear Systems: Design, Applications and Analysis (Nova Science Publishers, New York, 2007), pp. 101–146

  37. P.P. Singh, J.P. Singh, B.K. Roy, Res. Rev.: J. Phys. 3, 1 (2014)

    Google Scholar 

  38. X. Tan, J. Zhang, Y. Yang, Chaos Soliton. Fract. 16, 37 (2003)

    Article  ADS  Google Scholar 

  39. U.E. Vincent, A.N. Njah, J.A. Laoye, Physica D 231, 130 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  40. M. T. Yassen, Chaos Soliton. Fract. 27, 537 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  41. B.A. Idowu, U.E. Vincent, A.N. Njah, Int. J. Nonlinear Sci. 5, 11 (2008)

    MathSciNet  Google Scholar 

  42. S. Mascolo, in Proceedings of the 36IEEE CDC San Diego (2008), Vol. 5, p. 150

  43. M.K. Shukla, B.B. Sharma, Chaos Soliton. Fract. 98, 56 (2017)

    Article  ADS  Google Scholar 

  44. P.P. Singh, B.K. Roy, H. Handa, in Ann. IEEE India Conf. (INDICON), Bombay (2013) Vol. 10, pp. 1–6

  45. P.P. Singh, B.K. Roy, in Proceedings of Indian Control Conference (ICC), Kanpur (2015) Vol. 1, pp. 108–111

  46. F Wang, C. Liu, Physica D 225, 55 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  47. Y. P. Tian, X. Yu, J. Franklin Institute 337, 771 (2009)

    Article  Google Scholar 

  48. B.A. Idowu, U.E. Vincent, A.N. Njah, Chaos Soliton. Fract. 39, 2322 (2009)

    Article  ADS  Google Scholar 

  49. D. Swaroop, J.K. Hedrick, P.P. Yip, J.C. Gerdes, IEEE Trans. Autom. Control 45, 1893 (2012)

    Article  Google Scholar 

  50. H.J. Freund, Phys. Rev. E 63, 387 (1983)

    Google Scholar 

  51. W. Singer, C. Gray, Annu. Rev. Neurosci. 18, 555 (1995)

    Article  Google Scholar 

  52. S.J. Schiff, K. Jerger, D.H. Duong, T. Chang, M.L. Spano, W.L. Ditto, Nature 370, 615 (1994)

    Article  ADS  Google Scholar 

  53. E.A. Jackson, I. Grosu, Physica D 85, 1 (1995)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyush Pratap Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.P., Singh, K.M. & Roy, B.K. Chaos control in biological system using recursive backstepping sliding mode control. Eur. Phys. J. Spec. Top. 227, 731–746 (2018). https://doi.org/10.1140/epjst/e2018-800023-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-800023-6

Navigation