Skip to main content
Log in

Effects of spin–orbit interactions, external fields and eccentricity on the optical absorption of an elliptical quantum ring

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this work, the effects of the Rashba and Dresselhaus spin–orbit interactions, eccentricity and external electric and magnetic fields on the linear optical absorption in an elliptical quantum ring are studied. The electronic structure is determined using the finite element method, and the linear optical absorption coefficient is calculated by the density matrix approach. Results indicate that the spin–orbit interaction and magnetic field lead to the splitting and oscillatory behavior of the energy levels, respectively. The resonant peak of the linear optical absorption shifts to the higher energies with increasing eccentricity. The magnitude and position of the resonant peaks have non-monotonic behaviors with the external fields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Henini, Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics (Elsevier Science, Amsterdam, 2008)

  2. M.G. Barseghyan, C.A. Duque, E.C. Niculescu, A. Radu, Superlatt. Microstruct. 66, 10 (2014)

    Article  ADS  Google Scholar 

  3. G. Rezaei, M.J. Karimi, H. Pakarzadeh, J. Lumin. 143, 551 (2013)

    Article  Google Scholar 

  4. B. Cakir, U. Atav, Y. Yakar, A. Ozmen, Chem. Phys. 475, 61 (2016)

    Article  Google Scholar 

  5. D. Bejan, E.C. Niculescu, Eur. Phys. J. B 89, 138 (2016)

    Article  ADS  Google Scholar 

  6. K.I. Kolokolov, S.D. Beneslavski, N.Y. Minina, Phys. Rev. B 63, 195308 (2001)

    Article  ADS  Google Scholar 

  7. V.A. Kukushkin, JETP Lett. 89, 437 (2009)

    Article  ADS  Google Scholar 

  8. A. Majumdar, N. Manquest, A. Faraon, J. Vukovic, Opt. Express 18, 3974 (2010)

    Article  ADS  Google Scholar 

  9. S. Krishna, Infrared Phys. Technol. 47, 153 (2005)

    Article  ADS  Google Scholar 

  10. N. Vukmirovic, D. Indjin, Z. Ikonic, P. Harrison, Acta Phys. Pol. A 116, 464 (2009)

    Article  ADS  Google Scholar 

  11. D. Loss, D.P. Divincenzo, Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  12. S. Debald, B. Kramer, Phys. Rev. B 71, 115322 (2005)

    Article  ADS  Google Scholar 

  13. Y.M. Liu, C.G. Bao, T.Y. Shi, Phys. Rev. B 73, 113313 (2006)

    Article  ADS  Google Scholar 

  14. A. Bruno-Alfonso, A. Latgé, Phys. Rev. B 71, 125312 (2005)

    Article  ADS  Google Scholar 

  15. E.C. Niculescu, C. Stan, D. Bejan, C. Cartoaje, J. Appl. Phys. 122, 144301 (2017)

    Article  ADS  Google Scholar 

  16. A. Radu, A.A. Kirakosyan, D. Laroze, H.M. Baghramyan, M.G. Barseghyan, J. Appl. Phys. 116, 093101 (2014)

    Article  ADS  Google Scholar 

  17. T.V. Bandos, A. Cantarero, A. Garcia-Cristobal, Eur. Phys. J. B 53, 99 (2006)

    Article  ADS  Google Scholar 

  18. G.A. Farias, M.H. Degani, J.A.K. Freire, J.C. e Silva, R. Ferreira, Phys. Rev. B 77, 085316 (2008)

    Article  ADS  Google Scholar 

  19. L.I. Magarill, D.A. Romanov, A.V. Chaplik, J. Exp. Phys 83, 361 (1996)

    ADS  Google Scholar 

  20. A. Bruno-Alfonso, A. Latgé, Phys. Rev. B 77, 205303 (2008)

    Article  ADS  Google Scholar 

  21. T. Chakraborty, A. Manaselyan, M. Barseghyan, D. Laroze, Phys. Rev. B 97, 041304 (2018)

    Article  ADS  Google Scholar 

  22. J. Planelles, F. Rajadell, J.I. Climente, Nano Technol. 18, 375402 (2007)

    Google Scholar 

  23. S. Ghajarpour-Nobandegani, M.J. Karimi, Opt. Mater. 82, 75 (2018)

    Article  ADS  Google Scholar 

  24. M.J. Karimi, M. Hosseini, Superlatt. Microstruct. 111, 96 (2017)

    Article  ADS  Google Scholar 

  25. S. Pramanik, S. Bandyopadhyay, M. Cahay, Phys. Rev. B 68, 075313 (2003)

    Article  ADS  Google Scholar 

  26. X.F. Wang, P. Vasilopoulos, F.M. Peeters, Phys. Rev. B 65, 165217 (2002)

    Article  ADS  Google Scholar 

  27. T. Koga, J. Nitta, H. Takayanagi, S. Datta, Phys. Rev. Lett 88, 126601 (2002)

    Article  ADS  Google Scholar 

  28. S.A. Wolf, D.D. Awschalom, R.A. Buhman, J.M. Daughton, S. Von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  29. I. Žutić, F. Jaroslav, S. Das Sarma, Rev. Mod. Phys. 76.2, 323 (2004)

    Google Scholar 

  30. Y.F. Hao, Eur. Phys. J. B 85, 84 (2012)

    Article  ADS  Google Scholar 

  31. Y. Karaaslan, B. Gisi, S. Sakiroglu, E. Kasapoglu, H. Sari, I. Sokmen, Superlatt. Microstruct. 93, 32 (2016)

    Article  ADS  Google Scholar 

  32. S. Lahon, M. Kumar, P. Kumar-Jha, M. Mohan, J. Lumin. 144, 149 (2013)

    Article  Google Scholar 

  33. M. Kumar, S. Gumber, S. Lahon, P.K. Jha, M. Mohan, Eur. Phys. J. B 87, 71 (2014)

    Article  ADS  Google Scholar 

  34. A. Ghafari, B. Vaseghi, G. Rezaei, S.F. Taghizadeh, M.J. Karimi, Superlatt. Microstruct. 101, 397 (2017)

    Article  ADS  Google Scholar 

  35. M. Akbari, G. Rezaei, R. Khordad, Superlatt. Microstruct. 101, 429 (2017)

    Article  ADS  Google Scholar 

  36. B. Vaseghi, G. Rezaei, M. Malian, Opt. Commun. 287, 241 (2013)

    Article  ADS  Google Scholar 

  37. V.N. Mughnetsyan, A.K. Manaselyan, M.G. Barseghyan, A.A. Kirakosyan, J. Lumin. 134, 24 (2013)

    Article  Google Scholar 

  38. E. Pourmand, G. Rezaei, Physica B 543, 27 (2018)

    Article  ADS  Google Scholar 

  39. P. Mokhtari, G. Rezaei, A. Zamani, Superlatt. Microstruct. 106, 1 (2017)

    Article  ADS  Google Scholar 

  40. A. Manaselyan, A. Ghazaryan, T. Chakraborty, Solid State Commun. 181, 34 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Javad Karimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashrafi-Dalkhani, V., Ghajarpour-Nobandegani, S. & Karimi, M.J. Effects of spin–orbit interactions, external fields and eccentricity on the optical absorption of an elliptical quantum ring. Eur. Phys. J. B 92, 19 (2019). https://doi.org/10.1140/epjb/e2018-90691-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90691-5

Keywords

Navigation