Skip to main content
Log in

Ethanol chemisorption on core–shell Pt-nanoparticles: an ab initio study

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

By means of ab initio calculations, we have investigated the chemisorption properties of ethanol onto segregating binary nanoalloys (NAs). We select nanostructures with icosahedral shape of 55 atoms with a Pt outermost layer over an M-core with M = Ag, Pd, Ni. With respect to nanofilms with equivalent composition, there is an increase of the ethanol binding energy. This is not merely due to observed shortening of the Pt–O distance but depends on the nanoparticle distortion after ethanol adsorption. This geometrical distortion within the nanoparticle can be interpreted as a radial breathing, which is sensitive to the adsorption site, identified by the O-anchor point and the relative positions of the ethyl group. More interestingly, being core-dependent larger in Pd@Pt and smaller in Ni@Pt, it relates to an effective electron transfer from ethanol and the M-core towards the Pt-shell. On the view of this new analysis, Pd@Pt NAs show the most promising features for ethanol oxidation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. An, T.S. Zhao, Y.S. Li, Sustain. Energy Rev. 50, 1462 (2015)

    Article  Google Scholar 

  2. S.P.S. Badwal, S. Giddey, A. Kulkarni, J. Geol, S. Basu, Appl. Energy 80, 80 (2015)

    Article  Google Scholar 

  3. J. Sun, Y. Wang, ACS Catal. 4, 1078 (2014)

    Article  Google Scholar 

  4. X.-W. Wu, N. Wu, C.-Q. Shi, Z.-Y. Zheng, H.-B. Qi, Y.-F. Wang, Appl. Sur. Sci. 338, 239 (2016)

    Article  ADS  Google Scholar 

  5. A. Verna, S. Basu, J. Power Sources 180, 174 (2007)

    Google Scholar 

  6. L. An, T.S. Zhao, X.L. Zhou, L. Wei, X.H. Yan, RSC Adv. 4, 65031 (2014)

    Article  Google Scholar 

  7. L. An, Z.H. Chai, L. Zeng, P. Tan, T.S. Zhao, Int. J. Hydrogen Energy 38, 14067 (2013)

    Article  Google Scholar 

  8. L. An, T.S. Zhao, Y. Li, Q. Wu, Energy Environ. Sci. 5, 7536 (2012)

    Article  Google Scholar 

  9. R.M. Antoniassi, L. Otubo, J.M. Vaz, A. Oliveira Neto, J. Catal. 342, 67 (2016)

    Article  Google Scholar 

  10. P. Tereshchuk, J.L.F. Da Silva, J. Phys. Chem. C 116, 24695 (2012)

    Article  Google Scholar 

  11. A. Kowal, M. Li, M. Shao, K. Sasaki, M.B. Vukmirovic, J. Zhang, N.S. Marinkovic, P. Liu, A.I. Frenkel, R.R. Adzic, Nat. Mater. 8, 325 (2009)

    Article  ADS  Google Scholar 

  12. P. Tereshchuk, J.L.F. Da Silva, J. Phys. Chem. C 117, 16942 (2013)

    Article  Google Scholar 

  13. C. Engelbrekt, N. Seselj, R. Poreddy, A. Riisager, J. Ulstrupa, J. Zhang, J. Mater. Chem. A 4, 3278 (2016)

    Article  Google Scholar 

  14. L. Chen, L. Lu, H. Zhu, Y. Chen, Y. Huang, Y. Li, L. Wang, Nat. Commun. 8, 14136 (2017)

    Article  ADS  Google Scholar 

  15. A.O. Pereira, C.R. Miranda, Appl. Sur. Sci. 288, 564 (2014)

    Article  ADS  Google Scholar 

  16. C.-L. Sun, J.-S. Tang, N. Brazeau, J.-J. Wu, S. Ntais, C.-W. Yin, H.-L. Chou, E.A. Baranova, Electrochim. Acta 162, 282 (2015)

    Article  Google Scholar 

  17. Y. Guan, E.J.M. Hensen, J. Phys. Chem. C 361, 49 (2009)

    Google Scholar 

  18. W. Du, G. Yang, E. Wong, N.A. Deskins, A.I. Frenkel, D. Su, X. Teng, J. Am. Chem. Soc. 136, 10862 (2014)

    Article  Google Scholar 

  19. J. Xie, Q. Zhang, L. Gu, S. Xu, P. Wang, J. Liu, Y. Ding, Y.F. Yao, C. Nan, M. Zhao, Y. You, Z. Zou, Nano Energy 21, 247 (2016)

    Article  Google Scholar 

  20. J. Perez, V.A. Paganin, E. Antolini, J. Electroanal. Chem. 654, 108 (2011)

    Article  Google Scholar 

  21. J.B.A. Davis, F. Baletto, R.L. Johnston, J. Phys. Chem. A 119, 9703 (2015)

    Article  Google Scholar 

  22. L. Zibordi-Besse, P. Tereshchuk, A.S. Chaves, J.L.F. Da Silva, J. Phys. Chem. A 120, 4231 (2016)

    Article  Google Scholar 

  23. M.G. Sandoval, R. Luna, G. Brizuela, A.O. Pereira, C.R. Miranda, P. Jasen, J. Phys. Chem. C 121, 8613 (2017)

    Article  Google Scholar 

  24. F. Baletto, R. Ferrando, Rev.  Mod. Phys. 77, 371 (2005)

    Article  ADS  Google Scholar 

  25. F. Baletto, R. Ferrando, A. Fortunelli, F. Montalenti, C. Mottet, J. Chem. Phys. 116, 3856 (2002)

    Article  ADS  Google Scholar 

  26. R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108, 845 (2008)

    Article  Google Scholar 

  27. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

    Article  ADS  Google Scholar 

  28. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  29. G. Kresse, J. Hafner, Phys. Rev. B 48, 13115 (1993)

    Article  ADS  Google Scholar 

  30. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  31. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  32. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  33. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  34. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010)

    Article  ADS  Google Scholar 

  35. W. Tang, E. Sanville, G. Henkelman, J. Phys. 21, 084204 (2009)

    Google Scholar 

  36. C. Di Paola, R. D’Agosta, F. Baletto, Nano Lett. 16, 2885 (2016)

    Article  ADS  Google Scholar 

  37. K.E.A. Batista, M.J. Piotrowski, A.S. Chaves, J.L.F. Da Silva, J. Chem. Phys. 144, 054310 (2016)

    Article  ADS  Google Scholar 

  38. J.L.F. Da Silva, H.G. Kim, M.J. Piotrowski, M.J. Prieto, G. Tremiliosi-Filho, Phys. Rev. B 82, 205424 (2010)

    Article  ADS  Google Scholar 

  39. M.J. Piotrowski, P. Piquini, J.L.F. da Silva, J. Phys. Chem. C 116, 18432 (2012)

    Article  Google Scholar 

  40. G.G. Asara, L.O. Paz-Borbón, F. Baletto, ACS Catal. 6, 4388 (2016)

    Article  Google Scholar 

  41. G. Papoian, J.K. Nørskov, R. Hoffmann, J. Am. Chem. Soc. 122, 4129 (2000)

    Article  Google Scholar 

  42. O. Skoplyak, M.A. Barteau, J.G. Chen, Surf. Sci. 602, 3578 (2008)

    Article  ADS  Google Scholar 

  43. R. Alcalá, M. Mavrikakis, J.A. Dumesic, J. Catal. 218, 178 (2003)

    Article  Google Scholar 

  44. P.D. Jadzinky, G. Calero, C.J. Ackerson, D.A. Bushnell, R.D. Kornberg, Science 318, 430 (2007)

    Article  ADS  Google Scholar 

  45. S.S. Batsanov, Neorganicheskie Mater. 9, 1031 (2009)

    Google Scholar 

  46. K.E.A. Batista, J.L.F. Da Silva, M. Piotrowski, J. Phys. Chem. C 122, 7444 (2018)

    Article  Google Scholar 

  47. E. Örücü, F. Gölaliler, A. Erhan Aksoylu, Z. Ilsen Önsan, Catal. Lett. 120, 198 (2008)

    Article  Google Scholar 

  48. Y.-J. Zhang, S.-B Li, S. Duan, B.-A. Lu, J. Yang, R. Panneerselvam, C.-Y. Li, P.-P. Fang, Z.-Y. Zhou, D.L. Phillips, J.-F. Li, Z.-Q. Tian, J. Phys. Chem. C 120, 20684 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vagner A. Rigo.

Additional information

Contribution to the Topical Issue “Shaping Nanocatalysts”, edited by Francesca Baletto, Roy L. Johnston, Jochen Blumberger and Alex Shluger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rigo, V.A., Miranda, C.R. & Baletto, F. Ethanol chemisorption on core–shell Pt-nanoparticles: an ab initio study. Eur. Phys. J. B 92, 24 (2019). https://doi.org/10.1140/epjb/e2018-90241-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90241-3

Navigation