Skip to main content
Log in

The quantum particle in a box: what we can learn from classical electrodynamics

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The problem of a charged particle enclosed in an infinite square potential well is analysed from the point of view of classical theory with the addition of the electromagnetic zero-point radiation field, with the aim to explore the extent to which such an analysis can contribute to enhance our understanding of the quantum behavior. First a proper treatment is made of the freely moving particle subject to the action of the radiation field, involving a frequency cutoff ωc. The jittering motion and the effective structure of the particle are sustained by the permanent action of the zero-point field. As a result, the particle interacts resonantly with the traveling field modes of frequency ωc in its proper frame of reference, which superpose to give rise to a modulated wave accompanying the particle. This is identified with the de Broglie wave, validating the choice of Compton’s frequency for ωc. For the stationary states of particles confined in the potential well, the Lorentz force produced by the accompanying field is shown to lead to discrete values for the mean speed and to an uneven probability distribution that echoes the corresponding quantum distribution. The relevance of the results obtained and the limitations of the classical approach used, are discussed in the context of present-day stochastic electrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.W. Marshall, Proc. Roy. Soc. A 276, 475 (1963)

    ADS  Google Scholar 

  2. T.H. Boyer, Phys. Rev. D 11, 790 (1975)

    Article  ADS  Google Scholar 

  3. T.H. Boyer, in Foundations of Radiation Theory and Quantum Electrodynamics, edited by A.O. Barut (Plenum Press, London, 1980)

  4. L. de la Peña, in Stochastic Processes Applied to Physics and other Related Fields, edited by B. Gómez, S.M. Moore, A.M. Rodríguez-Vargas, A. Rueda (World Scientific, Singapore, 1983)

  5. L. de la Peña, A.M. Cetto, The Quantum Dice. An Introduction to Stochastic Electrodynamics (Kluwer Academic Pub., Dordrecht, 1996)

  6. D.C. Cole, Y. Zou, J. Sci. Comput. 21, 145 (2004)

    Article  MathSciNet  Google Scholar 

  7. Th.M. Nieuwenhuizen, M.T.P. Liska, Phys. Scr. T165, 014006 (2015)

    Article  ADS  Google Scholar 

  8. Th.M. Nieuwenhuizen, M.T.P. Liska, Found. Phys. 45, 1190 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  9. Th.M. Nieuwenhuizen, Entropy 18, 135 (2016)

    Article  ADS  Google Scholar 

  10. G. ’t Hooft The Cellular Automaton Interpretation of Quantum Mechanics (Springer Open, Heidelberg, 2016)

  11. A. Khrennikov, J. Russ. Laser Res. 38, 1 (2017)

    Article  Google Scholar 

  12. A. Khrennikov, Beyond Quantum (Pan Stanford Publishing, Singapore, 2014)

  13. L. de la Peña, A.M. Cetto, A. Valdés-Hernández, The Emerging Quantum. The Physics Behind Quantum Mechanics (Springer, Heidelberg, 2015)

  14. J.D. Jackson, Classical Electrodynamics (J. Wiley, New York, 1975)

  15. F. Rohrlich, Classical Charged Particles (Addison-Wesley, Reading, MA, 1965)

  16. P.W. Milonni, The Quantum Vacuum (Academic Press, New York, 1994)

  17. N.N. Bogoliubov, D.V. Shirkov, Quantum Fields (Benjamin, London, 1983) [English translation from the Russian edition Nauka, Moscow 1980]

  18. D. Bohm, M. Weinstein, Phys. Rev. 74, 1789 (1948)

    Article  ADS  Google Scholar 

  19. G. Bacciagaluppi, A. Valentini, Quantum Theory at the crossroads: Reconsideringthe 1927 Solvay Conference (Cambridge University Press, Cambridge, 2009)

  20. I.I. Sibelman, Atomic Spectra and Radiative Transitions (Springer Verlag, Berlin, 1979)

  21. L. de la Peña, A.M. Cetto, Found. Phys. 24, 753 (1994)

    Article  ADS  Google Scholar 

  22. A.S. Eddington, The Nature of the Physical World (Cambridge University Press, Cambridge, 1928)

  23. M. Bunge, Foundations of Physics (Springer, New York, 1967)

  24. N. Maxwell, Found. Phys. 12, 607 (1982)

    Article  ADS  Google Scholar 

  25. A.E. Allaverdyan, R. Balian, T.M. Nieuwenhuizen, Phys. Rep. 525, 1 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. A.E. Allaverdyan, R. Balian, T.M. Nieuwenhuizen, Ann. Phys. 376, 324 (2017)

    Article  ADS  Google Scholar 

  27. T.H. Boyer, Phys. Rev. D 13, 2832 (1976)

    Article  ADS  Google Scholar 

  28. E. Schrödinger, Berliner Ber. 1931, 418 (1931)

    Google Scholar 

  29. E. Schrödinger, Berliner Ber. 1930, 63 (1930)

    Google Scholar 

  30. P. Claverie, L. de la Peña, S. Diner, Stochastic Electrodynamics of nonlinear systems. II Derivation of a reduced Fokker-Planck equation in terms of relevant constants of motion, 1978 (unpublished)

  31. T.W. Marshall, P. Claverie, J. Math. Phys. 21, 1819 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  32. A.M. Cetto, L. de la Peña, A. Valdés-Hernández, J. Phys.: Conf. Ser. 504, 012007 (2014)

    Google Scholar 

  33. M. Surdin, Found. Phys. 12, 873 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Cetto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Peña, L., Cetto, A.M. & Valdés-Hernández, A. The quantum particle in a box: what we can learn from classical electrodynamics. Eur. Phys. J. Spec. Top. 227, 2155–2169 (2019). https://doi.org/10.1140/epjst/e2018-800048-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-800048-x

Navigation