Skip to main content
Log in

Ultrasound transmission through monodisperse 2D microfoams

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

While the acoustic properties of solid foams have been abundantly characterized, sound propagation in liquid foams remains poorly understood. Recent studies have investigated the transmission of ultrasound through three-dimensional polydisperse liquid foams (Pierre et al., 2013, 2014, 2017). However, further progress requires to characterize the acoustic response of better-controlled foam structures. In this work, we study experimentally the transmission of ultrasounds through a single layer of monodisperse bubbles generated by microfluidics techniques. In such a material, we show that the sound velocity is only sensitive to the gas phase. Nevertheless, the structure of the liquid network has to be taken into account through a transfer parameter analogous to the one in a layer of porous material. Finally, we observe that the attenuation cannot be explained by thermal dissipation alone, but is compatible with viscous dissipation in the gas pores of the monolayer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Attenborough, Phys. Rep. 82, 179 (1982)

    Article  ADS  Google Scholar 

  2. R. Raspet, S.K. Griffiths, J. Acoust. Soc. Am. 74, 1757 (1983)

    Article  ADS  Google Scholar 

  3. J. Pierre, F. Elias, V. Leroy, Ultrasonics 53, 622 (2013)

    Article  Google Scholar 

  4. J. Pierre, B. Dollet, V. Leroy, Phys. Rev. Lett. 112, 148307 (2014)

    Article  ADS  Google Scholar 

  5. Nicolás Mujica, Stéphan Fauve, Phys. Rev. E 66, 021404 (2002)

    Article  ADS  Google Scholar 

  6. M. Monloubou, A. Saint-Jalmes, B. Dollet, I. Cantat, EPL 112, 34001 (2015)

    Article  ADS  Google Scholar 

  7. J. Pierre, C. Gaulon, C. Derec, F. Elias, V. Leroy, Eur. Phys. J. E 40, 73 (2017)

    Article  Google Scholar 

  8. S. Kosgodagan Acharige, F. Elias, C. Derec, Soft Matter 10, 8341 (2014)

    Article  ADS  Google Scholar 

  9. C. Derec, V. Leroy, D. Kaurin, L. Arbogast, C. Gay, F. Elias, EPL 112, 34004 (2015)

    Article  ADS  Google Scholar 

  10. S.L. Anna, N. Bontoux, H.A. Stone, Appl. Phys. Lett. 82, 364 (2003)

    Article  ADS  Google Scholar 

  11. P. Garstecki, I. Gitlin, W. DiLuzio, G.M. Whitesides, E. Kumacheva, H.A. Stone, Appl. Phys. Lett. 85, 2649 (2004)

    Article  ADS  Google Scholar 

  12. P. Marmottant, J.-P. Raven, Soft Matter 5, 3385 (2009)

    Article  ADS  Google Scholar 

  13. J.-P. Raven, Generation, Flow and Manipulation of a Microfoam, PhD Thesis, Université Joseph-Fourier-Grenoble I, 2007

  14. S.J. Cox, E. Janiaud, Philos. Mag. Lett. 88, 693 (2008)

    Article  ADS  Google Scholar 

  15. C. Gay, P. Rognon, D. Reinelt, F. Molino, Eur. Phys. J. E 34, 2 (2011)

    Article  Google Scholar 

  16. W. Drenckhan, D. Langevin, Curr. Opin. Colloid Interface Sci. 15, 341 (2010)

    Article  Google Scholar 

  17. V. Miralles, B. Selva, I. Cantat, M.-C. Jullien, Phys. Rev. Lett. 112, 238302 (2014)

    Article  ADS  Google Scholar 

  18. A. Huerre, V. Miralles, M.-C. Jullien, Soft Matter 10, 6888 (2014)

    Article  ADS  Google Scholar 

  19. I. Cantat, S. Cohen-Addad, F. Elias, F. Graner, R. Höhler, O. Pitois, F. Rouyer, A. Saint-Jalmes, Foams: Structure and Dynamics (OUP Oxford, 2013)

  20. J. Marchalot, J. Lambert, I. Cantat, P. Tabeling, M.-C. Jullien, EPL 83, 64006 (2008)

    Article  ADS  Google Scholar 

  21. A. van der Net, L. Blondel, A. Saugey, W. Drenckhan, Colloids Surf. A: Physicochem. Eng. Asp. 309, 159 (2007)

    Article  Google Scholar 

  22. T. Gaillard, C. Honorez, M. Jumeau, F. Elias, W. Drenckhan, Colloids Surf. A: Physicochem. Eng. Asp. 473, 68 (2015)

    Article  Google Scholar 

  23. K.A. Brakke, Exp. Math. 1, 141 (1992)

    Article  MathSciNet  Google Scholar 

  24. G. Hernández, Fabry-Pérot Interferometers, Number 3 (Cambridge University Press, 1988)

  25. L. Brekhovskikh, Waves in Layered Media, Vol. 16 (Elsevier, 2012).

  26. J. Allard, N. Atalla, Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, second edition (John Wiley & Sons, 2009)

  27. R.B. Chapman, M.S. Plesset, J. Basic Eng. 93, 373 (1971)

    Article  Google Scholar 

  28. G. Kirchhoff, Ann. Phys. 210, 177 (1868)

    Article  Google Scholar 

  29. D.E. Weston, Proc. Phys. Soc., Sect. B 66, 695 (1953)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorène Champougny.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Champougny, L., Pierre, J., Devulder, A. et al. Ultrasound transmission through monodisperse 2D microfoams. Eur. Phys. J. E 42, 6 (2019). https://doi.org/10.1140/epje/i2019-11767-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11767-1

Keywords

Navigation