Skip to main content
Log in

Conformational statistics of randomly branching double-folded ring polymers

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The conformations of topologically constrained double-folded ring polymers can be described as wrappings of randomly branched primitive trees. We extend previous work on the tree statistics under different (solvent) conditions to explore the conformational statistics of double-folded rings in the limit of tight wrapping. In particular, we relate the exponents characterizing the ring statistics to those describing the primitive trees and discuss the distribution functions \(p(\overrightarrow{r}\vert\ell)\) and \(p(L\vert\ell)\) for the spatial distance, \(\overrightarrow{r}\), and tree contour distance, L, between monomers as a function of their ring contour distance, \(\ell\).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.R. Khokhlov, S.K. Nechaev, Phys. Lett. A 112, 156 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Rubinstein, Phys. Rev. Lett. 57, 3023 (1986)

    Article  ADS  Google Scholar 

  3. S.P. Obukhov, M. Rubinstein, T. Duke, Phys. Rev. Lett. 73, 1263 (1994)

    Article  ADS  Google Scholar 

  4. A.Y. Grosberg, Soft Matter 10, 560 (2014)

    Article  ADS  Google Scholar 

  5. A. Rosa, R. Everaers, Phys. Rev. Lett. 112, 118302 (2014)

    Article  ADS  Google Scholar 

  6. J. Smrek, A.Y. Grosberg, J. Phys.: Condens. Matter 27, 064117 (2015)

    ADS  Google Scholar 

  7. D. Michieletto, Soft Matter 12, 9485 (2016)

    Article  ADS  Google Scholar 

  8. B. Alberts, Molecular Biology of the Cell, 5th edition (Garland Science, New York, 2007)

  9. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, New York, 1986).

  10. A.Y. Grosberg, A.R. Khokhlov, Statistical Physics of Macromolecules (AIP Press, New York, 1994)

  11. M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, New York, 2003)

  12. J. Isaacson, T.C. Lubensky, J. Phys. (Paris) Lett. 41, L469 (1980)

    Article  Google Scholar 

  13. M. Daoud, J.F. Joanny, J. Phys. (Paris) 42, 1359 (1981)

    Article  Google Scholar 

  14. A.M. Gutin, A.Y. Grosberg, E.I. Shakhnovich, Macromolecules 26, 1293 (1993)

    Article  ADS  Google Scholar 

  15. R. Everaers, A.Y. Grosberg, M. Rubinstein, A. Rosa, Soft Matter 13, 1223 (2017)

    Article  ADS  Google Scholar 

  16. B.H. Zimm, W.H. Stockmayer, J. Chem. Phys. 17, 1301 (1949)

    Article  ADS  Google Scholar 

  17. P.-G. De Gennes, Biopolymers 6, 715 (1968)

    Article  Google Scholar 

  18. G. Parisi, N. Sourlas, Phys. Rev. Lett. 46, 871 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Rosa, R. Everaers, Phys. Rev. E 95, 012117 (2017)

    Article  ADS  Google Scholar 

  20. A. Rosa, R. Everaers, J. Phys. A: Math. Theor. 49, 345001 (2016)

    Article  Google Scholar 

  21. A. Rosa, R. Everaers, J. Chem. Phys. 145, 164906 (2016)

    Article  ADS  Google Scholar 

  22. M. Kapnistos et al., Nat. Mater. 7, 997 (2008)

    Article  ADS  Google Scholar 

  23. D. Michieletto, D. Marenduzzo, E. Orlandini, M.S. Turner, Polymers 9, 349 (2017)

    Article  Google Scholar 

  24. M.E. Cates, J.M. Deutsch, J. Phys. (Paris) 47, 2121 (1986)

    Article  Google Scholar 

  25. T. Ge, S. Panyukov, M. Rubinstein, Macromolecules 49, 708 (2016)

    Article  ADS  Google Scholar 

  26. A. Grosberg, Y. Rabin, S. Havlin, A. Neer, Europhys. Lett. 23, 373 (1993)

    Article  ADS  Google Scholar 

  27. A. Rosa, R. Everaers, Plos Comput. Biol. 4, e1000153 (2008)

    Article  ADS  Google Scholar 

  28. T. Vettorel, A.Y. Grosberg, K. Kremer, Phys. Biol. 6, 025013 (2009)

    Article  ADS  Google Scholar 

  29. L.A. Mirny, Chromosome Res. 19, 37 (2011)

    Article  Google Scholar 

  30. M. Lang, Macromolecules 46, 1158 (2013)

    Article  ADS  Google Scholar 

  31. J. Smrek, A.Y. Grosberg, ACS Macro Lett. 5, 750 (2016)

    Article  Google Scholar 

  32. E.J. Janse van Rensburg, N. Madras, J. Phys. A: Math. Gen. 25, 303 (1992)

    Article  ADS  Google Scholar 

  33. S. Redner, J. Phys. A: Math. Gen. 13, 3525 (1980)

    Article  ADS  Google Scholar 

  34. J. des Cloizeaux, G. Jannink, Polymers in Solution (Oxford University Press, Oxford, 1989)

  35. M.E. Fisher, J. Chem. Phys. 44, 616 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  36. P. Pincus, Macromolecules 9, 386 (1976)

    Article  ADS  Google Scholar 

  37. O. Kratky, G. Porod, Recl. Trav. Chim. Pays-Bas 68, 1106 (1949)

    Article  Google Scholar 

  38. J.P. Wittmer, H. Meyer, J. Baschnagel, A. Johner, S. Obukhov, L. Mattioni, M. Müller, A.N. Semenov, Phys. Rev. Lett. 93, 147801 (2004)

    Article  ADS  Google Scholar 

  39. W.A. Seitz, D.J. Klein, J. Chem. Phys. 75, 5190 (1981)

    Article  ADS  Google Scholar 

  40. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.F. Flannery, Numerical Recipes in Fortran, 2nd edition (Cambridge University Press, Cambridge, 1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Rosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosa, A., Everaers, R. Conformational statistics of randomly branching double-folded ring polymers. Eur. Phys. J. E 42, 7 (2019). https://doi.org/10.1140/epje/i2019-11765-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11765-3

Keywords

Navigation