Skip to main content
Log in

Estimating heat release due to a phase change of high-pressure condensing steam using the Buckingham Pi theorem

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The flow of steam, at the Wilson point, begins to condensate through nucleation, and its non-equilibrium conditions are suppressed by forming the critical droplets that decrease the Gibbs energy, and then the condensation shock occurs. Droplet radius (r) and Wetness fraction (WF) or the heat release rate due to phase change (\(\dot{Q}\)) are important parameters in the design and operation of high-pressure (HP) wet steam equipment. The experimental, analytical, and numerical methods have been considered as cost-intensive, complicated, and time-consuming, respectively. Therefore, in this study, using only dry vapor data, an innovative method based on the Buckingham Pi theorem is proposed to estimate the droplet radius and WF or \( \dot{Q}\). Also, an acceptable threshold for the identification of the Wilson point location is suggested. First, the results of analytical modeling are in good agreement with the experimental data at the range of 25-35bars. Next, using dimensional analysis, the droplet-wetness parameter (DWP) is obtained as a dimensionless number which is a function of effective parameters. By curve fittings, two regression equations are proposed for calculating r and WF at the end of nozzles. Finally, the results of the proposed equations are compared with those of the available analytical models. There is good agreement between the current method and the available models in the literature. This innovative method, based on dimensional analysis, is introduced for preliminary design of HP nucleating steam equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Asadollahi, S. Rashidi, J.A. Esfahani, R. Ellahi, Eur. Phys. J. Plus 133, 306 (2018)

    Article  Google Scholar 

  2. F. Bakhtar, D.J. Ryley, K.A. Tubman, J.B. Young, Proc. Inst. Mech. Eng. 189, 427 (1975)

    Article  Google Scholar 

  3. R. Puzyrewski, W. Studzinski, Int. J. Multiphase Flow 6, 425 (1980)

    Article  Google Scholar 

  4. H. Ding, C. Wang, Y. Zhao, Int. J. Heat Mass Transfer 73, 586 (2014)

    Article  Google Scholar 

  5. A.M. Binnie, M.W. Woods, Proc. Inst. Mech. Eng. 138, 229 (1938)

    Article  Google Scholar 

  6. A.M. Binnie, J.R. Green, Proc. R. Soc. London A 181, 134 (1942)

    Article  ADS  Google Scholar 

  7. M.Y. Deych, A.V. Kurshakov, G.A. Saltanov, I.A. Yatcheni, Heat Transf. Sov. Res. 1, 95 (1969)

    Google Scholar 

  8. G.D. Stein, J. Chem. Phys. 51, 938 (1969)

    Article  ADS  Google Scholar 

  9. G. Gyarmathy, F. Lesch, Paper 12: Fog Droplet Observations in Laval Nozzles and in an Experimental Turbine, in Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, Vol. 184 (Sage UK, London, 1970) pp. 29--36

  10. T. Krol, Trans. Inst. Fluid Flow Machin. 57, 19 (1971)

    Google Scholar 

  11. V. Petr, Proc. Inst. Mech. Eng. 184, 22 (1970)

    Google Scholar 

  12. D. Barschdorff, W.J. Dunning, P.P. Wegener, B.J. Wu, Nat. Phys. Sci. 240, 166 (1972)

    Article  ADS  Google Scholar 

  13. M.J. Moore, Predicting the fog-drop size in wet-steam turbines (1973)

  14. C.A. Moses, G.D. Stein, J. Fluids Eng. 100, 311 (1978)

    Article  Google Scholar 

  15. G. Cinar, B.S. Yilbas, M. Sunar, Int. J. Multiphase Flow 23, 1171 (1997)

    Article  Google Scholar 

  16. S. Dykas, M. Majkut, K. Smołka, M. Strozik, Int. J. Heat Mass Transfer 120, 9 (2018)

    Article  Google Scholar 

  17. M. Hoznedl, M. Kolovratník, L. Tajč, A.P. Weiß, L. Mrózek, Influence of Wet Steam on the Five-Stage Steam Turbine Efficiency, in ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition 2018 Jun. 11 (ASME, 2018) pp. V008T29A001--V008T29A001

  18. S.V. Khomyakov, R.A. Alexeev, I.Y. Gavrilov, V.G. Gribin, A.A. Tishchenko, V.A. Tishchenko, V.V. Popov, J. Phys.: Conf. Ser. 891, 012256 (2017)

    Google Scholar 

  19. D. Walker, S. Barham, D. Giddings, G. Dimitrakis, Rev. Chem. Eng. (2018) https://doi.org/10.1515/revce-2017-0078

  20. S. Dykas, M. Majkut, M. Strozik, K. Smołka, Int. J. Heat Mass Transfer 80, 50 (2015)

    Article  Google Scholar 

  21. F. Bakhtar, J.B. Young, Trans. Inst. Fluid Flow Machin. 70, 259 (1976)

    Google Scholar 

  22. F. Bakhtar, K. Zidi, Proc. Inst. Mech. Eng. Part A 203, 195 (1989)

    Article  Google Scholar 

  23. M.R. Mahpeykar, E. Lakzian, E. Amirirad, Sci. Iran. 16, 253 (2009)

    Google Scholar 

  24. F. Bakhtar, K. Zidi, Proc. Inst. Mech. Eng. Part A 204, 233 (1990)

    Article  Google Scholar 

  25. F. Bakhtar, M. Piran, Int. J. Heat Fluid Flow 1, 53 (1979)

    Article  Google Scholar 

  26. F. Bakhtar, Recent advances in steam turbine research, in International Conference on Energy and Environment (ICEE 2006) (2006)

  27. A.J. White, J.B. Young, P.T. Walters, Philos. Trans. R. Soc. London A 354, 59 (1996)

    Article  ADS  Google Scholar 

  28. M.T. Somesaraee, E.A. Rad, M.R. Mahpeykar, J. Therm. Anal. Calorim. 133, 1023 (2018)

    Article  Google Scholar 

  29. M.S. Mirhoseini, M. Boroomand, Meccanica 53, 193 (2018)

    Article  Google Scholar 

  30. M.J. Kermani, A.G. Gerber, Int. J. Heat Mass Transfer 46, 3265 (2003)

    Article  Google Scholar 

  31. S. Yamamoto, S. Moriguchi, H. Miyazawa, T. Furusawa, Int. J. Heat Mass Transfer 119, 720 (2018)

    Article  Google Scholar 

  32. Y. Dai, Y. Cheng, J. Zou, D. Hu, Int. J. Heat Mass Transfer 86, 351 (2015)

    Article  Google Scholar 

  33. A.G. Gerber, M.J. Kermani, Int. J. Heat Mass Transfer 47, 2217 (2004)

    Article  Google Scholar 

  34. S.N. Abadi, R. Kouhikamali, K. Atashkari, Appl. Therm. Eng. 81, 74 (2015)

    Article  Google Scholar 

  35. S.N. Abadi, A. Ahmadpour, S.M. Abadi, J.P. Meyer, Appl. Therm. Eng. 112, 1575 (2017)

    Article  Google Scholar 

  36. S. Dykas, W. Wróblewski, Int. J. Heat Mass Transfer 55, 6191 (2012)

    Article  Google Scholar 

  37. S.J. Keisari, M. Shams, Appl. Therm. Eng. 103, 812 (2016)

    Article  Google Scholar 

  38. H. Ding, C. Wang, C. Chen, Appl. Therm. Eng. 71, 324 (2014)

    Article  Google Scholar 

  39. T. Kawamizu, T. Kaneko, S. Suzuki, T. Tsuruta, Int. J. Heat Mass Transfer 52, 805 (2009)

    Article  Google Scholar 

  40. N. Sharifi, M. Boroomand, M. Sharifi, Appl. Therm. Eng. 52, 449 (2013)

    Article  Google Scholar 

  41. F. Bakhtar, R.A. Webb, Int. J. Heat Fluid Flow 4, 217 (1983)

    Article  Google Scholar 

  42. F. Bakhtar, M.R. Mahpeykar, K. Abbas, J. Fluids Eng. 117, 138 (1995)

    Article  Google Scholar 

  43. M.R. Mahpeykar, E. Amirirad, Sci. Iran. Trans. B 17, 337 (2010)

    Google Scholar 

  44. M.R. Mahpeykar, A.R. Teymourtash, E. Amiri Rad, Int. J. Exergy 9, 21 (2011)

    Article  Google Scholar 

  45. E.A. Rad, M.R. Mahpeykar, A.R. Teymourtash, Sci. Iran. 20, 141 (2013)

    Article  Google Scholar 

  46. M.R. Mahpeykar, A.R. Teymourtash, E.A. Rad, Meccanica 48, 815 (2013)

    Article  MathSciNet  Google Scholar 

  47. M.R. Mahpeykar, A.R. Mohammadi, J. Thermophys. Heat Transf. 27, 286 (2013)

    Article  Google Scholar 

  48. M.R. Mahpeykar, E.A. Rad, A.R. Teymourtash, Sci. Iran. 21, 1700 (2014)

    Google Scholar 

  49. M.Z. Qureshi, M. Ashraf, Eur. Phys. J. Plus 133, 71 (2018)

    Article  Google Scholar 

  50. E. Lakzian, A. Masoudifar, H. Saghi, Eur. Phys. J. Plus 132, 125 (2017)

    Article  Google Scholar 

  51. F. Mabood, S. Shateyi, W.A. Khan, Eur. Phys. J. Plus 130, 188 (2015)

    Article  Google Scholar 

  52. M.P. Vukalovich, Thermodynamic properties of water and steam (1958)

  53. B.N. Hale, J. Chem. Phys. 122, 204509 (2005)

    Article  ADS  Google Scholar 

  54. S. Sinha, B.E. Wyslouzil, G. Wilemski, Aerosol Sci. Technol. 43, 9 (2009)

    Article  ADS  Google Scholar 

  55. T. Nemec, Eur. Phys. J. E 37, 111 (2014)

    Article  Google Scholar 

  56. B.E. Wyslouzil, J. Wölk, J. Chem. Phys. 145, 211702 (2016)

    Article  ADS  Google Scholar 

  57. F. Bakhtar, J.B. Young, A.J. White, D.A. Simpson, Proc. Inst. Mech. Eng. Part C 219, 1315 (2005)

    Article  Google Scholar 

  58. F. Bakhtar, K. Zidi, Proc. Inst. Mech. Eng. Part C 199, 159 (1985)

    Article  Google Scholar 

  59. E. Buckingham, Phys. Rev. 4, 345 (1914)

    Article  ADS  Google Scholar 

  60. R.H. Sabersky, A.J. Acosta, E.G. Hauptmann, Fluid Flow: A First Course in Fluid Mechanics (Macmillan, New York, 1999)

  61. A.G. Gerber, J. Fluids Eng. 124, 465 (2002)

    Article  Google Scholar 

  62. S. Senoo, A.J. White, Numerical simulations of unsteady wet steam flows with non-equilibrium condensation in the nozzle and the steam turbine, in ASME 2006 2nd Joint US-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering 2006 Jan. 1 (ASME, 2006) pp. 757--767

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Mahpeykar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmani, F., Mahpeykar, M.R. & Rad, E.A. Estimating heat release due to a phase change of high-pressure condensing steam using the Buckingham Pi theorem. Eur. Phys. J. Plus 134, 48 (2019). https://doi.org/10.1140/epjp/i2019-12416-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12416-6

Navigation