Skip to main content
Log in

Convective heat transfer during the flow of Williamson nanofluid with thermal radiation and magnetic effects

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Recently, several studies have been presented to show that nanofluids are amongst the best tools for the enhancement of heat transfer characteristics. It has been experimentally verified that nanofluids are a new type of enhanced working fluids, engineered with enhanced thermo-physical properties. Therefore, we present a novel study to develop and understand a mathematical model for a non-Newtonian Williamson fluid flow in the presence of nanoparticles. This study aims at describing the thermal characteristics of nanoparticles via Rosseland approximation to illustrate the non-linear radiation effects. Convective heat transfer model alongside Brownian motion are studied for the electrically conducting nanofluids flow. A set of partial differential equations for Williamson nanofluid flow has been derived by basic conservation laws, i.e., momentum, energy and concentration conservations. These equations are initially converted to ordinary differential equations by employing non-dimensional quantities. The numerical simulation of these equations is performed using the Runge-Kutta-Fehlberg scheme. The corresponding important physical parameters have been produced as function of the unsteadiness parameter, Weissenberg number, magnetic parameter, radiation parameter, Brownian motion parameter, thermophoresis parameter, Prandtl number, Biot number, velocity slip parameter and Lewis number. The examination is done to investigate the impact of the above-said parameters on momentum, thermal and concentration boundary layers. It is concluded from our computations that the nanofluids velocity and temperature accelerate when the Brownian motion parameter rises. Results proved that temperature gradient enhances with increase of solid particle concentration, while it decreases with increasing magnetic field. Finally, a comparison of the obtained numerical solution against previous literature is presented which shows satisfactory agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in Developments and Applications of Non-Newtonian Flows, edited by D.A. Siginer, H.P. Wang, Vol. 66 (ASME, 1995) pp. 99--105

  2. J. Buongiorno, J. Heat Transf. 128, 240 (2006)

    Article  Google Scholar 

  3. D.A. Nield, A.V. Kuznetsov, Int. J. Heat Mass Transfer 52, 5796 (2009)

    Article  Google Scholar 

  4. O.D. Makinde, A. Aziz, Int. J. Therm. Sci. 53, 2477 (2011)

    Google Scholar 

  5. F. Mabood, W.A. Khan, A.I.M. Ismail, J. Magn. & Magn. Mater. 374, 569 (2015)

    Article  ADS  Google Scholar 

  6. N. Sandeep, A. Malvandi, Adv. Powd. Technol. 27, 2448 (2016)

    Article  Google Scholar 

  7. Hashim, M. Khan, Int. J. Heat Mass Transfer 103, 291 (2016)

    Article  Google Scholar 

  8. S. Nadeem, A.U. Khan, S.T. Hussain, Int. J. Hydrogen Energy 42, 28945 (2017)

    Article  Google Scholar 

  9. Hashim, M. Khan, A. Hamid, Int. J. Heat Mass Transfer 118, 480 (2018)

    Article  Google Scholar 

  10. S. Mukhopadhyay, K. Bhattacharyya, G.C. Layek, Int. J. Heat Mass Transfer 54, 2751 (2011)

    Article  Google Scholar 

  11. R. Cortell, Energy 74, 896 (2014)

    Article  Google Scholar 

  12. T. Hayat, M. Imtiaz, A. Alsaedi, M.A. Kutbi, J. Magn. & Magn. Mater. 396, 31 (2015)

    Article  ADS  Google Scholar 

  13. W.A. Khan, O.D. Makinde, Z.H. Khan, Int. J. Heat Mass Transfer 96, 525 (2016)

    Article  Google Scholar 

  14. M.K. Nayak, N.S. Akbar, V.S. Pandey, Z.H. Khan, D. Tripathi, Powd. Technol. 315, 205 (2017)

    Article  Google Scholar 

  15. A.S. Dogonchi, M. Alizadeh, D.D. Ganji, Adv. Pow. Technol. 28, 1815 (2017)

    Article  Google Scholar 

  16. M. Khan, Hashim, A. Hafeez, Chem. Eng. Sci. 173, 1 (2017)

    Article  Google Scholar 

  17. J.V.R. Reddy, V. Sugunamma, N. Sandeep, J. Mol. Liq. 236, 93 (2017)

    Article  Google Scholar 

  18. N. Sandeep, M.G. Reddy, J. Mol. Liq. 225, 87 (2017)

    Article  Google Scholar 

  19. R.V. Williamson, Ind. Eng. Chem. 21, 1108 (1929)

    Article  Google Scholar 

  20. I. Dapra, G. Scarpi, Int. J. Rock Mech. Min. Sci. 44, 271 (2007)

    Article  Google Scholar 

  21. C. Vasudev, U.R. Rao, M.V.S. Reddy, G.P. Rao, Am. J. Sci. Ind. Res. 1, 656 (2010)

    Google Scholar 

  22. S. Nadeem, S.T. Hussain, C. Lee, Braz. J. Chem. Eng. 30, 619 (2013)

    Article  Google Scholar 

  23. S. Nadeem, N.S. Akbar, Int. J. Numer. Methods Fluids 66, 212 (2010)

    Article  Google Scholar 

  24. M.M. Bhatti, M.M. Rashidi, J. Mol. Liq. 221, 567 (2016)

    Article  Google Scholar 

  25. S. Reddy, K. Naikoti, M.M. Rashidi, Trans. A. Razmadze Math. Inst. 171, 195 (2017)

    Article  MathSciNet  Google Scholar 

  26. G. Kumaran, N. Sandeep, J. Mol. Liq. 233, 262 (2017)

    Article  Google Scholar 

  27. S. Rosseland, Astrophysik und Atom-Theoretische Grundlagen (Springer Verlag, Berlin, 1931) pp. 41--44

  28. P.D. Ariel, Int. J. Comput. Math. Appl. 54, 69 (2007)

    Google Scholar 

  29. O.D. Makinde, F. Mabood, W.A. Khan, M.S. Tshehla, J. Mol. Liq. 219, 24 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hashim.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashim, Khan, M. & Hamid, A. Convective heat transfer during the flow of Williamson nanofluid with thermal radiation and magnetic effects. Eur. Phys. J. Plus 134, 50 (2019). https://doi.org/10.1140/epjp/i2019-12473-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12473-9

Navigation