Skip to main content
Log in

Failure of the Schwinger boson approach in the description of the ground state in the spatially anisotropic Heisenberg model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Density matrix renormalization group (DMRG) and Schwinger boson mean field theory (SBMFT) are used to study the behavior of the ground state energy in the integer spin two-dimensional anisotropic J1x-J1y-J2 Heisenberg model in the square lattice with second neighbors interactions, where the influence of the critical parameters (Dc vs. J2) have been verified on continuum spin conductivity (AC conductivity). We get a different behavior for the ground state energy using both methods, principally in the limit where the force of the parameters is larger, where the SBMFT theory is expected not to become accurate.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-X. Deng, Z.-G. Song, S.-S. Li, S.-H. Wei, J.-W. Luo, Chin. Phys. Lett. 35, 057301 (2018)

    Article  ADS  Google Scholar 

  2. D.J. Scalapino, Rev. Mod. Phys. 84, 1383 (2012)

    Article  ADS  Google Scholar 

  3. G.M. Zhang, Z.Y. Lu, T. Xiang, Phys. Rev. B 84, 052502 (2011)

    Article  ADS  Google Scholar 

  4. L.S. Lima, Physica C 546, 68 (2018)

    Article  ADS  Google Scholar 

  5. C. Lacroix, P. Mendels, F. Mila, Introduction to Frustrated Magnetism (Springer, Berlin, 2011)

  6. H.C. Jiang, F. Kruger, J.E. Moore, D.N. Sheng, J. Zaanen, Z.Y. Weng, Phys. Rev. B 79, 174409 (2009)

    Article  ADS  Google Scholar 

  7. A.S.T. Pires, J. Magn. Magn. Mater 435, 64 (2017)

    Article  ADS  Google Scholar 

  8. V. Ilkovic, Acta Phys. Pol. A 133, 206 (2018)

    Article  Google Scholar 

  9. F. Meier, D. Loss, Phys. Rev. Lett. 90, 167204 (2003)

    Article  ADS  Google Scholar 

  10. Y.V. Kobljanskyj, G.A. Melkov, A.A. Serga, A.N. Slavin, B. Hillebrands, Phys. Rev. Appl. 4, 014014 (2015)

    Article  ADS  Google Scholar 

  11. K. Ganzhorn, S. Klingler, T. Wimmer, S. Geprägs, R. Gross, H. Huebl, S.T.B. Goennenwein, Appl. Phys. Lett. 109, 022405 (2016)

    Article  ADS  Google Scholar 

  12. A.V. Chumak, V.I. Vasyuchka, A.A. Serga, B. Hillebrands, Nat. Phys. 11, 453 (2015)

    Article  Google Scholar 

  13. V. Lauer, D.A. Bozhko, T. Bracher, P. Pirro, V.I. Vasyuchka, A.A. Serga, M.B. Jungfleisch, M. Agrawal, Y.V. Kobljanskyj, G.A. Melkov, C. Dubs, B. Hillebrands, A.V. Chumak, Appl. Phys. Lett. 108, 012402 (2016)

    Article  ADS  Google Scholar 

  14. D.J. Scalapino, S.R. White, S. Zhang, Phys. Rev. B 47, 7995 (1993)

    Article  ADS  Google Scholar 

  15. I. Souza, T. Wilkens, R.M. Martin, Phys. Rev. B 62, 1666 (2000)

    Article  ADS  Google Scholar 

  16. W. Zhuo, X. Wang, Y. Wang, Phys. Rev. B 73, 212413 (2006)

    Article  ADS  Google Scholar 

  17. N. Papanicolaou, Nucl. Phys. B 305, 367 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  18. A.S.T. Pires, Physica B 479, 130 (2015)

    Article  ADS  Google Scholar 

  19. H.T. Wang, Y. Wang, Phys. Rev. B 71, 104429 (2005)

    Article  ADS  Google Scholar 

  20. A.S.T. Pires, Physica B 479, 130 (2015)

    Article  ADS  Google Scholar 

  21. A.S.T. Pires, Physica B 412, 217 (2016)

    Google Scholar 

  22. J. Merino, A. Ralko, Phys. Rev. B 97, 205112 (2018)

    Article  ADS  Google Scholar 

  23. X.G. Wen, Quantum Field Theory of Many Body Systems (Oxford University Press, Oxford, 2004)

  24. M. Maggiore, A Modern Introduction to Quantum Field Theory (Oxford University Press, Oxford, UK, 2005)

  25. S.R. White, Phys. Rev. Lett. 69, 2863 (1992)

    Article  ADS  Google Scholar 

  26. S.R. White, Phys. Rev. B 48, 10345 (1993)

    Article  ADS  Google Scholar 

  27. S.R. White, A.L. Chernyshev, Phys. Rev. Lett. 99, 127004 (2007)

    Article  ADS  Google Scholar 

  28. H. Yao, H.-C. Jian, L. Balents, Phys. Rev. B 86, 024424 (2012)

    Article  ADS  Google Scholar 

  29. H.C. Jiang, M.Q. Weng, Z.Y. Weng, D.N. Sheng, L. Balents, Phys. Rev. B 79, 020409 (2009)

    Article  ADS  Google Scholar 

  30. E.M. Stoudenmire, S.R. White, Annu. Rev. Condens. Matter Phys. 3, 111 (2012)

    Article  Google Scholar 

  31. S. Yan, D.A. Huse, S.R. White, Science 332, 1173 (2011)

    Article  ADS  Google Scholar 

  32. T. Xiang, J. Lou, Z. Su, Phys. Rev. B 64, 104414 (2001)

    Article  ADS  Google Scholar 

  33. E. Fradkin, Field Theories of Condensed Matter Physics, 2nd edn. (Cambridge, UK, 2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo S. Lima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, L.S. Failure of the Schwinger boson approach in the description of the ground state in the spatially anisotropic Heisenberg model. Eur. Phys. J. B 92, 18 (2019). https://doi.org/10.1140/epjb/e2018-90481-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90481-1

Keywords

Navigation