Skip to main content
Log in

Study of azimuthal correlations in the target fragmentation region in p, d, He, C+C, Ta and C+Ne, Cu collisions at momenta of 4.2, 4.5 and 10 A GeV/c

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Azimuthal correlations between the same type of particles (protons or pions) in the target fragmentation region was studied in d, He, C+C, Ta (4.2A GeV/c, C+Ne, Cu (4.5A GeV/c) and p+C, Ta (10 GeV/c) interactions. The data were obtained from the SKM-200-GIBS streamer chamber and from the Propane Bubble Chamber (PBL-500) systems utilized at JINR. Study of multiparticle azimuthal correlations offers unique information about space-time evolution of the interactions. Azimuthal correlations were investigated by using correlation function \( C(\Delta\phi) = \mathrm{d} N/\mathrm{d} (\Delta\phi)\) , where \( \Delta\phi\) represents the angle between the sums of transverse momenta vectors for particles emitted in the forward and backward hemispheres. For protons “back-to-back” (“negative”) azimuthal correlations were observed in the above-mentioned interactions. The absolute values of the correlation coefficient \( \vert\xi\vert\) --the slope parameter of \( C(\Delta\phi)\), strongly depend on the mass number of the target (\( A_{T}\)) nuclei in the nucleon-nucleus and nucleus-nucleus collisions. Namely, \( \vert\xi\vert\) decreases with increase of \( A_T\) in p+C and p+Ta collisions, while \( \vert\xi\vert\) initially decreases from d+C to C+Ne and then almost does not change with increase of \( A_P\), \( A_T\) in (d+He)Ta, C+Cu and C+Ta collisions. For pions “back-to-back” correlations were obtained for light targets (C, Ne), and “side-by-side” (“positive”) correlations for heavy targets (Cu, Ta). The \( \vert\xi\vert\) insignificantly changes with increase of the momenta per nucleon and almost does not change with increase of \( A_P\) and \( A_T\). Models used for description of the data, the Ultra relativistic Quantum Molecular Dynamic (UrQMD) and Quark-Gluon String Model (QGSM), satisfactorily describe the obtained experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Bass et al., Nucl. Phys. A 661, 205 (1999)

    ADS  Google Scholar 

  2. K.H. Ackermann et al., Phys. Rev. Lett. 86, 402 (2001)

    ADS  Google Scholar 

  3. B. Zhang, M. Gyulassy, C.M. Ko, Phys. Lett. B 455, 45 (1999)

    ADS  Google Scholar 

  4. J.-Y. Ollitrault, Phys. Rev. D 46, 229 (1992)

    ADS  Google Scholar 

  5. P. Danielewicz et al., Phys. Rev. Lett. 81, 2438 (1998)

    ADS  Google Scholar 

  6. C. Pinkenburg et al., Phys. Rev. Lett. 83, 1295 (1999)

    ADS  Google Scholar 

  7. G. Agakishiev et al., Phys. Rev. C 85, 014901 (2012)

    ADS  Google Scholar 

  8. K. Aamodt et al., Phys. Rev. Lett. 105, 252302 (2010)

    ADS  Google Scholar 

  9. G. Aad et al., Phys. Lett. B 707, 330 (2012)

    ADS  Google Scholar 

  10. A.Kh. Vinitsky et al., Yad. Fiz. 54, 1636 (1991) Sov. J. Nucl. Phys. 54

    Google Scholar 

  11. A. Adare et al., Phys. Rev. C 94, 054910 (2016)

    ADS  Google Scholar 

  12. H.H. Gutbrod et al., Phys. Rev. C 42, 640 (1990)

    ADS  Google Scholar 

  13. S.A. Bass et al., Phys. Rev. C 51, 3343 (1995)

    ADS  Google Scholar 

  14. H.A. Gustafsson et al., Z. Phys. A 321, 389 (1985)

    ADS  Google Scholar 

  15. H.R. Schmidt et al., Nucl. Phys. A 544, 449 (1992)

    ADS  Google Scholar 

  16. T.C. Awes et al., Phys. Lett. B 381, 29 (1996)

    ADS  Google Scholar 

  17. L. Chkhaidze et al., Phys. Lett. B 411, 26 (1997)

    ADS  Google Scholar 

  18. L. Chkhaidze et al., Phys. Lett. B 479, 21 (2000)

    ADS  Google Scholar 

  19. L. Chkhaidze et al., Phys. Atom. Nucl. 67, 693 (2004)

    ADS  Google Scholar 

  20. L. Chkhaidze et al., Phys. Atom. Nucl. 75, 811 (2012)

    ADS  Google Scholar 

  21. L. Chkhaidze et al., Eur. Phys. J. A 1, 299 (1998)

    ADS  Google Scholar 

  22. L. Chkhaidze et al., Eur. Phys. J. A 52, 351 (2016)

    ADS  Google Scholar 

  23. L. Chkhaidze et al., Phys. Rev. C 65, 054903 (2002)

    ADS  Google Scholar 

  24. L. Chkhaidze et al., Phys. Rev. C 84, 064915 (2011)

    ADS  Google Scholar 

  25. L. Chkhaidze et al., Nucl. Phys. A 794, 115 (2007)

    ADS  Google Scholar 

  26. L. Chkhaidze et al., Nucl. Phys. A 831, 22 (2009)

    ADS  Google Scholar 

  27. L. Chkhaidze, T. Djobava, L. Kharkhelauri, Phys. Part. Nucl. 33, 196 (2002)

    Google Scholar 

  28. L. Chkhaidze, T. Djobava, L. Kharkhelauri, Phys. Atom. Nucl. 65, 1479 (2002)

    ADS  Google Scholar 

  29. L. Chkhaidze et al., GESJ: Phys. 2, 98 (2013)

    Google Scholar 

  30. M. Anikina, JINR E1-84-785 (Dubna, 1998)

  31. M. Anikina et al., Phys. Rev. C 33, 895 (1986)

    ADS  Google Scholar 

  32. L. Chkhaidze et al., Bull. Georg. Acad. Sci. 164, 271 (2001)

    Google Scholar 

  33. G.N. Agakishiev et al., Yad. Phys. 65, 1515 (1986)

    Google Scholar 

  34. A.I. Bondarenko, JINR P1-98-292 (Dubna, 1998)

  35. G.N. Agakishiev et al., Yad. Fiz. 43, 366 (1986)

    Google Scholar 

  36. D. Armutliiski et al., Yad. Fiz. 45, 1047 (1987) Sov. J. Nucl. Phys. 45

    Google Scholar 

  37. K.H. Kampert et al., Nucl. Phys. A 544, 183c (1991)

    ADS  Google Scholar 

  38. S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 225 (1998)

    ADS  Google Scholar 

  39. M. Bleicher et al., J. Phys. G 25, 1859 (1999)

    ADS  Google Scholar 

  40. A.S. Botvina et al., Nucl. Phys. A 475, 663 (1987)

    ADS  Google Scholar 

  41. N. Amelin et al., Yad. Fiz. 51, 512 (1990) Sov. J. Nucl. Phys. 51

    Google Scholar 

  42. N. Amelin et al., Yad. Fiz. 52, 272 (1990) Sov. J. Nucl. Phys. 52

    Google Scholar 

  43. N. Amelin et al., Phys. Rev. Lett. 67, 1523 (1991)

    ADS  Google Scholar 

  44. Kh. Abdel-Waged, Phys. Rev. C 67, 064610 (2003)

    ADS  Google Scholar 

  45. Kh. Abdel-Waged, J. Phys. G 31, 739 (2005)

    ADS  Google Scholar 

  46. Ch. Hartnack et al., Eur. Phys. J. A 1, 151 (1998)

    ADS  Google Scholar 

  47. N. Amelin, JINR Preprint P2-86-837 (Dubna, 1986)

  48. Th. Lister, GSI 94-1 (University of Munster, 1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Galoyan.

Additional information

Communicated by D. Blaschke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chkhaidze, L., Chlachidze, G., Djobava, T. et al. Study of azimuthal correlations in the target fragmentation region in p, d, He, C+C, Ta and C+Ne, Cu collisions at momenta of 4.2, 4.5 and 10 A GeV/c. Eur. Phys. J. A 55, 7 (2019). https://doi.org/10.1140/epja/i2019-12674-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12674-9

Navigation