Skip to main content
Log in

Thin wedge evaporation/condensation controlled by the vapor dynamics in the atmosphere

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Evaporation or condensation in the vicinity of the immobile (pinned) contact line in an atmosphere of some inert (noncondensable) gas is considered here in a partial wetting configuration. Such a problem is relevant to many situations, in particular to a drop or a liquid film drying in open air. The thermal effects are not important and the mass exchange rate is controlled by the vapor dynamics in the gas. By following previous works, we account for the weak coupling between the diffusion in the gas and flow in the liquid through the Kelvin effect. Such a problem is nonlocal because of the diffusion in the gas. For generality, we consider a geometry of a liquid wedge posed on a flat and homogeneous substrate surrounded by a gas phase with a diffusion boundary layer of uniform thickness \(\Lambda\). Similarly to the moving contact line problem, the phase change leads to the hydrodynamic contact line singularity. The asymptotic analysis of this problem is carried out for the liquid wedge of the length \( L \gg \Lambda\). Three asymptotic regions are identified: the microscopic one (in which the singularity is relaxed, in the present case with the Kelvin effect) and two intermediate regions. The Kelvin effect alone turns to be sufficient to relax the singularity. The scaling laws for the interface slope and mass evaporation/condensation flux in each region are discussed. It is found that the difference of the apparent contact angle (i.e., interface slope in the second intermediate region) and the equilibrium contact angle is inversely proportional to the square root of \(\Lambda\) and square root of the microscopic length, whatever is the singularity relaxation mechanism.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Potash, P.C. Wayner, Int. J. Heat Mass Transfer 15, 1851 (1972)

    Article  Google Scholar 

  2. D.M. Anderson, S.H. Davis, Phys. Fluids 7, 248 (1995)

    Article  ADS  Google Scholar 

  3. V.S. Nikolayev, Phys. Fluids 22, 082105 (2010)

    Article  ADS  Google Scholar 

  4. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Phys. Rev. E 62, 756 (2000)

    Article  ADS  Google Scholar 

  5. Y.O. Popov, Phys. Rev. E 71, 036313 (2005)

    Article  ADS  Google Scholar 

  6. H. Hu, R. Larson, J. Phys. Chem. B 106, 1334 (2002)

    Article  Google Scholar 

  7. C. Poulard, G. Guéna, A.M. Cazabat, A. Boudaoud, M. Ben Amar, Langmuir 21, 8226 (2005)

    Article  Google Scholar 

  8. G. Berteloot, C.T. Pham, A. Daerr, F. Lequeux, L. Limat, EPL 83, 14003 (2008)

    Article  ADS  Google Scholar 

  9. C.T. Pham, G. Berteloot, F. Lequeux, L. Limat, EPL 92, 54005 (2010)

    Article  ADS  Google Scholar 

  10. J. Eggers, L.M. Pismen, Phys. Fluids 22, 112101 (2010)

    Article  ADS  Google Scholar 

  11. S.J.S. Morris, J. Fluid Mech. 739, 308 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  12. C. Huh, L.E. Scriven, J. Colloid Interface Sci. 35, 85 (1971)

    Article  ADS  Google Scholar 

  13. L.M. Hocking, Q. J. Mech. Appl. Math. 36, 55 (1983)

    Article  Google Scholar 

  14. V. Janeček, B. Andreotti, D. Pražák, T. Bárta, V.S. Nikolayev, Phys. Rev. E 88, 060404 (2013)

    Article  ADS  Google Scholar 

  15. A. Rednikov, P. Colinet, Phys. Rev. E 87, 010401 (2013)

    Article  ADS  Google Scholar 

  16. J.H. Snoeijer, B. Andreotti, Annu. Rev. Fluid Mech. 45, 269 (2013)

    Article  ADS  Google Scholar 

  17. S. Moosman, G.M. Homsy, J. Colloid Interface Sci. 73, 212 (1980)

    Article  ADS  Google Scholar 

  18. P. Stephan, J. Hammer, Heat Mass Transfer 30, 119 (1994)

    Google Scholar 

  19. A.Y. Rednikov, P. Colinet, Langmuir 27, 1758 (2011)

    Article  Google Scholar 

  20. V. Janeček, V.S. Nikolayev, EPL 100, 14003 (2012)

    Article  Google Scholar 

  21. R. Raj, C. Kunkelmann, P. Stephan, J. Plawsky, J. Kim, Int. J. Heat Mass Transfer 55, 2664 (2012)

    Article  Google Scholar 

  22. L. Fourgeaud, E. Ercolani, J. Duplat, P. Gully, V.S. Nikolayev, Phys. Rev. Fluids 1, 041901 (2016)

    Article  ADS  Google Scholar 

  23. V. Janeček, V.S. Nikolayev, Phys. Rev. E 87, 012404 (2013)

    Article  ADS  Google Scholar 

  24. Y. Tsoumpas, S. Dehaeck, M. Galvagno, A. Rednikov, H. Ottevaere, U. Thiele, P. Colinet, Langmuir 30, 11847 (2014)

    Article  Google Scholar 

  25. F. Doumenc, B. Guerrier, Eur. Phys. J. ST 197, 281 (2011)

    Article  Google Scholar 

  26. V.V. Janeček, F. Doumenc, B. Guerrier, V.S. Nikolayev, J. Colloid Interface Sci. 460, 329 (2015)

    Article  ADS  Google Scholar 

  27. C. Loussert, F. Doumenc, J.B. Salmon, V.S. Nikolayev, B. Guerrier, Langmuir 33, 14078 (2017)

    Article  Google Scholar 

  28. G. Barnes, Adv. Colloid Interface Sci. 25, 89 (1986)

    Article  Google Scholar 

  29. V.P. Carey, Liquid-Vapor Phase Change Phenomena (Hemisphere, Washington D.C., 1992)

  30. M.A. Saxton, D. Vella, J.P. Whiteley, J.M. Oliver, J. Eng. Math. 106, 47 (2017)

    Article  Google Scholar 

  31. J.H. Snoeijer, J. Eggers, Phys. Rev. E 82, 056314 (2010)

    Article  ADS  Google Scholar 

  32. J. Eggers, Phys. Fluids 17, 082106 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  33. A. Korn, T.M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review (Mc Graw Hill, New York, 2000)

  34. G. Grinberg, Selected Problems of the Mathematical Theory of Electric and Magnetic Effects (Izd. Akad. Nauk SSSR, Moscow-Leningrad, 1948) in Russian

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Doumenc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doumenc, F., Janeček, V. & Nikolayev, V.S. Thin wedge evaporation/condensation controlled by the vapor dynamics in the atmosphere. Eur. Phys. J. E 41, 147 (2018). https://doi.org/10.1140/epje/i2018-11758-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11758-8

Keywords

Navigation