Skip to main content
Log in

Anomalous scaling in the Kazantsev-Kraichnan model with finite time correlations: two-loop renormalization group analysis of relevant composite operators

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The field theoretic renormalization group technique together with the operator product expansion in the second order of the perturbation theory (in the two-loop approximation) is used for the investigation of the influence of the finite time correlations of the velocity field on the anomalous dimensions of the leading set of composite operators, which drive the anomalous scaling of correlation functions of a weak magnetic field in the framework of the kinematic Kazantsev–Kraichnan model in the presence of a large scale anisotropy. The system of possible scaling regimes of the model is found and two important special limits of the model are briefly discussed. The general two-loop expressions for the anomalous and critical dimensions of the leading composite operators are found as functions of the spatial dimension d and of the renormalization group fixed point value of the parameter u, which drives the presence of the finite time correlations of the velocity field in the model. The anisotropic hierarchies among various anomalous dimensions are investigated and it is shown that, regardless of the fixed point value of the parameter u as well as regardless of the spatial dimension of the system, the leading role in the anomalous scaling properties of the model is played by the anomalous dimensions of the composite operators near the isotropic shell, in accordance with the Kolmogorov’s local isotropy restoration hypothesis. The properties of the anomalous dimensions of the leading composite operators in the Kazantsev–Kraichnan model with finite time correlations of the velocity field are compared to the properties of the corresponding anomalous dimensions of the composite operators relevant in the framework of the Kraichnan model of passively advected scalar field with finite time correlations. It is shown that, regardless of the fixed point value of the parameter u, the two-loop corrections to the anomalous dimensions are much more important in the framework of the Kazantsev–Kraichnan vector model than in the Kraichnan model of a passive scalar advection. At the same time, again regardless of the strength of time correlations, the two-loop values of the leading anomalous dimensions in the Kazantsev–Kraichnan model of the passive magnetic field are significantly more negative than the corresponding two-loop values of the relevant anomalous dimensions in the framework of the Kraichnan model. It means that the anomalous scaling of the correlation functions of the passive magnetic field, deep inside the inertial interval of the turbulent environment with finite time correlations of the velocity field, must be much more pronounced than in the case of the correlation functions of the passively advected scalar field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 301 (1941) [reprinted in Proc. R. Soc. Lond. A 434, 9 1991]

    ADS  Google Scholar 

  2. A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 31, 538 (1941)

    Google Scholar 

  3. A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 32, 16 (1941) [reprinted in Proc. R. Soc. Lond. A 434, 15 1991]

    ADS  Google Scholar 

  4. A.S. Monin, A.M. Yaglom, in Statistical Fluid Mechanics (MIT Press, Cambridge, MA, 1975), Vol. 2

  5. W.D. McComb, The Physics of Fluid Turbulence (Clarendon, Oxford, 1990)

  6. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995)

  7. K.R. Sreenivasan, R.A. Antonia, Ann. Rev. Fluid Mech. 29, 435 (1997)

    Article  ADS  Google Scholar 

  8. G. Falkovich, K. Gawȩdzki, M. Vergassola, Rev. Mod. Phys. 73, 913 (2001)

    Article  ADS  Google Scholar 

  9. L.Ts. Adzhemyan, N.V. Antonov, A.N. Vasil’ev, The Field Theoretic Renormalization Group in Fully Developed Turbulence (Gordon & Breach, London, 1999)

  10. R.A. Antonia, B.R. Satyaprakash, A.K.F. Hussain, J. Fluid Mech. 119, 55 (1982)

    Article  ADS  Google Scholar 

  11. F. Anselmet, Y. Gagne, E. Hopfinger, R.A. Antonia, J. Fluid Mech. 140, 63 (1984)

    Article  ADS  Google Scholar 

  12. C. Meneveau, K.R. Sreenivasan, Phys. Rev. A 41, 2246 (1990)

    Article  ADS  Google Scholar 

  13. M.S. Borgas, Phys. Fluids A 4, 2055 (1992)

    Article  ADS  Google Scholar 

  14. V.R. Kuznetsov, V.A. Sabel’nikov, Turbulence and Combustion (Hemisphere Publishing, New York, 1990)

  15. N.V. Antonov, J. Phys. A 39, 7825 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  16. R.A. Antonia, E.J. Hopfinger, Y. Gagne, F. Anselmet, Phys. Rev. A 30, 2704 (1984)

    Article  ADS  Google Scholar 

  17. K.R. Sreenivasan, Proc. R. Soc. Lond., Ser. A 434, 165 (1991)

    Article  ADS  Google Scholar 

  18. M. Holzer, E.D. Siggia, Phys. Fluids 6, 1820 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Pumir, Phys. Fluids 6, 2118 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  20. C. Tong, Z. Warhaft, Phys. Fluids 6, 2165 (1994)

    Article  ADS  Google Scholar 

  21. T. Elperin, N. Kleeorin, I. Rogachevskii, Phys. Rev. E 52, 2617 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  22. T. Elperin, N. Kleeorin, I. Rogachevskii, Phys. Rev. Lett. 76, 224 (1996)

    Article  ADS  Google Scholar 

  23. T. Elperin, N. Kleeorin, I. Rogachevskii, Phys. Rev. E 53, 3431 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  24. Z. Warhaft, Ann. Rev. Fluid Mech. 32, 203 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  25. B.I. Shraiman, E. Siggia, Nature 405, 639 (2000)

    Article  ADS  Google Scholar 

  26. F. Moisy, H. Willaime, J.S. Andersen, P. Tabeling, Phys. Rev. Lett. 86, 4827 (2001)

    Article  ADS  Google Scholar 

  27. A. Arnèodo et al., Phys. Rev. Lett. 100, 254504 (2008)

    Article  ADS  Google Scholar 

  28. M. Vergassola, Phys. Rev. E 53, R3021 (1996)

    Article  ADS  Google Scholar 

  29. K. Gawȩdzki, A. Kupiainen, Phys. Rev. Lett. 75, 3834 (1995)

    Article  ADS  Google Scholar 

  30. D. Bernard, K. Gawȩdzki, A. Kupiainen, Phys. Rev. E 54, 2564 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  31. M. Chertkov, G. Falkovich, I. Kolokolov, V. Lebedev, Phys. Rev. E 52, 4924 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Chertkov, G. Falkovich, Phys. Rev. Lett. 76, 2706 (1996)

    Article  ADS  Google Scholar 

  33. M. Avellaneda, A. Majda, Commun. Math. Phys. 131, 381 (1990)

    Article  ADS  Google Scholar 

  34. M. Avellaneda, A. Majda, Commun. Math. Phys. 146, 139 (1992)

    Article  ADS  Google Scholar 

  35. A. Majda, J. Stat. Phys. 73, 515 (1993)

    Article  ADS  Google Scholar 

  36. D. Horntrop, A. Majda, J. Math. Sci. Univ. Tokyo 1, 23 (1994)

    MathSciNet  Google Scholar 

  37. Q. Zhang, J. Glimm, Commun. Math. Phys. 146, 217 (1992)

    Article  ADS  Google Scholar 

  38. R.H. Kraichnan, Phys. Rev. Lett. 72, 1016 (1994)

    Article  ADS  Google Scholar 

  39. R.H. Kraichnan, V. Yakhot, S. Chen, Phys. Rev. Lett. 75, 240 (1995)

    Article  ADS  Google Scholar 

  40. B.I. Shraiman, E.D. Siggia, Phys. Rev. Lett. 77, 2463 (1996)

    Article  ADS  Google Scholar 

  41. A. Pumir, B.I. Shraiman, E.D. Siggia, Phys. Rev. E 55, R1263 (1997)

    Article  ADS  Google Scholar 

  42. A. Pumir, Europhys. Lett. 34, 25 (1996)

    Article  ADS  Google Scholar 

  43. A. Pumir, Europhys. Lett. 37, 529 (1997)

    Article  ADS  Google Scholar 

  44. A. Pumir, Phys. Rev. E 57, 2914 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  45. I. Rogachevskii, N. Kleeorin, Phys. Rev. E 56, 417 (1997)

    Article  ADS  Google Scholar 

  46. A. Lanotte, A. Mazzino, Phys. Rev. E 60, R3483 (1999)

    Article  ADS  Google Scholar 

  47. I. Arad, L. Biferale, I. Procaccia, Phys. Rev. E 61, 2654 (2000)

    Article  ADS  Google Scholar 

  48. N.V. Antonov, A. Lanotte, A. Mazzino, Phys. Rev. E 61, 6586 (2000)

    Article  ADS  Google Scholar 

  49. N.V. Antonov, J. Honkonen, A. Mazzino, P. Muratore-Ginanneschi, Phys. Rev. E 62, R5891 (2000)

    Article  ADS  Google Scholar 

  50. N.V. Antonov, M. Hnatich, J. Honkonen, M. Jurčišin, Phys. Rev. E 68, 046306 (2003)

    Article  ADS  Google Scholar 

  51. M. Chaves, K. Gawȩdzki, P. Horvai, A. Kupiainen, M. Vergassola, J. Stat. Phys. 113, 643 (2003)

    Article  Google Scholar 

  52. H. Arponen, Phys. Rev. E 81, 036325 (2010)

    Article  ADS  Google Scholar 

  53. R.H. Kraichnan, Phys. Fluids 11, 945 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  54. A.P. Kazantsev, Sov. Phys. JETP 26, 1031 (1968)

    ADS  Google Scholar 

  55. D.J. Amit, Field Theory, Renormalization Group, and Critical Phenomena (McGraw-Hill, New York, 1978)

  56. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon, Oxford, 1989)

  57. A.N. Vasil’ev, Quantum-Field Renormalization Group in the Theory of Critical Phenomena and Stochastic Dynamics (Chapman & Hall/CRC, Boca Raton, 2004)

  58. D.J. Amit, V. Martin-Mayor, Field Theory, Renormalization Group, and Critical Phenomena. Graphs to Computers, 3rd edn. (World Scientific, Singapore, 2005)

  59. L.Ts. Adzhemyan, N.V. Antonov, A.N. Vasil’ev, Phys. Rev. E 58, 1823 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  60. L.Ts. Adzhemyan, N.V. Antonov, A.N. Vasil’ev, Theor. Math. Phys. 120, 1074 (1999)

    Article  Google Scholar 

  61. L.Ts. Adzhemyan, N.V. Antonov, V.A. Barinov, Yu.S. Kabrits, A.N. Vasil’ev, Phys. Rev. E 63, 025303 (2001)

    Article  ADS  Google Scholar 

  62. L.Ts. Adzhemyan, N.V. Antonov, V.A. Barinov, Yu.S. Kabrits, A.N. Vasil’ev, Phys. Rev. E 64, 056306 (2001)

    Article  ADS  Google Scholar 

  63. L.Ts. Adzhemyan, N.V. Antonov, M. Hnatich, S.V. Novikov, Phys. Rev. E 63, 016309 (2000)

    Article  ADS  Google Scholar 

  64. E. Jurčišinová, M. Jurčišin, R. Remecký, M. Scholtz, Int. J. Mod. Phys. B 22, 3589 (2008)

    Article  ADS  Google Scholar 

  65. E. Jurčišinová, M. Jurčišin, Phys. Rev. E 77, 016306 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  66. N.V. Antonov, Phys. Rev. E 60, 6691 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  67. L.Ts. Adzhemyan, N.V. Antonov, J. Honkonen, Phys. Rev. E 66, 036313 (2002)

    Article  ADS  Google Scholar 

  68. L.Ts. Adzhemyan, N.V. Antonov, Phys. Rev. E 58, 7381 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  69. N.V. Antonov, J. Honkonen, Phys. Rev. E 63, 036302 (2001)

    Article  ADS  Google Scholar 

  70. O.G. Chkhetiani, M. Hnatich, E. Jurčišinová, M. Jurčišin, A. Mazzino, M. Repašan, Phys. Rev. E 74, 036310 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  71. O.G. Chkhetiani, M. Hnatich, E. Jurčišinová, M. Jurčišin, A. Mazzino, M. Repašan, J. Phys. A: Math. Gen. 39, 7913 (2006)

    Article  ADS  Google Scholar 

  72. O.G. Chkhetiani, M. Hnatich, E. Jurčišinová, M. Jurčišin, A. Mazzino, M. Repašan, Czech. J. Phys. 56 (2006) 827

    Article  ADS  Google Scholar 

  73. L.Ts. Adzhemyan, N.V. Antonov, J. Honkonen, T.L. Kim, Phys. Rev. E 71, 016303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  74. A.V. Gladysheva, E. Jurčišinová, M. Jurčišin, R. Remecký, Phys. Part. Nucl. 41, 1023 (2010)

    Article  Google Scholar 

  75. E. Jurčišinová, M. Jurčišin, R. Remecký, Phys. Rev. E 80, 046302 (2009)

    Article  ADS  Google Scholar 

  76. N.V. Antonov, N.M. Gulitskiy, M.M. Kostenko, A.V. Malyshev, Phys. Rev. E 97, 033101 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  77. L.Ts. Adzhemyan, N.V. Antonov, A.V. Runov, Phys. Rev. E 64, 046310 (2001)

    Article  ADS  Google Scholar 

  78. M. Hnatič, M. Jurčišin, A. Mazzino, S. Šprinc, Acta Phys. Slov. 52, 559 (2002)

    Google Scholar 

  79. S.V. Novikov, J. Phys. A: Math. Gen. 39, 8133 (2006)

    Article  ADS  Google Scholar 

  80. E. Jurčišinová, M. Jurčišin, R. Remecký, M. Scholtz, Phys. Part. Nucl. Lett. 5, 219 (2008)

    Article  Google Scholar 

  81. E. Jurčišinová, M. Jurčišin, R. Remecký, J. Phys. A: Math. Theor. 42, 275501 (2009)

    Article  ADS  Google Scholar 

  82. N.V. Antonov, N.M. Gulitskiy, Theor. Math. Phys. 176, 851 (2013)

    Article  Google Scholar 

  83. L.Ts. Adzhemyan, N.V. Antonov, P.B. Gol’din, M.V. Kompaniets, J. Phys. A: Math. Theor. 46, 135002 (2013)

    Article  ADS  Google Scholar 

  84. N.V. Antonov, N.M. Gulitskiy, Phys. Rev. E 91, 013002 (2015)

    Article  ADS  Google Scholar 

  85. N.V. Antonov, N.M. Gulitskiy, Phys. Rev. E 92, 043018 (2015)

    Article  ADS  Google Scholar 

  86. N.V. Antonov, M.M. Kostenko, Phys. Rev. E 92, 053013 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  87. N.V. Antonov, N.M. Gulitskiy, EPJ Web Conf. 108, 02008 (2016)

    Article  Google Scholar 

  88. M. Hnatich, J. Honkonen, M. Jurčišin, A. Mazzino, S. Šprinc, Phys. Rev. E 71, 066312 (2005)

    Article  ADS  Google Scholar 

  89. N.V. Antonov, N.M. Gulitskiy, Phys. Rev. E 85, 065301 (2012)

    Article  ADS  Google Scholar 

  90. N.V. Antonov, N.M. Gulitskiy, Lecture Notes Comput. Sci. 7125, 128 (2012)

    Article  Google Scholar 

  91. E. Jurčišinová, M. Jurčišin, J. Phys. A: Math. Theor. 45, 485501 (2012)

    Article  Google Scholar 

  92. E. Jurčišinová, M. Jurčišin, Phys. Rev. E 88, 011004 (2013)(R)

    Article  ADS  Google Scholar 

  93. E. Jurčišinová, M. Jurčišin, Phys. Rev. E 91, 063009 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  94. E. Jurčišinová, M. Jurčišin, M. Menkyna, Phys. Rev. E 95, 053210 (2017)

    Article  ADS  Google Scholar 

  95. M. Chertkov, G. Falkovich, V. Lebedev, Phys. Rev. Lett. 76, 3707 (1996)

    Article  ADS  Google Scholar 

  96. G. Eyink, Phys. Rev. E 54, 1497 (1996)

    Article  ADS  Google Scholar 

  97. J.P. Bouchaud, A. Comtet, A. Georges, P. Le Doussal, J. Phys. (Paris) 48, 1445 (1987)

    Article  Google Scholar 

  98. J.P. Bouchaud, A. Comtet, A. Georges, P. Le Doussal, J. Phys. (Paris) 49, 369 (1988)

    Article  Google Scholar 

  99. J.P. Bouchaud, A. Georges, Phys. Rep. 195, 127 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  100. J. Honkonen, E. Karjalainen, J. Phys. A 21, 4217 (1988)

    Article  ADS  Google Scholar 

  101. J. Honkonen, Yu.M. Pis’mak, A.N. Vasil’ev, J. Phys. A 21, L835 (1989)

    Article  Google Scholar 

  102. J. Honkonen, Yu. M. Pis’mak, J. Phys. A 22, L899 (1989)

    Article  ADS  Google Scholar 

  103. J.D. Fournier, P.L. Sulem, A. Pouquet, J. Phys. A 15, 1393 (1982)

    Article  ADS  Google Scholar 

  104. L.Ts. Adzhemyan, A.N. Vasil’ev, M. Gnatich, Theor. Math. Phys. 64, 777 (1985)

    Article  Google Scholar 

  105. P.C. Martin, E.D. Siggia, H.A. Rose, Phys. Rev. A 8, 423 (1973)

    Article  ADS  Google Scholar 

  106. C. De Dominicis, J. Phys. (Paris), Colloq. 37, C1–247 (1976)

    Article  ADS  Google Scholar 

  107. H.K. Janssen, Z. Phys. B 23, 377 (1976)

    Article  ADS  Google Scholar 

  108. R. Bausch, H.K. Janssen, H. Wagner, Z. Phys. B 24, 113 (1976)

    Article  ADS  Google Scholar 

  109. E. Jurčišinová, M. Jurčišin, Phys. Part. Nucl. 44, 360 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Jurčišin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jurčišinová, E., Jurčišin, M. & Menkyna, M. Anomalous scaling in the Kazantsev-Kraichnan model with finite time correlations: two-loop renormalization group analysis of relevant composite operators. Eur. Phys. J. B 91, 313 (2018). https://doi.org/10.1140/epjb/e2018-90511-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90511-0

Keywords

Navigation