Skip to main content
Log in

Early years of Computational Statistical Mechanics

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

Evidence that a model of hard spheres exhibits a first-order solid-fluid phase transition was provided in the late fifties by two new numerical techniques known as Monte Carlo and Molecular Dynamics. This result can be considered as the starting point of computational statistical mechanics: at the time, it was a confirmation of a counter-intuitive (and controversial) theoretical prediction by J. Kirkwood. It necessitated an intensive collaboration between the Los Alamos team, with Bill Wood developing the Monte Carlo approach, and the Livermore group, where Berni Alder was inventing Molecular Dynamics. This article tells how it happened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alder B. J. 1990, Interview of Berni Alder by G. Battimelli and D. Frenkel on the American Institute of Physics web site, https://www.aip.org/history-programs/niels-bohr-library/oral-histories/30662

  2. Alder B. J. 1992, in Microscopic Simulations of Complex Hydrodynamic Phenomena, edited by M. Mareschal and B. L. Holian (Plenum Press, New York): pp. 425–430

  3. Alder B. J. and Wainwright T. E. 1957, J. Chem. Phys. 27: 1208–1209

    Article  ADS  Google Scholar 

  4. Alder B. J. and Wainwright T. E. 1958, Molecular Dynamics by Electronic Computers, in International Symposium on the Statistical Mechanical Theory of Transport Processes, Brussels, 1956, edited by I. Prigogine (Interscience, New York): pp. 97–131

  5. Alder B. J. and Wainwright T. E. 1959, Mol. Mot. Sci. Am. 201: 113–126

    Google Scholar 

  6. Alder B. J. and Wainwright T. E. 1963, Investigation of the Many-Body Problem by Electronic Computers, Chap. 29 in The Many-Body Problem, edited by J. K. Percus (Interscience, New York): pp. 511–522. See also the verbatim transcription of the discussions of the round table on statistical mechanics: pp. 493–509

  7. Alder B. J., Frankel S. P. and Lewinson V. A. 1955, J. Chem. Phys. 23: 417

    Article  ADS  Google Scholar 

  8. Anderson H. L. 1987, Los Alamos Sci. 14: 96

    Google Scholar 

  9. Bernard E. P. and Krauth W. 2011, Phys. Rev. Lett. 107: 155704

    Article  ADS  Google Scholar 

  10. Ciccotti G. and Ferrario M. 2017, Private communication

  11. Ciccotti G., Frenkel D. and McDonald I.R. (Eds.) 1987, Simulation of Liquids and Solids (North-Holland, New York)

  12. Dauxois T., Peyrard M. and Ruffo S. 2005, Eur. J. Phys. 26: S3–S11

    Article  Google Scholar 

  13. Feller W. 1970, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd edn. (J. Wiley, New York)

  14. Gubernatis J. 2005, Phys. Plasma 12: 057303

    Article  ADS  MathSciNet  Google Scholar 

  15. Kirkwood, J. G. 1951, Crystallization as a Cooperative Phenomenon, in Phase Transformations in Solids, edited by R. Smoluchowski, J. E. Mayer and W. A. Weyl (Wiley, New York): pp. 67–76

  16. Kosterlitz J.M. 2017, in Proceedings of the Symposium in Honor of Dr. Berni Alder’s 90th Birthday, Advances in the Computational Sciences, edited by E. Schweger, B. M. Rubenstein and S. B. Libby (World Scientific)

  17. Lebowitz J. L., Percus J. K. and Verlet L. 1967, Phys. Rev. 153: 250

    Article  ADS  Google Scholar 

  18. Metropolis N. 1987, Los Alamos Rev. 15: 125–130

    MathSciNet  Google Scholar 

  19. Metropolis N. and Ulam S. 1949, J. Am. Stat. Assoc. 44: 335–341

    Article  Google Scholar 

  20. Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H. and Teller E. 1953, J. Chem. Phys. 21: 1087–1092

    Article  ADS  Google Scholar 

  21. Press, W. H., Teukolsky S. A., Wetterling W. T. and Flannery B. P. 2007, in Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, New York)

  22. Rahman A. 1964, Phys. Rev. 136A: 405

    Article  ADS  Google Scholar 

  23. Rosenbluth M. N. 2003, Marshall Rosenbluth, interview by K.-H. Barth on the AIP web site, within the Niels Bohr Library and Archives, https://www.aip.org/history-programs/niels-bohr-library/oral-histories/28636-1

  24. Rosenbluth M. N. and Rosenbluth A. W. 1954, J. Chem. Phys. 22: 881–884

    Article  ADS  Google Scholar 

  25. Verlet L. 1990, The Origins of Molecular Dynamics, in In Memoriam Aneesur Rahman, available from the Cecam web site’s archives, https://www.cecam.org/img/archive/In_Memoriam_Aneesur_Rahman.pdf

  26. Wainwright T.E. and Alder B. J. 1958, Nuovo Cimento Suppl. 9: 116

    Article  Google Scholar 

  27. Wood W. W. 1986, Early History of Computer Simulations in Statistical Mechanics, in Molecular-Dynamics Simulation of Statistical-Mechanics Systems, edited by G. Ciccotti and W. G. Hoover (North-Holland, New York): pp. 3–14

  28. Wood W. W. 1996, Chap. 36 in Monte Carlo and Molecular Dynamics of Condensed Matter Systems, edited by K. Binder and G. Ciccotti (Italian Physical Society): pp. 908–911

  29. Wood W. W. and Jacobson J. D. 1957, J. Chem. Phys. 27: 1207–1208

    Article  ADS  Google Scholar 

  30. Wood W. W., Parker F.R. and Jacobson J. D. 1958, Nuovo Cimento Suppl. 9: 133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Mareschal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mareschal, M. Early years of Computational Statistical Mechanics. EPJ H 43, 293–302 (2018). https://doi.org/10.1140/epjh/e2018-90006-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2018-90006-7

Navigation