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Abstract

Latent dirichlet allocation (LDA) is a model widely used for unsupervised probabilistic
modeling of text and images. MCMC sampling from the posterior distribution is typically
performed using a collapsed Gibbs sampler that integrates out all model parameters except
the topic indicators for each word. The topic indicators are Gibbs sampled iteratively by
drawing each topic from its conditional posterior. The popularity of this sampler stems from
its balanced combination of simplicity and efficiency, but its inherently sequential nature is an
obstacle for parallel implementations. Growing corpus sizes and increasing model complexity
are making inference in LDA models computationally infeasible without parallel sampling.
We propose a parallel implementation of LDA that only collapses over the topic proportions in
each document and therefore allows independent sampling of the topic indicators in different
documents. We develop several modifications of the basic algorithm that exploits sparsity and
structure to further improve the performance of the partially collapsed sampler. Contrary to
other parallel LDA implementations, the partially collapsed sampler guarantees convergence
to the true posterior. We show on several well-known corpora that the expected increase in
statistical inefficiency from only partial collapsing is smaller than commonly assumed, and
can be more than compensated by the speed-up from parallelization for larger corpora.

Keywords: Topic models, bayesian variable selection, parallelism

1 Introduction

Topic modeling or Latent dirichlet allocation (LDA) is an immensely popular way to model
text probabilistically. LDA generates documents as probabilistic mixtures of topics. A given
document d is assigned a vector θd which is a probability distribution over K topics. Each topic
is a probability distribution φk over a dictionary of words. Each word position i in a document
d is accompanied with a latent topic indicator zi generated from θd, such that zi = k means
that the word in the ith position is generated from φk. Let θ denote the set of all θd, z the
vector with all zi in all documents, and let Φ be a K ×V matrix whose kth row holds φk over a
vocabulary of size V . The basic LDA model has been developed further by incorporating author
information (Rosen-Zvi et al., 2010), trends (Wang and McCallum, 2006) and supervision (Zhu
et al., 2013) to give a few examples.

One of the most popular inferential techniques for topic models is Markov Chain Monte
Carlo (MCMC) and the collapsed Gibbs sampler introduced by Griffiths and Steyvers (2004).
It is a useful building block to use in other more advanced topic models, but it suffers from its
sequential nature, which makes the algorithm practically impossible to parallelize in a way that
still generates samples from the correct invariant distribution. This is serious problem as textual
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data are growing at an increasing rate; some recent applications of topic models are counting the
number of documents in the millions and even billions (Yuan et al., 2014). The computational
problem is further aggravated since large corpora typically affords more complex models with a
larger number of topics.

The response to these computational challenges has been to settle with approximate methods
such as variational Bayes. Another solution has been to to use distributed approximations
of the collapsed sampler, such as the popular AD-LDA algorithm by Newman et al. (2009).
Unfortunately, these approximate methods come without bounds on the total approximation
error for the joint posterior (Ihler and Newman, 2012), and the only way to check the accuracy
in a given application is to compare the inferences to an MCMC sampler with convergence
guarantees.

A natural way to obtain a parallelized Gibbs sampler is to only collapse over the topic
proportions θ1, ..., θD in each document. The remaining parameters can then be sampled by
Gibbs sampling by iterating between the two updates z|Φ and Φ|z, where the topic indicators
zi are conditionally independent between documents and the rows of the topic-word matrix
Φ are independent given z. This means that the first step can be parallelized with regard to
documents, and the second step can be parallelized with regard to topics, thereby obtaining
large speedup over a sequential fully collapsed sampler.

A partially collapsed sampler is noted in Newman et al. (2009), but quickly dismissed because
of lower MCMC efficiency than the collapsed sampler. There are well known theoretical results
that collapsing generally gives a more efficient MCMC sampler Liu et al. (1995), but how much
the efficiency is increased by collapsing parameters is model-specific and must weighed against
the benefits of parallelization. One of our contributions is to show empirically that the efficiency
loss from using a partially collapsed sampler for LDA compared to a fully collapsed Gibbs
sampler is actually small. This result is consistent across different well-known datasets and for
different model settings using multicore machines. Furthermore, we show theoretically, under
some mild assumptions, that despite the additional sampling of the Φ matrix, the complexity of
our sampler is still only O(

∑N
i Kd(i)), where N is the total number of tokens in the corpus and

Kd(i) is the number of nonzero topics in the document of token i.
We also propose several extensions and refinements of the basic PC-LDA sampler to decrease

the sampling complexity of the algorithm. First, we propose a Gibbs sampling version of the
Walker-Alias tables proposed by Li et al. (2014b) together with binary search proposed by Yu
et al. (2014b). We also explore random scan strategies to sample selectively chosen parts of Φ
less frequently. Finally, we note that partial collapsing makes it possible to use more elaborate
models on Φ for which the fully collapsed sampler can not be applied. As an example, we develop
a spike-and-slab prior where we set elements of Φ to zero using ordinary Gibbs sampling, a type
of model shown to improve of topic model performance (Chien and Chang, 2014).

2 Related work

The problem of parallelizing topic models has been studied extensively (Ihler and Newman,
2012; Liu et al., 2011; Newman et al., 2009; Qiu et al., 2014; Smola and Narayanamurthy, 2010;
Smyth et al., 2009; Yan et al., 2009; Yu et al., 2014b; Ahmed et al., 2012) together with ways of
improving the sampling efficiency of the collapsed sampler (Yuan et al., 2014; Porteous et al.,
2008; Xiao and Stibor, 2010; Yao et al., 2009; Li et al., 2014a). The standard sampling scheme
for the topic indicators is the collapsed Gibbs sampler of Griffiths and Steyvers (2004) where
each zi is sampled from:
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P (zi = j|z−i,w) ∝
n
(wi)
−i,j + β

n
(·)
−i,j +Wβ︸ ︷︷ ︸
topic−word

(
n
(di)
−i,j + α

)
︸ ︷︷ ︸
document−topic

, (1)

where zi is the topic indicator of word i and z−i are all other topic indicators in the corpus. The

scalars α and β are prior hyperparameters on θ and Φ: θd
iid∼ Dirichlet(α) and φk

iid∼ Dirichlet(β).
The n(w) are the counts of topic indicators for each topic and word type and n(d) are the topic
counts for each topic and document. This sampler is sequential in nature due to the fact that
sampling one topic indicator is conditionally dependent on all other topic indicators in the whole
corpus. This makes it difficult to parallelize it in an efficient way, a problem that is similar for
the collapsed variational Bayes algorithm (Asuncion et al., 2009).

The Approximate Distributed LDA (AD-LDA) in Newman et al. (2009) is currently the most
common way to parallelize topic models. The idea is that each processor works in parallel with
a given set of topic counts in the word-topic count matrix n(w). The word-topic matrices at the
different processors are synced after each complete update cycle. This is an approximation of
the collapsed sampler since the word-topic matrix available on each local processor is sampled
in isolation from all other processors. The resulting algorithm is not guaranteed to converge
to the target posterior and will in general not do so. However, Newman et al. (2009) find
that this approximation works rather well in practice. A bound for the error of the AD-LDA
approximation for the sampling of each topic indicators has been derived by Ihler and Newman
(2012). They find that the error of sampling each topic indicator increases with the number of
topics and decreases with smaller batch sizes per processor and the total data size (Ihler and
Newman, 2012).

Other algorithmic improvements besides parallelization is suggested to improve the efficiency
and speed of the collapsed sampler, see the fast-LDA sampler of Porteous et al. (2008) for an
early attempt. A sparse LDA sampler is introduced by Yao et al. (2009), making the topic
indicator sampling both more memory and time efficient. Sparse LDA reduces the sampling of
each topic indicator from O(K) to O(max(Kw,Kd)) where Kw is the number of non-zero topics
for the given word type and Kd is the number of non-zero topics in the given document.

Another approach to increase the speedup of the algorithm is by using Walker-Alias tables,
proposed by Li et al. (2014a). This method uses similar ideas as in sparse LDA (Yao et al., 2009)
but introduce the Walker-Alias method to reduce the complexity of some of the draws to O(1)
amortized. Unfortunately, it is not possible to use the Walker-Alias method in a traditional
collapsed Gibbs sampler without resorting to the Metropolis-Hastings algorithm. Based on the
idea of Walker-Alias tables (Yuan et al., 2014) suggested using a cyclical Metropolis-Hastings
algorithm where the proposals for each topic indicator is cycled between a word-topic proposal
pw(k) and a document-topic pd(k) proposals reducing the sampling complexity to O(1) but
introducing inefficiency due to the usage of the Metropolis-Hastings algorithm. Yet another
approach is proposed by Yu et al. (2014a) where the problem with updating the cumulative sum
for sampling topics is solved using Fenwick Trees. This data structure can update a cumulative
sum in O(log(K)) and sample a topic indicator in O(log(K)) reducing the complexity of the
sampling but still making use of a Gibbs sampler.

3 Partially Collapsed Gibbs sampling for topic models

3.1 The basic partially collapsed Gibbs sampler

The main problem in parallelizing the sampler for LDA is that it is sequential. Both parameter
matrices Θ and Φ from the model have been integrated out, thereby making the sampling of
each topic indicator zi dependent on all the other topic indicators z−i in the corpus.

3



The PC-LDA sampler simulates from the joint posterior of z and Φ by iteratively sampling
from the conditional posterior p(z|Φ) followed by sampling from p(Φ|z). Note that the topic
proportions θ1, ..., θD have been integrated out in both updating steps and that both conditional
posteriors can be obtained in analytical form due to conjugacy. The advantage of only collapsing
over the θ’s is that the update from p(z|Φ) can be parallelized over documents and the update
from p(Φ|z) can be parallelized over topics (the rows of Φ are conditionally independent). This
gives the following sampler where we first sample the topic indicators for each document in
parallel as

p(zi = k|z(d)−i ,Φ, wi) ∝ φk,w ·
(
n
(di)
−i,j + αd,k

)
(2)

and then sample the rows of Φ in parallel as

φk ∼ Dir(n
(w)
k + β

(w)
k ). (3)

In the following subsection we propose a number of improvements of the basic PC-LDA
sampler to reduce the complexity of the algorithm and to speed up computations.

3.2 Sparse Gibbs sampling using the Walker-Alias method on z|Φ

The sampling of z|Φ in the basic PC-LDA sampler is of complexity O(K) per topic indicator,
making the sampling time linear in the number of topics. The Walker-Alias method in Li et al.
(2014a) exploits local sparsity and can be straightforward extended to the PC-LDA sampler by
decomposing

p(zi = k|z(d)−i ,Φ, wi) ∝ φk,w ·
(
αd,k + n

(di)
−i,j

)
= φk,w · αd,k︸ ︷︷ ︸

a

+φk,w · n
(di)
−i,j︸ ︷︷ ︸

b

.

To sample a topic indicator for a given token we first need to calculate the normalizing constant

q(z) =

K∑
k=1

φk,w ·
(
αd,k + n

(di)
−i,j

)
= σa + σb

where σwa =
∑K

k=1 φk,w · αd,k and σwb =
∑K

k=1 φk,w · n
(di)
−i,j .

With this decomposition we can use the sparsity of the local topic counts n
(di)
−i,j to calculate

σb by only iterating over the non-zero topic counts. This reduces the complexity from O(K) to
O(Kd) where Kd is the number of non-zero topics in a given document.

Following the approaches of sparse-LDA (Yao et al., 2009) and Alias-LDA (Li et al., 2014a)
we can now sample zi as follows. First calculate σb and the cumulative sum over non-zero topics
in the document. Draw a U ∼ U(0, σa + σb). If U ≤ σa, we use the Walker-Alias method to
sample a topic indicator with O(1). If U > σa, we choose a topic indicator using binary search
proposed by Xiao and Stibor (2010) with complexity O(log(Kd)).

Conditioning on Φ give us a couple of advantages compared to the original Walker-Alias
method for the collapsed sampler. First, the Alias-Walker method can be used in a Gibbs
sampler instead of using it as a proposal in a Metropolis-Hasting algorithm. Conditioning on
Φ also makes it possible to create one alias table per word type and per iteration and then
reuse these tables in sampling z. As a by-product of calculating the Walker-Alias tables we
also calculate the normalizing constant σa that can be stored and reused in sampling z. The
Alias-LDA sampler by Li et al. (2014a) construct a new alias table every kth iteration, making
it amortized O(1) but the number of times the Alias table is created depends on N . Using a
partially collapsed version implies that we only need to calculate one Alias table per iteration
and this can also easily be done in parallel.
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3.3 Computational improvements

3.3.1 Cached Marsaglia sampling for Φ

The Dirichlet can be seen as a normalized sum of gamma distributed variables

φi
d
=

γi∑W
j γj

where γi ∼ Γ(n
(wi)
k + β

(wi)
k , 1).

To sample the Dirichlet distribution we use the method of Marsaglia and Tsang (2000) to
sample the gamma variables efficiently. With this sampler it is also possible to increase the
speed further by using the sparsity in the n(w) count matrix. We do this by caching d = β − 1

3

and c = 1/
√

9d when n
(wi)
k = 0 for a given parameter in Φ. In most applications, the n(w) count

is very sparse and we can hence increase the speed of sampling each γi.

3.3.2 Load balancing through job stealing

A problem with parallelizing topic models taking advantage of sparsity in sampling is that it is
difficult to distribute documents evenly over the different cores. Even though it is possible to
distribute documents initially using a greedy heuristic, the load will become uneven due to the
random document sparsity. The partially collapsed approach allows us to rearrange document
between cores during the sampling of z|Φ. This is much more difficult using a collapsed sampling
approach since the fully collapsed sampler is conditional on all the other topic indicators. The job
stealing approach described in Lea (2000) allows cores that are finished sampling their allocated
documents to steal jobs from other cores that are not finished, thus evening out the load over
the cores during sampling. We have seen a significant improvement using this approach on large
datasets, improving the total running time of the sampler by up to 30% for the PUBMED corpus.
On small datasets such as Enron and NIPS the job stealing degrades performance probably by
introducing overhead in terms of a larger number of threads used and in the job stealing step
which introduces synchronization between threads. On our datasets and with the settings we
use, job stealing decreases performance on Enron with 20 topics but increases performance on
the Enron dataset with 100 topics.

3.3.3 Improved cache performance through optimal array storage

Different parts of the sampling process accesses the Φ matrix in different ways. In the topic
indicator sampling stage the Φ matrix is typically accessed by word type, while in the Φ sampling
stage the Φ matrix is accessed in a topic fashion. By transposing the Φ matrix between the
two sampling stages, storing it in type order during topic indicator sampling and in topic order
during Φ sampling, we can improve the cache performance of the sampler.

3.4 Time complexity of the sampler

Compared to the collapsed Gibbs sampler, the PC-LDA sampler adds the cost of sampling each
element in Φ. We argue that this cost is small in comparison to the cost of sampling z when the
number of tokens in the corpus is large.

In the basic collapsed sampler introduced by Griffiths and Steyvers (2004) the sampling
complexity per iteration is O(N ·K). By taking advantage of sparsity the complexity of sparse-
LDA in Yao et al. (2009) is reduced to O(

∑N
i maxi(Kd(i),Kw(i))) and Ω(

∑N
i mini(Kd(i),Kw(i)))

where Kd(i) is the number of nonzero topics in the document of token i and Kw(i) is the number
of nonzero topics in the word type w. But as has been shown in Li et al. (2014a) this complexity
will reduce to O(N ·K) and Ω(

∑N
i Kd(i)) as the number of documents grows large.
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It is easy to see that the complexity of sampling z in the PC-LDA sampler is O(
∑N

i Kd(i)),
but unlike fully collapsed samplers, we also need to sample Φ. It is therefore of interest to study
how the Φ matrix (i.e. K · V ) grows with the number of tokens (N), to determine the overall
complexity of the PC-LDA sampler. In most languages the number of word types follows quite
closely Heaps’ law, which models the relationship between word types and tokens as follows

V (N) = ξNϕ,

where ϕ < 1. Typical values for of ϕ is within the range of 0.4 to 0.6 and ξ varies between 5
and 50 depending on the corpus (Araujo et al., 1997).

The number of topics, K, in large corpuses is often modeled by a Dirichlet process mixture
where the expected number of topics is (Teh, 2010)

E(K(N)) = α log

(
1 +

N

α

)
.

Based on these assumptions we get the following proposition.

Proposition 1 Assuming a vocabulary size following Heaps’ law V = ξNϕ with ξ > 0, 0 < ϕ <
1 and the number of topics following the mean of a Dirichlet process mixture K = α log

(
1 + N

α

)
with α > 0, the complexity for the PC-LDA sampler is

O

(
N∑
i=1

Kd(i)

)
.

Proof. We need to show that there exists a finite c > 0 and a real number N0 such that for
all N ≥ N0

N∑
i

Kd(i) + αξ log

(
1 +

N

α

)
Nϕ ≤ c

N∑
i

Kd(i),

or equivalently that

1 + αξ log

(
1 +

N

α

)
Nϕ/

N∑
i

Kd(i) ≤ c.

Using the fact that N ≤
∑N

i Kd(i), it is sufficient to prove that for N ≥ N0 = 1, there exist a c
such that

1 + αξ log

(
1 +

N

α

)
Nϕ/N ≤ c. (4)

If we show that the result holds for Equation 4 then we also know that it holds for our original
problem since N ≤

∑N
i Kd(i) which means that the inequality 4 still holds. Let

f(N) = log

(
1 +

N

α

)
/N1−ϕ,

and note that
f(1) = log(1 + α−1) > 0 and lim

N→∞
f(N) = 0,

by the use of the standard limit

lim
x→∞

(
log(x)

xb

)
= 0 for b > 0.

By the continuity of f(N) there exist an R such that for all N > R, f(N) < f(1). Using the
extreme value theorem we know that at the interval [1, R] there exist an M = sup f(N). Hence,
for N ≥ N0 = 1, there exists a c such that c ≥ 1 + αξM , which completes the proof.
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3.5 Random scan sampling of Φ|z

The extra computations spent on sampling Φ in the PC-LDA sampler are small compared the
cost of sampling z when the number of topics is moderate, see Section 4.5. For models with a
large number of topics, the sampling of Φ starts to becomes more costly. For those situations, we
study a random scan sampler that spends relatively more time on sampling elements of Φ for the
word types that are the most common in the corpus. A large share of the Φ parameters typically
correspond to very rare word types, which therefore contribute very little to the likelihood
function. Random scan sampling can exploit this and update those insignificant parameters less
frequently than φ’s for common word types, thereby reducing computing time without sacrificing
too much computational efficiency.

In adaptive random scan Gibbs sampling, a given parameter φj is updated at Gibbs iteration
n with a probability ajn ( Latuszyński et al., 2013). Let an be a vector with the selection
probability for all parameters at iteration n. In each iteration we start out by first randomly
choosing which parameters to update and then updating the selected parameters using ordinary
Gibbs sampling. From Theorem 4.2 and Proposition 4.8 in ( Latuszyński et al., 2013) we know
that a random scan Gibbs sampler will be ergodic if the systematic Gibbs sampler is ergodic
and if the selection probabilities satisfy

|an−1 − an|
p→ 0 as n→∞,

where
p→ denotes convergence in probability. One simple way to ensure this condition is to set

an to a vector with fixed selection probabilities.
Let the kth row of Φ be decomposed into elements that have been selected for sampling at

a given iteration, φk,S , and the remaining non-selected elements φk,Sc . It then follows from Ng
et al. (2011) that

φk,S
1−

∑
s∈Sc φk,s

∼ Dir (φk,S |φk,Sc) . (5)

This allows us to update only a part of each φk without needing to iterate over all elements

of the φk vector. If we sample a given φ
(w)
k we need to recalculate the whole Walker-Alias

table for that word type. To reduce redundant computations we therefore suggest to sample all
φ’s for a given word type by first randomly selecting word types and then use the conditional

Dirichlet distribution for each topic. The cost of sampling each φ
(w)
k is the same but a larger

n
(wi)
k increases the acceptance probability of the gamma sampler.

We would like to sample word types with large n
(w)
k to cover as large part of the likelihood

as possible while minimizing the number of φ’s to sample. Our suggestion is to sample word
types proportional to the number of tokens with a systematic probability proportional to size
approach. We have an array with the cumulative counts of each word type and then choose the
word types for each l:th token, giving the sampling threshold. Word types with more than l

tokens will then be sampled with probability 1 and the others with probability n
(w)
· /l.

3.6 Variable selection in Φ

PC-LDA has the additional advantage that more complex models can be used for Φ. As an
example we derive a Gibbs sampler for a topic model with a spike-and-slab type prior for Φ that
assigns point masses at zero to a subset of the parameters in Φ, thereby providing more clear-
cut and interpretable topics. Variable selection is usually associated with increased computation
costs. An interesting aspect of variable selection on Φ is that it reduces the computational cost
of sampling z. The variable selection approach has previously been proposed by Chien and
Chang (2014) using variational Bayes.
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The rows of Φ are assumed to be independent a priori, exactly like in the original LDA prior,

so let us focus on a given row φk of Φ. Let n
(w)
k be the kth row of n(w), and let Ik = (Ik1, ..., IkV )

be a vector of binary variable selection indicators such that Ikv = 1 if φkv 6= 0, and Ikv = 0 if
φkv = 0. Define Ick to be the complement of Ik, i.e. the vector indicating the zeros in φk. Let
φk,Ik be a vector with nonzero elements of φk. Finally, let ñk be the total number of tokens
associated with the kth topic. Our variable selection Dirichlet prior is of the form

Ik1, ..., IkV | πk
iid∼ Bernoulli(πk)

φk,Ik | Ik ∼ Dirichlet(β),

and φk,Ick = 0 with probability one. It is important to note that this prior is obtained by
imposing the zero restrictions on the general Dirichlet prior in Ng et al. (2011) which makes the
prior consistent over all sets of zero restrictions.

The posterior sampling step for φk is replaced by sampling from φk,Ik |Ik, w from the condi-
tional Dirichlet distribution in Ng et al. (2011), followed by sampling from Ikv | I−kv, πk, w, for
v = 1, ..., V , where I−kv contains all of Ik except Ikv. By integrating over φk,Ik , it is straightfor-
ward to show that Ikv|I−kv, πk, w is Bernoulli with

Pr (Ikv = j|I−kv, πk, w) ∝ Γ (β)

Γ
(
ñk + (

∑
j 6=v Ikj + j)β

)πjk(1− πk)1−j .
Note that Ikv = 1 with certainty if the vth word appears at least once in topic k.

4 Experiments

In the following sections we study the properties of our PC-LDA sampler and the proposed
modifications of the basic algorithm. We compare our algorithm with the very efficient sparse
LDA implementation of AD-LDA in MALLET (called sparse AD-LDA below). Note that this
implementation reduces to an exact Sparse-LDA collapsed sampler when we are only using one
core.

4.1 Experiments

4.1.1 Corpuses and settings

We use the same three datasets as in Newman et al. (2009) to evaluate the PC-LDA sampler.
Some key summaries of the corpuses can be seen in Table 1.

Corpus V D N

NIPS1 12 375 1 499 1 931 939
Enron2 28 099 39 860 6 412 150
PubMed3 141 043 ∼8 200 000 ∼785 000 000

Table 1: Corpuses with vocabulary size (V ), the number of documents (D), and tokens (N).

In all experiments, we set the prior hyper-parameters β to 0.01 and α to 0.1. As shown
in Section 4.5, the sparsity structures from this prior gives an advantage to sparse AD-LDA
over the PC-LDA sampler. Following common practice, we remove rare words before fitting the
models. We remove the most rare word types that together make up less than 0.1% of the whole
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corpus ( corresponding to 12 or less occurrences of a word for Nips, 14 for Enron and 150 for
PubMed); stop words are removed using a standard stop word list.

We evaluate the convergence of the samplers using the log-likelihood marginalized with
respect to Φ and θ, which is comparable across all algorithms. Since the convergence behavior
depend on the initialization state of the Gibbs sampler we use the same seed to initialize the
different samplers to the exact same starting state.

4.1.2 Hardware and software

The samplers are implemented in Java using version 2.0.7 of the MALLET framework (Mc-
Callum, 2002). All compared samplers are also MALLET implementations, with the aim of
minimizing differences in results that come from implementations rather than underlying algo-
rithms. The code of our sampler has been released as plug-in to the MALLET framework and
can be found at GitHub1(Jonsson, 2015). The computations have been performed on resources
provided by Link̈ı¿œping University (LiU) at the National Supercomputer Centre (NSC). The
speedup experiments were conducted using the HP Cluster Platform with DL170h G6 compute
nodes with 4-core Intel Xeon E5520 processors at 2.2GHz. All experiments except the speedup
study use 2 sockets (8 cores) with 24 GB memory nodes. In the speedup experiment we used 8
sockets (64 cores) with 1024 GB memory.

4.2 Efficiency of the partially collapsed sampler

The first experiment studies the efficiency of the new sampler compared to the collapsed sampler.
This is motivated by the fact that integrating out parameters will always improve mixing (Liu
et al., 1995). The question is how much worse the sampling efficiency of the PC-LDA sampler
will be compared to a fully (sequential) collapsed sampler. The implementation we are using for
this is the standard collapsed sampler included in the MALLET framework.

Each experiment starts with a given random seed and runs for 10 000 iterations (to ensure
convergence) using the sequential collapsed Gibbs sampler (the gold standard). The topic in-
dicators z in the last iteration is then used as initialization point for both a collapsed sampler
and a PC-LDA sampler from which we subsequently perform two sub-runs with the collapsed
sampler and two with the PC-LDA sampler per experimental setup.

The parameters Θ and Φ are subsequently sampled from p(Θ,Φ|z):

θd,k|z ∼ Dir(n
(d)
k + α)

φk,w|z ∼ Dir(n
(w)
k + β),

for each of 2 000 iterations for both the collapsed and the PC-LDA. To calculate the total
inefficiency of the MCMC sample we calculate the inefficiency for the 1 000 top words for
each topic (Φ) and 1 000 random documents (Θ) making the estimate of inefficiency based on
2000 · K parameters. To estimate the inefficiency factor for each parameter we compute the
spectral density at 0 using the coda package (Plummer et al., 2006) in R.

The results from the the first experiment can be seen in Table 2 and 3; the other experiments
gave very similar inefficiencies and are not reported. We conclude that the increase in inefficiency
of the chains from not collapsing out Θ is unexpectedly low. Comparing the mean efficiency
factor between the collapsed and the PC-LDA sampler it is easy to see that the PC-LDA sampler
is only slightly less efficient than the collapsed (gold standard) for Θ, and the two samplers have
very similar efficiency for the θ parameters (which are integrated out in both samplers).

1http://books.nips.cc
2http://cs.cmu.edu/ enron
3https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
1https://github.com/lejon/PartiallyCollapsedLDA/
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Data Topics Collapsed PC-LDA Ratio

Enron 20 3.312 (4.78) 3.535 (6.02) 1.067
Enron 100 2.205 (4.96) 2.287 (5.28) 1.037
NIPS 20 10.767 (32.01) 12.536 (46.56) 1.164
NIPS 100 6.635 (14.18) 7.449 (15.76) 1.123

Table 2: Mean inefficiency factors (standard deviation in parantheses) of Θ..

Data Topics Collapsed PC-LDA Ratio

Enron 20 5.002 (19.86) 5.031 (14.65) 1.0058
Enron 100 17.843 (49.22) 22.462 (58.00) 1.2588
NIPS 20 28.135 (73.45) 31.474 (81.05) 1.1187
NIPS 100 16.163 (43.12) 23.850 (55.55) 1.4756

Table 3: Mean inefficiency factors standard deviation in parentheses) of Φ.

4.3 Random scan

In most applications of topic models the number of topics are quite modest, but in some sit-
uations more extreme number of topics is needed. In those situations the sampling of the Φ
matrix will dominate the total sampling time (as shown in Section 4.5). For such situations we
propose to use random scan sampling to focus the sampling of Φ to those parts that contribute
a lot to the likelihood by using systematic sampling proportional to tokens. To investigate the
effect of convergence and computing time we run a total of five seeds for the sampling thresholds
l = 100, 200, 500 and 1000 in the systematic sampling of word types for the Enron corpus. Since
the Φ matrix is relatively cheap to sample for smaller number of topics, we study the effect for
more extreme situations with K = 100 and K = 1000 for the Enron corpus.

We can see the resulting chains in Figure 1 and how the convergence in log-likelihood develops
as a function of runtime. Each experiment is run a total of 10 000 iterations.

Figure 1: Random scan convergence for the Enron dataset.

It is clear from Figure 1 that the running time decreases with a higher threshold due to the
fact that Φ is subsampled (shorter lines). But the efficiency of the samplers is getting worse
in an even faster pace. So no one threshold value will improve over the full sampler where the
whole Φ is be sampled in each iteration. It also seems like this effect is independent of K.

4.4 Full posterior error with approximate distributed LDA

One of the most popular parallelizations of LDA is using AD-LDA. We know that the approxima-
tion will have some effect on sampling each topic indicator, but we have not found any studies
on the effect on the joint posterior distribution. We start the sampler with the same initial
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state with respect to the topic indicators z and then run the sampler with different numbers of
cores/partitions to see the effect on which mode the sampler converged to. The purpose is to
study the effect of the approximation on the full joint posterior distribution p(z). We studied
the effect with different cores (partitions) both for the NIPS and Enron dataset for K = 20 and
K = 100. To be sure that the effect of the posterior is not just due to an unlikely partition of the
data we randomly reshuffled the documents in the different partition so that each experiment is
run with a different random partition of the documents. We then study the effect for 10 different
seeds per setup. Due to comptational problems a total of 6 seeds were removed.
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Figure 2: Log-likelihood convergence and sparsity for NIPS K = 100.
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Figure 3: Log-likelihood convergence and sparsity for NIPS K = 20.
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Figure 4: Log-likelihood convergence and sparsity for Enron K = 100.
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Figure 5: Log-likelihood convergence and sparsity for Enron K = 20.

With the exception of the Enron corpus with 20 topics, there is a clear tendency for sparse
AD-LDA to converge to a lower mode as more cores are used to parallelize the sampler. To
get some more insights into this convergence behavior of AD-LDA the figures also displays the
sparsity of the n(w) and n(d) matrices (fraction of zero elements) as a function of the sampling
iterations. The figures show that the sparsity of n(w) decreases while the sparsity in n(d) increases
as more cores are added. We interpret theses results as the AD-LDA posterior drifting towards
finding a better local model on each core (a more sparse n(d) matrix) and a less good global
model (a more dense n(w) matrix). These empirical results should be followed up by a careful
theoretical analysis, but that is beyond the scope of this paper.
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We can also see that there can be quite different levels that the sparsity ends up into using
the collapsed sampler. It is not uncommon that the collapsed sampler ends up in a less spare
mode, most clearly this can bee seen in Figure 2 where the global matrix n(w) ends up in four
different modes, while the partially collapsed sampler in all runs and examples end up in a more
sparse mode this is indifferent to the number of cores.

In Ihler and Newman (2012) the error of sampling individual topic indicators is studied in
detail and they are able to bound the error introduced by the approximation. They reason that
it is not tractable to analyze the full posterior but assume that “the joint error will be decreased
at each step by the progress of Gibbs sampling towards the stationary distribution” (Ihler and
Newman, 2012). One of the results of Ihler and Newman (2012) is that the the error of sampling
each topic indicator using AD-LDA is approximately 4

√
T/NP , where T is the number of topics,

N is the number of tokens and P is the number of partitions (cores). We can see a similar result
for the joint posterior. When the number of topics increases in relation to the number of tokens,
the sampler converges to a lower mode. But unlike the result in Ihler and Newman (2012) we
also see a lower mode as the number of partitions increases. This effect can only be seen when
the sampler is initialized from the same state for each run with different number of cores, which
is probably why this problems has gone unnoticed in the literature. We have not found any large
difference in the top words in the different modes on the Enron and NIPS data, but the results
in Figure 2, 3, 4 and 5 clearly raise concerns about the effect of the AD-LDA approximation on
the joint posterior in large parameter spaces. Especially in situations like those in Yuan et al.
(2014) where the size of n(w) is larger than the number of tokens.

4.5 Prior effects and sampling time of Φ

Our choice of prior hyper-parameters α = 0.1 and β = 0.01 in all experiments influences the
sparsity of n(w) and n(d), and hence also the speed of the different samplers. Sparse LDA is
mainly fast for sparse n(w) while PC-LDA and Alias LDA uses the sparsity of n(d). Figures 6
contrast the computing time per iteration of the different samplers for different values of α (0.1
and 0.01) and β (0.1 and 0.01) for the Enron corpus with K = 100 and K = 1000. It is clear
from these figures that our benchmark prior with α = 0.1 and β = 0.01 implies a sparsity that is
actually disadvantageous for our PC-LDA sampler; PC-LDA gains in speed relative to AD-LDA
if we switch to any of the three alternative prior settings. We can also see that the sampling of Φ
does not dominate total computing time in a model with 100 topics on a medium sized corpus,
but that Φ takes 2-3 times longer to sample than z when K = 1000 for the Enron corpus.
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Figure 6: Time per iteration for K = (100, 1000) for the Enron corpus.

4.6 Speedup and parallelism

We perform a set of performance measurements to determine the runtime efficiency and parallel
scaling characteristics of our sampler compared to reference samplers. Table 4 summarizes the
setup of the measurements. We study the speedup behavior in the two most interesting aspects
of the samplers’ runtime characteristics, time until convergence and running time.
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First, we want the sampler to reach convergence as fast as possible (burn-in) so we measure
the running time (rather than the number of iterations) for the samplers to converge. We
define convergence as having occurred when a sampler has reached within 1% of the sparse
LDA sampler’s maximum log-likelihood value. We choose this definition because the sequential
collapsed sampler is recognized to be the gold standard in terms of convergence behavior. Similar
approaches have been used previously to assess convergence performance in mixture models
Villani et al. (2009).

The second aspect is the total running time of the sampler, i.e. time to burn-in plus the
time for the sampler to explore the posterior distribution of the parameters. Ideally we want
both these parts to be done as fast and efficiently as possible. We initialize z at the same state
for each seed and run a total of 20 000 iterations.

Dataset Sampler Topics No. Cores Priors

NIPS, Enron Sparse LDA 20, 100 1 α = 0.1, β = 0.01
NIPS, Enron PC-LDA 20, 100 1,4,8,16,32,64 α = 0.1, β = 0.01
NIPS, Enron Sparse AD-LDA 20, 100 4,8,16,32,64 α = 0.1, β = 0.01

Table 4: Summary of the speedup experiments.

Real speedup (Sahni and Thanvantri, 1996) can be defined as:

RealSpeedup(I, P ) =
Time(I,Qb, 1)

Time(I,Qp, P )
, (6)

where Time(I,Qb, 1) is the time it takes to solve the task I using the best sequential program.
Qb on 1 core, and Time(I,Qp, P ) is the time it takes to solve task I using program Qp on
P processors. In our measurements, sparse LDA is the fastest sampler on one core for all
configurations, so we will take sparse LDA to be the “best sequential program” Qb and compare
it with the PC-LDA sampler and AD-LDA as Qp in our measurements for real speedup.

●

● ● ● ● ●

●

● ● ●
●

●

●

●

● ●

●

●

●

●

●
●

●
●

0

1

2

3

4

5

0 20 40 60
No. Cores

T
im

es
 fa

st
er

●

● ● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0

1

2

3

4

5

0 20 40 60
No. Cores

T
im

es
 fa

st
er

Topics          ● 100 20

Algorithm       ● ●AD−LDA PC−LDA

Dataset       enron nips

Figure 7: Real speedup to reach convergence (left) and speedup measured in total running time
(right) of PC-LDA averaged over five seeds compared with the fastest implementation on one
core (Sparse AD-LDA).

Figure 7 shows that we obtain a reasonable speedup to convergence up to eight cores on
the Enron and NIPS datasets with 20 topics. The maximum speedup with respect to time to
convergence we get on 20 topics is roughly 2.5 times on the Enron dataset with eight cores and
roughly two times on the NIPS dataset with 16 cores. With relatively few topics compared to
the size of the dataset the cost of sampling Φ is more than offset by the gains from parallelism.

When we increase the number of topics from 20 to 100 on these datasets, we do not get any
speedup compared to sparse LDA on one core no matter how many cores we use. This is because
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the number of topics is relatively large compared to the size of the dataset, and hence sparse
LDA gets a maximum effect of the sparsity of n(w). But as shown below this effect diminish for
larger corpora such as the PUBMED corpora. The sampling of Φ in the PC-LDA sampler takes
three to five times longer when going from 20 to 100 topics, and is not offset by a large amount
of topic indicator sampling, thus eating up the gains we get from the parallelization.

Figure 7 shows that the general speedup characteristics of the PC-LDA sampler is similar
to those of the sparse AD-LDA sampler. The negative speedups after eight cores are probably
due to cache effects and communication costs. Here we also see the effect of the approximation
of the AD-LDA approach described in Section 4.4, in that it never reaches within 1% of the
max log-likelihood value of the collapsed sampler on two configurations (this is indicated with
a speedup of zero on the NIPS dataset with 20 and 100 topics in the left part of Figure 7) as
the number of cores increase.

When it comes to the total time speedup we see how the PC-LDA sampler is penalized on
small datasets with many topics, such as the NIPS dataset with 100 topics. In this case we get
a slight speedup (roughly 20%) with four, eight and 16 cores compared to sparse LDA with one
core. In contrast, for larger dataset with fewer topics, such as the Enron dataset with 20 topics,
we get the maximum speedup (roughly five times) with eight cores.

To study the weak scaling characteristics of the samplers (i.e., to increase the problem size
when increasing the number of CPU cores) we run them for 1 000 iterations on the PUBMED
corpus. Since running a sampler using only one core on this large dataset would take too long,
we cannot calculate the traditional real speedup as defined according to Eqns. 6 on this dataset.
In this experiment we therefore compare our PC-LDA sampler with sparse AD-LDA relative to
the execution time on 16 cores. We ran the samplers on one seed for 100 topics as well as for
1000 topics. The results are summarized in Table 5 and Figure 8.

Sampler No. Topics Total Runtime Speedup
Relative 16

Cores

Speedup
Relative 32

Cores

PC-LDA 100 3.59 hours 1.99 1.39
Sparse AD-LDA 100 6.70 hours 1.44 1.09
PC-LDA 1000 13.61 hours 1.85 1.50
Sparse AD-LDA 1000 10.24 hours 1.65 1.24

Table 5: Speedup results on PUBMED (64 cores).

In this setting the PC-LDA sampler is faster for the smaller number of topics but slower on
1000 topics. Figure 8 on the other hand shows that the PC-LDA is very competitive when it
come to speed to convergence. In some situations PC-LDA is actually faster to convergence,
making it an attractive alternative for larger corpuses.
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Figure 8: Convergence for the PUBMED corpus for 100 topics (left) and 1000 topics (right).

A conclusion from our speedup experiments is that PC-LDA have much the same general
characteristics as sparse AD-LDA in terms of speedup through parallelization but with a slightly
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higher overhead from the additional sampling of Φ. This effect is particularly notable with large
number of topics on relatively small datasets. Several characteristic of the data and the models
affect the relative performance of the algorithms. The largest effect is in the number of selected
topics, which affects the sparsity of the n(w) and n(d) matrices and therefore heavily affects
the speed of the samplers. Another important factor is the choice of prior, and we document
in Section 4.5 that our speedup experiments are performed with a generally unfavorable prior
setting (α = 0.1 and β = 0.01) for the PC-LDA sampler.

The effects in terms of strong scaling diminishes after eight cores, but we are able to handle
substantially larger datasets such as PUBMED that could not be practically handled using only
one core (weak scaling). In this case we also see continued improved performance of 85-99%
when going from 16 to 64 cores. The general conclusion is that the PC-LDA sampler is faster
than the sparse AD-LDA approach when the number of topics is small to medium while the
sparse AD-LDA is faster when the number of topics is large. It should again be emphasized
however that PC-LDA is guaranteed to converge to the correct posterior whereas AD-LDA
only approximates the posterior with no known bounds on the approximation error of the joint
posterior.

4.7 Variable selection

Earlier research has already concluded that introducing variable selection for Φ in LDA can
reduce the perplexity and increase sparsity Chien and Chang (2014). Here we study the effect
of variable selection for the Enron and NIPS corpus with π = 0.5, 0.1, 0.001, 0.00001 and K =
20, 100. It is clear from Figure 4.7 and 4.7 that the variable selection sampling can be used to
force sparsity into the Φ matrix by setting a rather strong prior of π = 0.0001. In this situation
the sparsity of Φ is quite large, but on the other hand the document topic distribution of z is
becoming much less sparse as a consequence.

Figure 9: Document sparsity, word-type sparsity and proportion of zeroes in Φ for π = 0.5.

Figure 10: Document sparsity, word-type sparsity and proportion of zeroes in Φ for π = 0.0001.

16



Figure 11: Log-Likelihood values for the Enron corpus.

Figure 12: Log-Likelihood values for the NIPS corpus.

With a quite large n(w), as in the case of NIPS with K = 100, the introduced sparsity in Φ
seems to produce better performance of the sampler with a better log-likelihood. This can be
expected since the matrix n(w) in these situations are quite sparse, making a model with some
elements of Φ set to 0 a reasonable model. But introducing a too strong prior towards sparsity
seems to reduce the speed of convergence.

The improved model performance from a spike-and-slab prior should be weighed against the
increased cost in sampling Φ. When only a small subset of elements in Φ are zero we need
to perform a Bernoulli draw for all topic-word combination with zero counts (using a costly
log-gamma function) in addition to the gamma draws for the elements in Φ. On the other hand,
variable selection in Φ may lead to a better model and the obtained sparsity in Φ may be used
to speed up the z-sampling with ideas from sparse LDA.

5 Discussion and conclusions

We propose PC-LDA, an enhanced partially collapsed Gibbs sampler for LDA. Contrary to
state-of-the-art parallel samplers such as AD-LDA, our sampler is guaranteed to converge to the
true posterior. This is an important property as our experiments indicate that AD-LDA can
converge to a suboptimal posterior mode which also decreases with the number of cores used
for parallelization.

Our PC-LDA sampler is shown under reasonable assumptions to have the same complex-

ity O
(∑N

i=1Kd(i)

)
as other efficient collapsed sparse samplers such as Alias-LDA. Moreover,

contrary to conventional wisdom, we demonstrate on several commonly used corpora that a par-
tially collapsed sampler has nearly the same MCMC efficiency as the gold standard sequential
collapsed sampler, but enjoys the advantage of straightforward parallelization. Our results show
significant speedups on up to 8 cores on the moderately sized NIPS and Enron corpora, and up
to at least 64 cores on the relatively large PubMed corpus.
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An important advantage of PC-LDA is that it allows for more interesting non-conjugate
models for Φ, such as regularized topic models Newman et al. (2011). As an example, we
show how a spike-and-slab prior for Φ can be easily implemented with PC-LDA. Our results
demonstrate and the spike-and-slab prior can give a dramatic increase in sparsity, and thereby
possibly also make the solution more interpretable, without severely degrading model fit.

In summary, we propose and evaluate a new partially collapsed Gibbs sampler for LDA
with several algorithmic improvements. PC-LDA is fast, efficient and correct, and is applicable
in a larger class of extended LDA models than the currently popular collapsed and AD-LDA
samplers.
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