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Abstract

We introduce BilBOWA (“Bilingual Bag-of-Words without Alignments”), a sim-
ple and computationally-efficient model for learning bilingual distributed repre-
sentations of words which can scale to large datasets and does not require word-
aligned training data. Instead it trains directly on monolingual data and extracts
a bilingual signal from a smaller set of raw text sentence-aligned data. This
is achieved using a novel sampled bag-of-words cross-lingual objective, which
is used to regularize two noise-contrastive language models for efficient cross-
lingual feature learning. We show that bilingual embeddings learned using the
proposed model outperforms state-of-the-art methods on a cross-lingual document
classification task as well as a lexical translation task on the WMT11 data. Our
code will be made available as part of the open-source word2vec toolkit.

1 Introduction

Raw text data is freely available in many languages, yet labeled data – e.g. text marked up with
parts-of-speech or named-entities – is expensive and mostly available for English. Although several
techniques exist that can learn to map hand-crafted features from one domain to another [4, 7, 18], it
is in general non-trivial to come up with good features which generalize well across tasks, and even
harder across different languages. It is therefore very desirable to have unsupervised techniques
which can learn useful syntactic and semantic features that are invariant to the tasks or languages
that we are interested in. Unsupervised distributed representations of words capture important syn-
tactic and semantic information about languages and these techniques have been succesfully applied
to a wide range of tasks [6, 19], across many different languages [1]. Inducing these representations
usually involves training a neural network language model (NLM) [2], where words are represented
as learned, real-valued feature vectors referred to as word embeddings. These models have the prop-
erty that similar embedding vectors are learned for similar words during training. This improves
generalization when the embedding vectors are used as features on word- and sentence-level predic-
tion tasks.

Distributed representations can also be induced over different language-pairs and can serve as an ef-
fective way of learning linguistic regularities which generalize across languages, in that words with
similar syntactic and semantic properties are represented using similar vectorial representations (i.e.
embed nearby in the embedded space). This is especially useful for transferring the limited label
information from high-resource to low-resource languages, and has been demonstrated to be effec-
tive for document classification [12], outperforming a strong machine-translation baseline; as well
as named-entity recognition and machine translation [21, 15]. However, one significant drawback of
these methods is the high computational cost of inducing the embeddings. As a first step, current
methods [12, 21] rely on performing a word-alignment step over sentence-aligned data to obtain
the word translation-pair co-occurrence frequencies prior to training the models. In a second step,
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two NLMs are trained jointly, with an added regularization term which penalizes large distances
between the learned embeddings of high-frequency translation pairs. Inducing word alignments is a
research field of its own, and in general a costly step. Moreover, monolingual NLMs are traditionally
criticized for their slow training speeds, with each training update scaling linearly in the vocabulary-
length, which can easily range in the tens or hundreds of thousands. Although faster methods exist
for training NLMs [3, 6, 16], evaluating the cross-lingual regularization term (which is based on
noisy word-alignments and in the worst case considers the O(V 2) possible word translation-pairs)
is still very expensive. Hence, previous work report training times on the order of weeks [12, 21].

We are motivated by the good results obtained using these methods, but we believe that the pro-
hibitively expensive training times limit the large-scale application of current approaches, and hence
in this paper we attack these high training costs head-on. We introduce BilBOWA (Bilingual Bag-
of-Words without Word Alignments), a family of simple, efficient algorithms for inducing bilingual
word embeddings (with a trivial extension to multilingual embeddings). BilBOWA does not require
word-level alignments, but instead extracts a bilingual signal directly from a limited sample
of raw-text, sentence-aligned, parallel data (e.g. Europarl) which it uses to align embeddings as
they are learned over monolingual training data. The only requirement is monolingual and parallel
training data in raw text form. Our contributions are:

• We introduce a novel, computationally-efficient sampled cross-lingual objective which
only considers sampled bag-of-words sentence-aligned data at each training step, thereby
avoiding the need for estimating word alignments;

• we experimentally evaluate the induced cross-lingual embeddings on a document-
classification and lexical translation task, where we show that our method outperforms
state-of-the-art methods, with training time reduced to minutes or hours compared to sev-
eral days for prior approaches;

• finally, we make available our efficient C-implementation as part of the open-source
word2vec toolkit1 to hopefully stimulate further research on cross-lingual distributed
feature learning.

2 Approaches to Learning Cross-lingual Word Embeddings

In the cross-lingual learning setup, the goal is to learn features which generalize well across different
languages. For instance, in the bilingual setup, we have two domains X1 (e.g. English) and X2 (e.g.
French). Our goal is to learn features (embeddings) θi for each word or phrase or document x(j)i
in Xj , such that similar units in each language are assigned similar embeddings (the monolingual
objectives), but additionally we also want similar units across languages to have similar represen-
tations (the cross-lingual objective). The latter property allows us to use the learned embeddings
as features for training a classifier to predict labels in one language (e.g. topics, parts-of-speech, or
named-entities) where we have labelled data, and then directly transfer it to a language for which
we do not have much labelled data.

From an optimization perspective, there are several approaches to how one can optimize these two
objectives. The simplest approach is to optimize each monolingual objective separately (i.e. train
embeddings on each language separately), and then enforce the cross-lingual constraints as a sep-
arate, disjoint, ‘alignment’ step. The alignment step consists of learning a function for projecting
the embeddings of words onto the embeddings of their translation pairs, obtained from a dictionary.
This was shown to be a viable approach by Mikolov et al. [15] who learned a linear projection from
one embedding space to the other. It was extended by Faruqui et al. [9], who simultanteously pro-
jected source and target language embeddings into a joint space using canonical correlation analysis.
The advantage of this approach is that it is very fast to learn the embedding alignments. The main
conceptual criticism of this approach is that it is not clear that a single transformation (whether lin-
ear or nonlinear) can capture the relationships between all words in the source and target languages.
Further, more practical, disadvantages are that it requires an accurate dictionary for the language-
pair and considers only one translation per word, ignoring the rich multi-sense polysemy of natural
languages. Since in this approach one is aligning the two embedding spaces as an independent,
disjoint step, we refer to this approach as offline alignment.

1https://code.google.com/p/word2vec/
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Figure 1: Schematic of the proposed BilBOWA model architecture for inducing bilingual word
embeddings. Two monolingual skipgram models are jointly trained while enforcing a sampled L2-
loss which aligns the embeddings such that translation-pairs are assigned similar embeddings in the
two languages (see text for more details).

A different approach is to leverage sentence-aligned parallel data and train a model to learn similar
representations for the aligned sentences. This is the approach followed by Hermann et al. [11]. The
advantage of this approach is that it is fast due to the noise-contrastive training criterion. The main
drawbacks of this method are that it can only train on limited parallel data, which is expensive
to obtain and not necessarily written in the same style or register as the domain where the features
might be applied (i.e. there is a strong domain bias).

Another approach is to jointly optimize the monolingual objectives J(·), with the cross-lingual
objectives enforced as a cross-lingual regularizer. To do this, we define a cross-lingual regulariza-
tion term Ω(·), and optimize everything jointly over the dataset D, e.g. in the bilingual setting (see
Figure 1 for a schematic):

JTOTAL = min
θ1,θ2

∑
j∈{1,2}

∑
i∈D

Jj(X
j
i ; θi)︸ ︷︷ ︸

monolingual objective

+ Ω(θ1, θ2)︸ ︷︷ ︸
cross-lingual objective

. (1)

This approach was shown to be useful by Klementiev et al. [12]. The advantages of this formulation
are that it enables one to train on any available monolingual data, which is both more abundant and
less biased than the parallel-only approach, since one can train on data which resembles the data you
will be applying the learned features to. The disadvantage is that the original model of Klementiev
et al. is extremely slow to train. The training complexity stems both from how they implement
their monolingual and cross-lingual objectives. For the monolingual objective they train a standard
neural language model for which the complexity of the output softmax layer grows with the output
vocabulary size. Therefore, in order to evaluate their model they had to reduce the output vocabulary
to only the 3000 most frequent words. The second reason for the slow training times is that their
cross-lingual objective considers the interactions between all pairs of words between the source and
target vocabulary at each training step, which scales as the product of the two vocabularies. This
work addresses these two issues individually, and in the following section we discuss the cross-
lingual component in more detail.

3 Joint-training Challenges

Consider the regularized cross-lingual objective presented in Eqn 1. This formulation captures the
intuition that we want to learn representations which model their individual languages well (the first
term) while the Ω(·) regularizer encourages representations to be similar for words that are related

3



across the two languages. Conceptually, this regularizer consists of minimizing a distance function
between the representations ri learned for words wi in the two domains, weighted by how similar
they are, i.e.

Ω(θ1, θ2) =
∑
wi∈V1

∑
wj∈V2

sim(wi, wj) · distance(ri, rj). (2)

where we use θ to denote all model parameters and ri to denote the embedding learned for word
wi. In other words, when this weighted sum (and hence its contribution to the total objective) is low,
we can be sure that words across languages that are similar (i.e. high sim(wij)) will be embedded
nearby each other.

Specifically, in the bilingual setting, word similarities can be expressed as a matrix A where aij
encodes the translation “score” of word i in one language (e.g. English, denoted e) with word j
in the other (e.g. French, denoted f ). If the K-dimensional word embedding row-vectors ri are
stacked to form a (V,K)-dimensional matrix R, then we can express what we will refer to as the
exact cross-lingual objective as follows:

ΩA(θ1, θ2) =
∑
i

∑
j

aij ||rei − rfj ||
2 (3)

= (Re −Rf )>A(Re −Rf ). (4)

where subscript A indicates that the alignments are fixed. A captures the relationships between all
V1 words in the one language with respect to all V2 words in the other language, and is indeed also
the source of the two main challenges in this formulation, namely:

1. how to derive or learn which words to pair as translation pairs (i.e. deriving/learning A);
2. how to efficiently evaluate Ω(·) during training, since naively evaluating it scales as the

product of the two vocabulary sizes O(V1V2) at each training step.

In the following section we describe the model and how we address both the high cost of evaluating
the monolingual objectives, as well as the high cost of evaluating the vocabulary interactions.

4 The Model

As we argue in Section 3, the primary challenges with existing bilingual embedding models are
their computational complexity (due to an expensive softmax or an expensive regularization term,
or both) and, perhaps even more importantly, the strong domain bias that is introduced by models
that train only on parallel data such as Europarl [11]. In this section we introduce the BilBOWA
model which addresses both theses issues (see Figure 1 for a schematic overview of the model). As
an overview: First, we replace the standard softmax objective with a more efficient noise-contrastive
objective, allowing monolingual training updates to scale independently of the vocabulary size. Sec-
ond, we only consider sampled, bag-of-words sentence-aligned data for the cross-lingual objective.
This avoids the need for estimating word alignments, but moreover, the computation of the regular-
ization term reduces to only the words in the observed sample (compared to considering the O(V 2)
worst-case possible interactions at each training step in the naive case).

4.1 Learning Monolingual Features: A Bag-of-words Language Modelling Objective

Since we do not care about language modelling, but more about feature learning, an alternative to
the softmax is to use a noise-contrastive approach to score valid, observed combinations of words
against randomly sampled, unlikely combinations of words. This idea was introduced by Collobert
and Weston [6] where they optimized a margin between the observed score and the noise scores. In
their formulation, scores were computed on sequences of words, but in Mikolov et al. [15] this idea
was taken one step further and successfully applied to bag-of-word representations of contexts in
their continuous bag-of-words (CBOW) and skipgram models trained using the negative sampling
training objective. Any of these objectives would yield comparable speedup and could be used in
our architecture. In this work we opted for the skipgram model trained using negative sampling.

Specifically, for the English case (other languages follow symmetrically), let the input word em-
bedding matrix be R ∈ R(V,K) for a V -dimensional vocabulary and K-dimensional embeddings.
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As for all other NLMs, the model is trained on sampled word-context pairs (wt, h) where wt is an
integer target word id, and h is a sequence of the context word ids. We denote by bold h the K-
dimensional context-vector representation for a set of context words wi ∈ h. Finally, let x denote
the bag-of-words, one-hot, sparse vector representing the input context words, i.e. a V -length vector
with ones at the observed context-word ids and zeros everywhere else. We can then write h as the
bag-of-words sum of its individual word embedding row-vectors ri = R[i,:],

h =
∑
wi∈h

rwi
= R>x. (5)

Now, assume at each training step we have the context-vector representation h and the associatedK-
dimensional target-word embedding qt. Note that the output embeddings qi = Q[i,:] are distinct
from the input embeddings ri = R[i,:]. One motivation for this is that it allows the model to learn
that a word is not likely to be its own context, e.g. P (dog|dog) is unlikely, which it cannot represent
if the context-word dog and the target word dog uses the same vector [10]. We then sample k
‘negative’ word embeddings qn from the unigram distribution P (w), and maximize the following
negative sampling criterion over the dataset D:

max
θ

E
(h,wt)∼D

[
log σ(h>qwt

) +

k∑
i=1

E
wi∼Pn(w)

log σ(−h>qwi
))

]
(6)

where σ(z) = 1/(1+e−z) is the sigmoid function. By only summing over the k noise words during
each training step, this procedure scales only in the number of noise words we sample per training
case (typically 5 to 15) and not in the entire vocabulary V (typically tens to hundreds of thousands).

4.2 Learning Cross-lingual Features: The Ω term

Besides learning how words in one language relate to each other (previous section), our main goal
is to learn how words between the two languages relate to each other. Recall that the exact cross-
lingual objective ΩA(θ1, θ2) (Eqn 3) penalizes the Euclidian distance between the two embedding
spaces (Re and Rf ) proportional to their alignment frequency. Previous work approached this step
by performing a word-alignment step prior to training to learn the alignment matrix A. However,
performing this alignment step requires running Giza++ [17] or FastAlign [8] and training HMM
word-alignment models. This is both computationally costly and also noisy. We would like to
learn the translation correspondences without utilizing word alignments. In order to do that, we
directly exploit the parallel training data. As a first step, notice that since the alignment weights
can be made to sum to one, we can interpret the alignment weights as a distribution and write
Eqn 3 as an expectation over the distribution of English and French word alignment probabilities
aij = P (wei , w

f
j ),

ΩA(θ1, θ2) = E
(i,j)∼P (we,wf )

[
||rei − rfj ||

2
]

(7)

Since data is paired at the sentence level, we know that translation pairs for the en sentence occur
in the fr sentence, but we do not know where. We therefore make a naive assumption and assume
that each observed en word can potentially align with each observed fr word (i.e. we assume a
uniform word alignment model), for each word in the observed sentence pairs. We leave it to
future work to explore more advanced alignment models. Under this assumption, we can then
approximate Eqn 7 by sampling S m-length English and n-length French sentence-pairs (se, sf )
from the parallel training data:

ΩA(θ1, θ2) ≈ 1

S

∑
(se,sf )∈S

1

mn

∑
i∈se

∑
j∈sf

||rei − rfj ||
2 (8)

Notice that under a uniform alignment model, at time t each word in the sampled English sentence
s
(t)
e will be updated towards all words in the French sentence s(t)f . We can precompute this by simply

updating each word towards the summed bag-of-words sentence-vector defined similarly to Eqn 5.
Specifically, we set S = 1 and at training step t, we optimize the following sampled, approximate
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(a) No parallel subsampling.

(b) With parallel subsampling.

Figure 2: A t-SNE visualization of the same 100 most frequent English and German words trained
(a) without and (b) with parallel subsampling.

cross-lingual objective:

Ω
(t)
A (θ1, θ2) , || 1

m

m∑
wi∈s(t)e

rei −
1

n

n∑
wj∈s(t)f

rfj ||
2 (9)

where s(t)∗ denotes the t’th sampled sentence-pair drawn from the parallel corpus. In other words,
the BilBOWA-loss minimizes a sampled L2-loss between the bag-of-words sentence vectors of
the parallel corpus. On its own, this objective is degenerate since all embeddings would converge
to the trivial solution (by collapsing all embeddings to the same value), but coupled as a regularizer
with the monolingual losses, we find that it works well in practice. By sampling training sentences
from the parallel document distribution, this objective efficiently approximates Eqn 3 (the more two
words are observed together in a parallel sentence-pair, the stronger the embeddings for the two
words will be pushed together, i.e. proportional to aij).

4.3 Subsampling for better results

Eqn 9 is an approximation of Eqn 3. We are really interested in estimating the global word-alignment
statistics for a word-pair, i.e. aij . However, by sampling words at the sentence-level, the local
alignment statistics are skewed by the words’ unigram frequencies of occurrence in a given sentence
(i.e. regardless of alignment). Hence in practice, we find that Eqn 9 overregularizes the frequent
words. A simple solution to this is to subsample words from the parallel sentences according
to their unigram frequencies of occurrence, effectively flattening the unigram distribution to a
uniform distribution. In practice we found this to learn finer-grained cross-lingual embeddings for
the frequent words, as illustrated in Figure 2.

5 Implementation and Training Details

We implemented our model in C as an extension of the popular open-source word2vec toolkit2.
The implementation launches a monolingual skipgram model as a separate thread for each lan-
guage, as well as a cross-lingual thread, and all threads access the shared embedding parameters
asynchronously. For training the model, we make use of minibatch online asynchronous stochastic
gradient descent (ASGD), where at time step t, parameter θ is updated as

θ(t) = θ(t−1) − η ∂J
TOTAL

∂θ
(10)

2https://code.google.com/p/word2vec/
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Our initial implementation synchronized updates between threads, but we found that simply clip-
ping individual updates to [−0.1, 0.1] per thread was sufficient to ensure training stability and con-
siderably improved training speed. For monolingual training data, we use the freely available, pre-
tokenized Wikipedia datasets [1]. For cross-lingual training we use the freely-available Europarl v7
corpus [13]. Unlike the approach of Klementiev et al. [12] however, we do not need to perform a
word-alignment step first. Instead our implementation trains directly on the raw parallel text files
obtained after applying the standard preprocessing scripts that come with the data to tokenize, re-
case and remove all empty sentence-pairs. Embedding matrices were initialized by drawing from a
zero mean, unit-variance gaussian distribution. The negative sampling objectives (Eqn 6) require us
to sample k noise words per training pair from the unigram P (w) en and fr distributions. A naive
implementation of this step3 can easily run in O(V ) per sampling step, negating the computational
advantage of the noise-contrastive loss approach. However, there exist efficient algorithms for sam-
pling from a multinomial in O(1) with O(V ) setup cost [20], which is what we have used. 4 Doing
one training update therefore amounts to selecting a context-target (h, wt)-pair from each language
and sampling k noise words for each according to their unigram distribution. We set k to the average
number of words per sentence in the data, which was 25. Next we sample a random pair of parallel
sentences from the parallel data. Finally, we make an update to all parameters according to Eqn 10,
for which gradients are easy to compute due to the log-linear nature of the model.

6 Experiments

The BilBOWA model proposed in this paper enables one to learn cross-lingual distributed repre-
sentations of words by exploiting only sentence-aligned training data. In this section we present
experiments which evaluate the utility of the induced representations. We evaluate the same embed-
dings induced using our proposed method in the cross-lingual document classification task used
by Klementiev et al. This task tests semantic transfer of information across languages. We also
evaluate our method in a word-level translation task which tests fine-grained lexical transfer.

6.1 Cross-lingual Document Classification

We use an exact replication5 of the cross-lingual document classification (CLDC) setup used by
Klementiev et al. [12] to evaluate their cross-lingual embeddings. The CLDC task setup is as fol-
lows: The goal is to classify documents in a target language using only labelled documents in a
source language. In other words, we train a classifier on the labelled training data in the source
language and then attempt to apply the classifier as-is to the target data (known as “direct trans-
fer”). Documents are represented as the tf-idf-weighted sum of the embedding vectors of the words
that appear in the documents. Importantly, though, note that our method does not utilize any prior
word-alignment information and instead we aim to learn this information purely from the bilingual
corpora.

Similar to Klementiev et al. [12], we induce cross-lingual embeddings for the English-German lan-
guage pair, and use the induced representations to classify a subset of the English and German
sections of the Reuters RCV1/RCV2 multilingual corpora [14] as pertaining to one of four cate-
gories: CCAT (Corporate/Industrial), ECAT (Economics), GCAT (Government/Social), and MCAT
(Markets).

For the classification experiments, 15,000 documents (for each language) were randomly selected
from the RCV1/2 corpus, with one third (5,000) used as the test set and the remainder divided into
training sets of sizes between 100 and 10,000, and a separate, held-out validation set of 1,000
documents used during the development of our models. Since our setup exactly mirrors Klementiev
et al, we use the same baselines, namely: the majority class baseline, glossed (replacing words in
the target document by their most frequently aligned words in the source language), and a stronger
MT baseline (translating target documents into the source language using an SMT system).

3Such as the so-called “inverse” method of sampling from the CDF of P (w) using a number drawn from
the uniform distribution.

4See also https://hips.seas.harvard.edu/blog/2013/03/03/the-alias-method-
efficient-sampling-with-many-discrete-outcomes/

5Obtained from the authors.
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Method en→ de de→ en Training Time (min)
Majority Baseline 46.8 46.8 -
Glossed Baseline 65.1 68.6 -
MT Baseline 68.1 67.4 -
Klementiev et al. 77.6 71.1 14,400 (10 days)
Bilingual Auto-encoders (BAEs) 91.8 72.8 4,800 (3.5 days)
BiCVM 83.7 71.4 15
BilBOWA (this work) 86.5 75 6

Table 1: Classification accuracy and training times for our method compared to Klementiev et
al. [12], Bilingual Auto-encoders [5], and the BiCVM model [11], on an exact replica of the Reuters
cross-lingual document classification task. These methods were all trained with access to the same
data using the same 40-dimensional embeddings. Baseline results are from Klementiev.

6.1.1 Results

Since our method is a faster version of the model proposed by Klementiev et al., we first compare
directly to their results. Results are summarized in Table 1. To make our results comparable to other
methods, our models were trained on the English-German Europarl data. Notat that this is a parallel
corpus, but we do not exploit its parallel nature. We use a vocabulary size of 46, 678 for English and
47, 903 for German, vs Klementiev et al.’s 3K (at the output layer). We significantly improve upon
their results, while training in 6 minutes versus the original 10 days (14,400 minutes) for a total
factor 2, 400 speedup. This demonstrates that the BilBOWA loss is both a computationally efficient
and accurate approximation of the cross-lingual objective implemented by Klementiev.

Next, we compare our method to the current state-of-the-art embedding methods trained using the
same embedding dimensionality of 40 (to make results comparable to the original Klementiev re-
sults) and the same training data. The current state-of-the-art on this task is 91.8 (en2de) and 72.8
(de2en) reported using the Bilingual Auto-encoder (BAE) model by [5]. Hermann et al. [11] report
83.7 and 71.4 with the BiCVM model, trained using the same data that we trained on. As shown,
our model outperforms the BiCVM on both tasks, and outperforms BAEs on German to English
with the current state-of-the-art result of 75%. Overall, our method is also the fastest.

6.2 WMT11 Word Translation

Next, we evaluated the induced cross-lingual embeddings on the word translation task used by
Mikolov et al. [15] using the publicly-available WMT11 data6.

6.2.1 Setup and baselines

In this task, the authors extracted the 6K most frequent words from the WMT11 English-Spanish
data, and then used the online Google Translate service to derive dictionaries by translating these
source words into the target language (individually for English and Spanish). Since their method
requires translation-pairs for training, they used the first 5K most frequent words to learn the “trans-
lation matrix”, and then evaluated their method on the remaining 1K words used as a test set. To
translate a source word, one finds its k nearest neighbours in the target language embedding space,
and then evaluate the translation precision P@k as the fraction of target translations that are within
the top-k words returned using the specific method. Our method does not require translation-pairs
for training, so we simply test on the same 1K test-pairs.

We use as baselines the same two methods described in Mikolov et al. [15]. “Edit Distance” ranks
words based on their edit-distance. “Word Co-occurrence” is based on distributional similarity: For
each word w, one first constructs a word co-occurrence vector which counts the words with which
w co-occurs within a 10-word window in the corpus. The word count vectors are then mapped from
the source to the target language using the dictionary. Finally, for each test word, the word with the
most similar vector in the target language is selected as its translation.

6http://www.statmt.org/wmt11/
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Method En→Sp P@1 Sp→En P@1 En→Sp P@5 Sp→En P@5
Edit Distance 13 18 24 27
Word Co-occurrence 30 19 20 30
Mikolov et al., 2013 33 35 51 52
BilBOWA (This work) 39 (+6) 44 (+11) 51 55 (+3)

Table 2: Results for the translation task measured as word translation accuracy (out of 100, higher
is better) evaluated on the top-1 and top-5 words as ranked by the method. Cross-lingual embed-
dings are induced and distance in the embedded space are used to select word translation pairs. +x
indicates improvement in absolute precision over the previous state-of-the-art on this task [15].

6.2.2 Results

We induced 40-dimensional embeddings using the English and Spanish Wikipedias and Europarl
as parallel data. The results on the English-Spanish translation tasks are summarized in Table 2.
Our model improves on both the baselines and on Mikolov et al.’s method on both tasks and is
significantly more accurate for the P@1 prediction. For the English to Spanish translation, we
improve absolute word translation accuracy by 6 percentage points, for a relative error reduction
of 8.95 %. For the Spanish to English task, we improve absolute word translation accuracy by 11
percent, for a relative error reduction of 16.9%. This indicates that our model is able to learn fine-
grained translation equivalences by using only the raw text, sentence-aligned parallel data, despite
the lack of word-level alignments or training dictionaries.

7 Conclusion

In this work we introduced BilBOWA7, a computationally-efficient model for inducing bilingual
distributed word representations directly from raw text without requiring word-alignments or dictio-
naries. Instead, the model directly utilizes a limited amount of parallel data to learn bilingual word
representations. BilBOWA combines advances in training monolingual word embeddings with a par-
ticularly efficient novel sampled cross-lingual objective. The result is that the required computations
per training step scales only with the number of words in the sentences, thereby enabling efficient
large-scale cross-lingual training. We evaluated BilBOWA on English-German cross-lingual docu-
ment classification and achieved state-of-the-art results while reducing training time to only a few
minutes, rather than several days as for most previous approaches. We also evaluated on an English-
Spanish word-translation task where we improve upon the previous state of the art in relative word
translation error rate.
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