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Abstract

In order to effectively utilize multiple
datasets with heterogeneous annotations,
this paper proposes a coupled sequence
labeling model that can directly learn and
infer two heterogeneous annotations
simultaneously, and to facilitate
discussion we use Chinese part-of-
speech (POS) tagging as our case study.
The key idea is to bundle two sets of
POS tags together (e.g.[NN, n]"), and
build a conditional random field (CRF)
based tagging model in the enlarged
space of bundled tags with the help of
ambiguous labelingsTo train our model

on two non-overlapping datasets that each
has only one-side tags, we transform a
one-side tag into a set of bundled tags
by considering all possible mappings at
the missing side and derive an objective
function based on ambiguous labelings.
The key advantage of our coupled model
is to provide us with the flexibility of
1) incorporating joint features on the
bundled tags to implicitly learn the
loose mapping between heterogeneous
annotations, and 2) exploring separate
features on one-side tags to overcome the
data sparseness problem of using only
bundled tags. Experiments on benchmark
datasets show that our coupled model
significantly outperforms the state-of-
the-art baselines on both one-side POS
tagging and annotation conversion tasks.
The codes and newly annotated data are
released for non-commercial usage.
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1 Introduction

The scale of available labeled data significantly
affects the performance of statistical data-driven
models. As a widely-used structural classification
problem, sequence labeling is prone to suffer
from the data sparseness issue. However, the
heavy cost of manual annotation typically limits
one labeled resource in both scale and genre.
As a promising research line, semi-supervised
learning for sequence labeling has been exten-
sively studied. Huang et al. (2009) show that
standard self-training can boost the performance
of a simple hidden Markov model (HMM) based
part-of-speech (POS) tagger. Sggaard (2011) ap-
ply tri-training to English POS tagging, boost-
ing accuracy fromd7.27% to 97.50%. Sun and
Uszkoreit (2012) derive word clusters from large-
scale unlabeled data as extra features for Chi-
nese POS tagging. Recently, the use of natural
annotation has becomes a hot topic in Chinese
word segmentation (Jiang et al., 2013; Liu et
al., 2014; Yang and Vozila, 2014). The idea is
to derive segmentation boundaries from implicit
information encoded in web texts, such as anchor
texts and punctuation marks, and use them as
partially labeled training data in sequence labeling
models.

The existence of multiple annotated resources
opens another door for alleviating data sparse-
ness. For example, Penn Chinese Treeb&likg)
contains abou®0 thousand sentences annotated
with word boundaries, POS tags, and syntactic
structures (Xue et al., 2005), which is widely used
for research on Chinese word segmentation and
POS tagging. People’s Daily corpuP)? is a
large-scale corpus annotated with word segments
and POS tags, containing abos®0 thousand
sentences from the first half ab98 of People’s

2http://icl.pku.edu.cnficl_groups/
corpustagging.asp
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ing model that can directly learn and infer two
heterogeneous annotations simultaneously. We
use Chinese part-of-speech (POS) tagging as our
case study. The key idea is to bundle two sets

Bundied tags  => | Il IVEW e of POS tags together (e.g. NN, "), and build
L 1 — NNl | a conditional random field (CRF) based tagging
p %&n o ;\/3] . %:\i& o z\;l N model in the enlarged space of bundled tags. To
‘ LIV 2\ s\ FER4 ) make use of two non-overlapping datasets that
Our nation ~ strongly ~ develops  education each has only one-side tags, we transform a one-

_ _ ~side tag into a set of bundled tags by considering
Figure 1: An example to illustrate the annotationg|| possible mappings at the missing side and

differences betweeGTB (above) andPD(below),  gerive an objective function based ambiguous
and how to transform a one-side tag into a Sefabelings During training, the CRF-based cou-
of bundled tags. NN" and “n” represent nouns; pled model is supervised by such ambiguous label-
“VV"and “v’ represent verbs. ings. The advantages of our coupled model are to
provide us the flexibility of 1) incorporating joint
features on the bundled tags to implicitly learn the
00se mapping between two sets of annotations,
and 2) exploring separate features on one-side tags

CTB was designed to serve syntactic analysis .
. "~ ~to overcome the data sparseness problem of using
whereasPDwas developed to support information .
bundled tags. In summary, this work makes two

extraction systems. However, the key challenge . AR
" . major contributions:
of exploiting the two resources is that they adopt
different sets of POS tags which are impossible to
be precisely converted from one to another based
on heuristic rules. Figure 1 shows two example
sentences frone TBandPD. Please refer to Table

B.3 in Xia (2000) for detailed comparison of the

two gw_dellnes. N approach can significantly improve POS
Previous work on exploiting heterogeneous data  aqging accuracy frora4.10% to 95.00% on
(CTB and PD) mainly focuses on indirect guide- CTB.

feature based methods. The basic idea is to use
one resource to generate extra guide features onp e have manually annotate@TB tags for

another resource (Jiang et al., 2009; Sun and 1 oo PDsentences, which is the first dataset

Daily newspaper (see Table 2). The two resource
were independently built for different purposes.

1. We propose a coupled model which can more
effectively make use of multiple resources
with heterogeneous annotations, compared
with both the baseline and guide-feature
based method. Experiments show our

(Nivre and McDonald, 2008). Firs®Dis used
as source data to train a source modaygepp.

Then, Taggepp generates automatic POS tags

on the target dataCTB, called source annota-
tions Finally, a target modellaggegrg.guided

for annotation-conversion evaluation. Exper-
iments on the newly annotated data show
that our coupled model also works effectively
on the annotation conversion task, improving
conversion accuracy fro80.59% to 93.90%

is trained onCTB, using source annotations as
extra guide features. Although the guide-feature
based method is effective in boosting _performancez Traditional POS Tagging (Tagger o15)

of the target model, we argue that it may have

two potential drawbacks. First, the target modelGiven an input sentence of words, denoted by
Taggetrs.guigegdoes not directly useDas train-  x = w;...w,, POS tagging aims to find an optimal
ing data, and therefore fails to make full use of richtag sequence = ¢;...t,,, wheret; € 7 (1 < i <
language phenomena PD. Second, the method n) and7 is a predefined tag set. As a log-linear
is more complicated in real applications since itprobabilistic model (Lafferty et al., 2001), CRF

needs to parse a test sentence twice to getthefinal____
results. 3There are some slight differences in the word segmenta-
tion guidelines betwee@TB and PD, which are ignored in
This paper proposes a coupled sequence labehis work for simplicity.

(+3.31%).
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14: t; o prefix(ws, k), 1 < k < 4,k < #c¢;

15: ¢ o suffix(wi k), 1 < k < 4,k < #ci instantiating Table 1 by replacing with bundled

tags[t¢, t?]; the second and third items are called

separate featureswvhich are based on single-side

Chinese character ab;; c; ¢ is the first Chinese tags. Th(_a advantages of our cou_pled moc_zlel over
’ the traditional model are to provide us with the

character; ¢; _; is the last Chinese character; flexibility of using both Kinds of feat hich
#c; is the total number of Chinese characters xibility OF USIng both KInds of features, whic

contained inw;; prefix/suffix(w;, k) denote the- S|gn|tf|cantrlly con_tni)r:J tefslito the accuracy |nt1prove-
Character prefix/suffix of;. ment as shown in the following experiments.

Table 1: POS tagging featuré$x,i,t;_1,t;). o
means string concatenation; ;, denotes the:t

3.1 Mapping Functions

defines the probability of a tag sequence as: ~ The key challenge of our idea is that baifiBand
PD are non-overlapping and each contains only
P(t|x;0) = exp(Score(x, t;6)) one-side POS tags. Therefore, the problem is how
> exp(Score(x, t;0)) 3y o construct training data for our coupled model.
Score(x,t;6) = Z 0-£(x,i,t;i_1,t;) We denote the tag set @TB as 7, and that of
1<ien PDas7?, and the bundled tag set #§%". Since

the full Cartetian7® x 7° would lead to a very
wheref(x,4,¢;-1,1;) is the feature vector at the |5r9e number of bundled tags, making the model
ith word andé is the weight vector. We adopt the very slow, we would like to come up with a much
state-of-the-art tagging features in Table 1 (Zhan%ma”erTa&b C T° x T, based on linguistic
and Clark, 2008). insights of the annotation guidelines of the two
datasets.

To obtain a propef ¢t we introduce a map-
In this section, we introduce our coupled model,ping function between the two sets of tagsmas
which is able to learn and predict two heteroge-7¢ x 7° — {0, 1}, which only allow specific tag
neous annotations simultaneously. The idea is tpairs to be bundled together.
bundle two sets of POS tags together and let the
CRF-based model work in the enlarged tag space. (19 %) — { 1 if the two tags can be bundled

3 Coupled POS Tagging (Tagger crs¢ o)

For example, &€TBtag “NN’ and aPDtag “n” 0 otherwise
would be bundled into NN,n]". Figure 2 shows (3)
the graphical structure of our model. where one mapping functiom corresponds to
Different from the traditional model in Eq. (1), OneTa&b. When the mapping function becomes
our coupled model defines the score of a bundlegyoser, the tag set sizg*“*| becomes larger.
tag sequence as follows: Then, based on the mapping function, we can
map a single-side POS tag into a set of bundled
tags by considering all possible tags at the missing
£(x, 4, [t 1, t0_4], [t8, t8]) @ side, as illustrated in Figure 1. The wordk & ,”
Z - | f(x,i,t%,t9) is tagged asNIN” at the CTB side. Suppose that
1<i<n £(x, i b ) t‘?) the mapping functiorm tells that ‘NN’ can be
T mapped into three tags at tiD side, i.e., ',
where the first item of the enlarged feature vector Ng’, and “vri". Then, we create three bundled
is calledjoint features which can be obtained by tags for the word, i.e., ‘NN, r]”, “[ NN, Ng]",

Score(x, [t%,t%);0) =



“[ NN, vr]” as its gold-standard references duringAlgorithm 1 SGD training with two labeled
training. It is known asmbiguous labelingwhen  datasets.
a training instance has multiple gold-standard la- 1: Input: Two labeled datasets: DY) =

bels. Similarly, we can obtain bundled tags forall ~ {(x{" YV D@ = ((x@ pEy .
other words in sentences GfTB and PD. After Parametersl, N/, M’, b

such transformation, the two datasets are now in2: Qutput: ¢

the same tag space. 3: Initialization: 6, = 0, k = 0;

At the beginning of this work, our intuition is  4: for s = 1to 7 do {iterations;
that the coupled model would achieve the bests: Randomly selectV’ instances fromD™)

performance if we build a tight and linguistical- and M’ instances fronP® to compose a
ly motivated mapping function. However, our new dataseD;, and shuffle it.

preliminary experiments show that our intuitive 6: TraverseD;, and use a small batcﬂg C
assumption is actually incorrect. Therefore, we D; at one step.

experiment with the following four mapping func- 7 Opp1 = O + nk%Vﬁ(Dz; 1)

tions to manage to figure out the reasons behindsg: k=k+1

and to better understand our coupled model. 9:- end for

e The tight mapping function produce$45
tags, and is constructed by strictly following Suppose the training data® = {(x;, i)} ,.
linguistic principles and our careful study of Then the log likelihood is: =
the two guidelines and datasets.

° Therelax_ed mapping function .results im79_ L(D;6) = ilogp(ViIXi;H) 5)
tags, which is an looser version of the tight =
mapping function by including exti@t weak
mapping relationships. After derivation, the gradient is:

e The automatic mapping function generates dL(D;0) N
346 tags. We use the baselifaggegrgto —pp = > (Brev, [f(xi,t)] — Bi[f(x;, 1))
parsePD, and collect all automatic mapping =1 ©6)

relationships. wheref(x;,t) is an aggregated feature vector for

e The complete mapping function obtains taggingx; ast; Ficy,[.] means model expectation
1,254 tags (7| x |Tb| =33 x 38). of the features in the constrained spacelf
32 Training Objective with Ambiguous Et_[.] is mpdel expectatiqn_ with no constraint.
L abelings This function can be gfflClentIy solved by the
forward-backward algorithm. Please note that the
So far, we have formally defined a coupled modelyaining objective of a traditional CRF model can

and prepared bottCTB and PD in the same pe understood as a special case whereontains
bundled tag space. The next problem is how tgne sequence.

learn the model parametefis Note that after our
transformation, a sentence @TB or PD have 3.3 SGD Training with Two Datasets

many tag sequences as gold-standard referencefe adopt stochastic gradient descent (SGD) to
due to the loose mapping function, known asiteratively learné for our baseline and coupled
ambiguous labelingsHere, we derive a training models. However, we have two separate training
objective based on ambiguous labelings. Fobata, andCTB may be overwhelmed byD if
simplicity, we illustrate the idea based on thedirectly merging the two datasets into one, since
notations of the baseline CRF model in Eqg. (1). PDis 15 times larger thanCTB (see Table 2),
Given a sentence, we denote a set of ambigu- Therefore, we propose a simple corpus-weighting
ous tag sequences &s Then, the probability of strategy, as shown in Algorithm 1, whef® is a
V is the sum of probabilities of all tag sequencessubset of training data used k¥ step updateb
contained in/: is the batch sizey; is a update step. The idea is
p(V|x; 0) = Zp(t|x5 0) (4) to randomly sample instances from each training

toy data in a certain proportion before each iteration.



The sampled data is then used for one-iteratio®s Experiments
training. Later experiments will investigate the
effect of the weighting proportion. In this work,
we useb = 30, and follow the implementation in

In this section, we conduct experiments to verify
the effectiveness of our approach. We adGiB

CRFsuitd to deciden. . (version 5.1) with the standard data split,_and
surte o deciden: randomly splitPD into four sets, among which

4 Manually Annotating PD Sentences one set i20% partially annotated withCTB tags.
with CTB Tags The data statistics is shown in Table 2. The main

concern of this work is to improve accuracy on

To evaluate different methods on annotation con<CTB by exploring large-scalé®D, since CTB is
version, we build the first dataset that containgelatively small, but is widely-used benchmark
1,000 sentences with POS tags on both sides oflata in the research community.
CTB and PD. The sentences are randomly sam- We use the standard token-wise tagging accu-
pled fromPD. To save annotation effort, we only racy as the evaluation metric. For significance
selec20% most difficult tokens to manually anno- test, we adopt Dan Bikel's randomized parsing
tate. The difficulty of a wordy; is measured based evaluation comparator (Noreen, 1989).
on marginal probabilities produced by the baseline The baseline CRF is trained on eith&TB
Taggegrg. p(ti|x,w;;0) denotes the marginal training data with 33 tags, oPD training data
probability of taggingw; ast;. The basic assump- with 38 tags. The coupled CRF is trained on
tion is thatw; is more difficult to annotate if its both two separate training datasets with bundled
most likely tag candidateafg max; p(t|x,w;;0))  tags (179 tags for the relaxed mapping function).
gets lower marginal probability. During evaluation, the coupled CRF is not directly

We build a visualized online annotation systemevaluated on bundled tags, since bundled tags are
to facilitate manual labeling. The annotation taskunavailable in eithe€TB or PDtest data. Instead,
is designed in such way that at a time an annotatothe coupled and baseline CRFs are both evaluated
is provided with a sentence and one focus wordpn one-side tags.
and is required to decide th@TB POS tag of the
word. To further simplify annotation, we provide 51 Model Development
two or three most likely tag candidates as well,Our coupled model has two major parameters to
so that annotators can choose one either amorge decided. The first parameter is to determine
the candidates or from a full list. We empl@y the mapping function betwee@TB and PD an-
undergraduate students as our annotators. Ann@wotations, and the second parameter is the relative
tators are trained on simulated tasks fr@dfTB  weights of the two datasets during training’(vs.
data for several hours, and and start real annotatioft/’: number of sentences in each dataset used for
once reaching certain accuracy. To guarante@aining at one iteration).
annotation quality, we adomhultiple annotation Effect of mapping functions (described
Initially, one task is randomly assigned to twoin Subsection 3.1) is illustrated in Figure 3.
annotators. Later, if the two annotators submitEmpirically, we adoptN' = 5K vs. M’ = 20K
different results, the system will assign the taskio merge the two training datasets at each iteration.
to two more annotators. To aggregate annotatio®ur intuition is that using this proportiorCTB
results, we only retain annotation tasks that th&hould not be overwhelmed biD, and both
first two annotators agre®1.0%) or three anno- training data can be used up in relatively similar
tators among four agreé.6%), and discard other speed. Specifically, all training data GfTB can
tasks 8.4%). Finally, we obtain5,769 words be consumed in about iterations, wherea®D
with both CTBandPDtags, with each annotator's can be consumed in aboid iterations. We also
detailed submissions, and could be used as gresent the results of the baseline model trained
non-synthesized dataset for studying aggregatingsing 5K sentences in one iteration for better
submissions from non-expert annotators in crowdeomparison.
sourcing platforms (Qing et al., 2014). The datais Contrary to our intuitive assumption, it actually
also fully released for non-commercial usage.  |eads to very bad performance when using the

*http:/iwww.chokkan.org/software/ Shttp://www.cis.upenn.edu/ ~ dbikel/
crfsuite/ software.html



#sentences #tokens withCTBtags | #tokens withPDtags

train 16,091 437,991 -

CTB dev 803 20,454 -
test 1,910 50,319 -

train 273,883 - 6,488,208

PD dev 1,000 - 23,427
test 2,500 - 58,301

newly labeled 1,000 5,769 27,942

Table 2: Data statistics. Please kindly note thatitf#0 sentences originally fror®Dare only partially
annotated withCTBtags (abou20% most ambiguous tokens).
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Figure 3. Accuracy onCTB-dev regarding to Figure 4: Accuracy onCTB-dev with different
mapping functions. Please kindly note that somaveighting settings.
experiments run very slowly, and will be updated

when available. : .
hours respectively. Therefore, as a compromise,

we adopt the relaxed mapping function in the fol-

tight mapping function that is carefully created lowing experimentswhich achieves slightly lower
based on linguistic insights, which is even inferioraccuracy than the complete mapping function, but
to the baseline model. The relaxed mappings much faster.
function outperforms the tight function by large Effect of weighting CTB and PD is investi-
margin. The automatic function works slightly gated in Figure 4 and 5. Since the scaleRf
better than the relaxed one. The complete functiofis much larger tharCTB, we adopt Algorithm 1
achieves similar accuracy with the automatic oneto merge the training data in a certain proportion
In summary, we can conclude that our coupled N’ CTB sentences and/’ PD sentences) at
model achieves much better performance wherach iteration. We usé&V/ = 5K, and vary
the mapping function becomes looser. In other\/’ = 1K/5K/20K/100K. Figure 4 shows the
words, this suggests thaur coupled model can accuracy curves o€ TB development data. We
effectively learn the implicit mapping betweenfind that when)’ = 100K, our coupled model
heterogeneous annotations, and does not rely oachieve very low accuracy, which is even worse
a carefully designed mapping function. than the baseline model. The reason should be that

Since a looser mapping function leads to athe training instances i@ TB are overwhelmed by
larger number of bundled tags and makes th¢hose inPDwhen M’ is large. In contrast, when
model slower, we implement a paralleled trainingM’ = 1K, the accuracy is also inferior to the
procedure based on Algorithm 1, and run eacltase of M’ = 5K, which indicates thafD is
experiment with five threads. However, it still not effectively utilized in this setting. Our model
takes abouf0 hours for one iteration when using works best when/’ = 5K, which is slightly
the complete mapping function; whereas the othebetter than the case af’ = 1K /20K.
three mapping functions need abayt2, and 1 Figure 5 shows the accuracy curves 6D
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Iteration Number coupled CRF is significant at confidence level of
p <1072,

Figure 5: Accuracy onPD-dev with different
weighting settings.

dev | test
development data. The baseline model is trained Baseline CRF 94.28| 94.10
using 100K sentences in one iteration. We find Coupled CRF (w/ separate fegt}04.36 | 94.43 (+0.33)
that when M’ = 100K, our coupled model Coupled CRF (wW/jointfeat) | 92.92| 92.90 (-1.20)
achieves similar accuracy with the baseline model,_Coupled CRF (full) 95.10 | 95.00 (+0.90)

When M’ becomes smaller, our coupled model
becomes inferior to the baseline model. Particu- Table 4: Accuracy or€TB: feature study.
larly, whenM’ = 1K, the model converges very
slowly. However, from the trend of the curves, we
expect that the accuracy gap between our coupled

model with M’ — 5K/20K and the basellne model achieves only slightly better accuracy than

the basellne model. This is because there is
convergence. Based on the above observation
, . dnnotatlons When only using joint features,

we adoptN’ = 5K and M’ = 5K in the s
our coupled model becomes largely inferior to

following experiments.Moreover, we select the
. . the baseline, which is due to the data sparseness
best iteration on the development data, and use the

correspondina model to parse the test data problem for the joint features. However, when
P 9 P ' the two sets of features are combined, the coupled

52 Final Results model largely outperforms the baseline model.
. These results indicate thhaoth joint features and
Table 3 shows the final results on tMEB test eparate features are indispensable components

data. We r_e—lmplement the guide-feature base(ind complementary to each other for the success
method of Jiang et al. (2009), referred to as two ‘of our coupled model.

stage CRF. Li et al. (2012) jointly models Chinese
POS tagging and dependency parsing, and report

the best tagging accuracy dbTB. The results

show thatour coupled model outperforms the PDto-CTB conversion
baseline model by large margin, and also achieves Baseline CRF 90.59

slightly higher accuracy than the guide-feature Two-stage CRF (guide-featur¢)93.22 (+2.63)f
based methad Coupled CRF 93.90 (+3.31) %

5.3 Feature Study Table 5: Conversion accuracy on our annotated
We conduct more experiments to measure individdata. { means the corresponding approach sig-
ual contribution of each feature set, namely thehificantly outperforms the baseline at confidence
joint features based on bundled tags and separat@vel of p < 10~°; whereas; means the accuracy
features based on single-side tags, as defined Rifference between the two-stage CRF and the
Eq. (2). Table 4 shows the results. We can see th&upled CRF is significant at confidence level of
when only using separate features, our coupleg < 1072,



dev |test 6 Reated Work
Baseline CRF 94.28| 94.10

Coupled CRF 95.10 | 95.00 (+0.90) This work is partially inspired by Qiu et al. (2013),
Baseline CRF + convertefD | 95.01| 94.81 (+0.71) who propose a model that performs heterogeneous
Chinese word segmentation and POS tagging and

Table 6: Accuracy orCTB: using convertePD.  produces two sets of results followin@TB and
 means the corresponding approach significantly’D styles respectively. Different from our CRF-
outperforms the baseline at confidence level obased coupled model, their approach adopts a lin-
p < 107°; whereasi means the accuracy ear model, which directly combines two separate
difference between the coupled CRF and thesets of features based on single-side tags, without
baseline CRF with converteBD is significant at  considering the interacting joint features between
confidence level op < 1072. the two annotations. They adopt an approximate
decoding algorithm which tries to find the best
single-side tag sequence with reference to tags
at the other side. In contrast, our approach is a
In this subsection, we evaluate different methodslirect extension of traditional CRF, and is more
on the annotation conversion task using our newltheoretically simple from the perspective of mod-
annotated1, 000 sentences. The gold-standardelling. The use of both joint and separate features
PD-side tags are provided, and the goal is to obtaims proven to be crucial for the success of our
the CTB-side tags via annotation conversion. Wecoupled model. In addition, their work indicates
evaluate accuracy on thg 769 words having that their model relies on a hand-crafted loose
manually annotate@ TB-side tags. mapping between annotations, which is opposite

Our coupled model can be naturally used forto our findings. The naming of the “coupled”
annotation conversion. The idea is to performCRF is borrowed from the work of Qiu et al.
constrained decoding on the test data, using th€012), which treats the joint task of Chinese word
PD-side tags as hard constraints. The guidesegmentation and POS tagging as two coupled
feature based method can also perform annotatiogequence labeling problems.
conversion by using the gold-standaRD-side Zhang et al. (2014) propose a shift-reduce de-
tags to compose guide features. Table 5 showgendency parsing model which can simultaneous-
the results. The accuracy is much lower thany learn and produce two heterogeneous parse
those in Table 3, because the769 words used trees. However, their approach assumes the ex-
for evaluation ar€0% most ambiguous tokens in istence of data with annotations at both sides,
the 1, 000 test sentence (partial annotation to savevhich is obtained by converting phrase-structure
annotation effort). From Table 5, we can see thatrees into dependency trees with different heuristic
our coupled model outperforms both the baselingules.
and guide-feature based methods by large margin  This work is also closely related with multi-
task learning, which aims to jointly learn multiple
related tasks with the benefit of using interac-
One weakness of our coupled model is the intive features under a share representation (Ben-
efficiency problem due to the large bundled tagDavid and Schuller, 2003; Ando and Zhang, 2005;
set. In practice, we usually only need resultsParameswaran and Weinberger, 2010). However,
following one annotation style. Therefore, we according to our knowledge, multi-task learning
employ our coupled model to conve?Dinto the  typically assumes the existence of data with labels
style of CTB, and train our baseline model with for multiple tasks at the same time, which is
two training data with homogeneous annotationsunavailable in our situation.
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5.4 Resaultson Annotation Conversion

5.5 Resultsof Training with Converted Data
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