Skip to main content

Advertisement

Log in

First-principles investigation of the equation of state and elastic properties of perovskite-type SrW(O,N)3 under hydrostatic pressures up to 139 GPa

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Pressure dependence of the structural and elastic properties of perovskite-type cubic SrWO2.05N0.95 was studied using firstprinciples density functional theory (DFT) utilizing the plane wave pseudopotential and the exchange-correlation functionals within the generalized gradient approximation. The estimated bulk modulus and its pressure derivative values from the PV data fitted to the third-order Birch-Murnaghan equation of state were close to the data obtained from the independent elastic constants. Based on the generalized Born stability criteria, SrWO2.05N0.95 is mechanically stable up to 139 GPa. The influence of hydrostatic pressure (0 to 139 GPa) on the bulk modulus, shear modulus, Young’s modulus, Pugh’s modulus ratio, Poisson’s ratio, Vickers hardness, sound velocities, Debye temperature, Debye-Grüneisen parameter, minimum thermal conductivity and elastic anisotropy of SrWO2.05N0.95 was particularly studied in detail. It was found that SrWO2.05N0.95 is a ductile and hard solid with large bulk, shear and Young’s modulus and displays an extraordinary low thermal conductivity. Since there are not any experimental or theoretical data available for comparison the results of the present study have revealed an important fundamental information about the elastic properties of perovskite-type cubic SrWO2.05N0.95 for future experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Li, A. Gurlo, R. Riedel, E. Ionescu, Z. Anorg. Allg. Chem. 641, 1533 (2015)

    Article  Google Scholar 

  2. I.D. Fawcett, K.V. Ramanujachary, M. Greenblatt, Mater. Res. Bull. 32, 1565 (1997)

    Article  Google Scholar 

  3. W. Li, D. Li, X. Gao, A. Gurlo, S. Zander, P. Jones, A. Navrotsky, Z. Shen, R. Riedel, E. Ionescu, Dalton Trans. 44, 8238 (2015)

    Article  Google Scholar 

  4. W. Li, E. Ionescu, R. Riedel, A. Gurlo, J. Mater. Chem. A 1, 12239 (2013)

    Article  Google Scholar 

  5. J. Kubota, K. Domen, Electrochem. Soc. Inter. 22, 57 (2013)

    Google Scholar 

  6. K. Kawashima, M. Hojamberdiev, H. Wagata, E. Zahedi, K. Yubuta, K. Domen, K. Teshima, J. Catal. 344, 29 (2016)

    Article  Google Scholar 

  7. W. Li, D. Li, A. Gurlo, Z. Shen, R. Riedel, E. Ionescu, J. Eur. Ceram. Soc. 35, 3273 (2015)

    Article  Google Scholar 

  8. R. Marchand, P. Antoine, P. L’Haridon, Y. Laurent, European Patent, Pub. No EP0286503 A1 (1988)

  9. M.T. Weller, S.J. Skinner, Int. J. Inorg. Mater. 2, 463 (2000)

    Article  Google Scholar 

  10. M. Yashima, U. Fumi, H. Nakano, K. Omoto, J.R. Hester, J. Phys. Chem. C 117, 18529 (2013)

    Article  Google Scholar 

  11. L. Bellaiche, D. Vanderbilt, Phys. Rev. B 61, 7877 (2000)

    Article  ADS  Google Scholar 

  12. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, Z. Kristallogr. 220, 567 (2005)

    Google Scholar 

  13. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    Article  ADS  Google Scholar 

  14. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  15. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)

    Article  ADS  Google Scholar 

  16. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  17. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 102, 039902 (2009)

    Article  ADS  Google Scholar 

  18. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  19. Z. Wu, R.E. Cohen, Phys. Rev. B 73, 235116 (2006)

    Article  ADS  Google Scholar 

  20. J.D. Pack, H.J. Monkhorst, Phys. Rev. B 16, 1748 (1977)

    Article  ADS  Google Scholar 

  21. B.G. Pfrommer, M. Cote, S.G. Louie, M.L. Cohen, J. Comput. Phys. 131, 133 (1997)

    Article  Google Scholar 

  22. F. Birch, Phys. Rev. 71, 809 (1947)

    Article  ADS  Google Scholar 

  23. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    Article  ADS  Google Scholar 

  24. F.W. Hehl, Y. Itin, J. Elast. 66, 185 (2002)

    Article  Google Scholar 

  25. L. Fast, J.M. Wills, B. Johansson, O. Eriksson, Phys. Rev. B 51, 17431 (1995)

    Article  ADS  Google Scholar 

  26. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, UK, 1954)

  27. J. Wang, S. Yip, S.R. Phillpot, D. Wolf, Phys. Rev. Lett. 71, 4182 (1993)

    Article  ADS  Google Scholar 

  28. Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, J. Meng, Phys. Rev. B 76, 054115 (2007)

    Article  ADS  Google Scholar 

  29. J. Haines, J.M. Léger, G. Bocquillon, Ann. Rev. Mater. Res. 31, 1 (2001)

    Article  ADS  Google Scholar 

  30. S.F. Pugh, Philos. Mag. 45, 823 (1954)

    Article  Google Scholar 

  31. X.Q. Chen, H. Niu, D. Li, Y. Li, Intermetallics 19, 1275 (2011)

    Article  Google Scholar 

  32. D.M. Teter, MRS Bull. 23, 22 (1998)

    Article  Google Scholar 

  33. Y. Tian, B. Xu, Z. Zhao, Int. J. Refract. Met. Hard Mater. 33, 93 (2012)

    Article  Google Scholar 

  34. Y. Ding, Physica B 407, 2190 (2012)

    Article  ADS  Google Scholar 

  35. A. Authier, International Tables for Crystallography, 1st edn (Kluwer Academic Publishers, The Netherlands, 2003)

  36. S. Goumri-Said, H. Ozisik, E. Deligoz, M.B. Kanoun, Semicond. Sci. Technol. 28, 085005 (2013)

    Article  ADS  Google Scholar 

  37. R. Hao, X. Zhang, J. Qin, S. Zhang, J. Ning, N. Sun, M. Ma, R. Liu, RSC Adv. 5, 36779 (2016)

    Article  Google Scholar 

  38. S.I. Ranganathan, M. Ostoja-Starzewski, Phys. Rev. Lett. 101, 055504 (2008)

    Article  ADS  Google Scholar 

  39. J.F. Nye, Physical Properties of Crystals. Their Representation by Tensors and Matrices (Oxford Science Publications, Great Britain, 2006)

  40. B. Xiao, J. Feng, C.T. Zhou, Y.H. Jiang, R. Zhou, J. Appl. Phys. 109, 023507 (2011)

    Article  ADS  Google Scholar 

  41. D.L. Anderson, Theory of the Earth (Blackwell Scientific Publications, Boston, 1989)

  42. O.L. Anderson, J. Phys. Chem. Solids 24, 909 (1963)

    Article  ADS  Google Scholar 

  43. J.P. Poirier, Introduction to the Physics of the Earth’s Interior (Cambridge University Press, UK, 2000)

  44. J. Feng, B. Xiao, R. Zhou, W. Pan, D.R. Clarke, Acta Mater. 60, 3380 (2012)

    Article  Google Scholar 

  45. D.G. Cahill, R.O. Pohl, Ann. Rev. Phys. Chem. 39, 93 (1988)

    Article  ADS  Google Scholar 

  46. D.R. Clarke, Surf. Coat. Technol. 163-164, 67 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahedi, E., Hojamberdiev, M. First-principles investigation of the equation of state and elastic properties of perovskite-type SrW(O,N)3 under hydrostatic pressures up to 139 GPa. Eur. Phys. J. B 90, 45 (2017). https://doi.org/10.1140/epjb/e2017-70731-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-70731-6

Keywords

Navigation