arXiv:1504.00548v4 [cs.CL] 22 Mar 2016

Learning to Understand Phrases by Embedding the Dictionary

Felix Hill Kyunghyun Cho*
Computer Laboratory Courant Institute of Mathematical Sciences
University of Cambridge and Centre for Data Science
felix.hill@cl.cam.ac.uk New York University

kyunghyun.cho@nyu.edu

Anna Korhonen Yoshua Bengio
Department of Theoretical and Applied Linguistics CIFAR Senior Fellow
University of Cambridge Université de Montréal
alk23@cam.ac.uk yoshua.bengio@umontreal.ca
Abstract in training and evaluation. Consequently, it is diffi-
cult to design approaches that could learn from such
Distributional models that learn rich seman- g gold standard, and also hard to evaluate or compare

tic word representations are a success story  (ifferent models.

of recent NLP research. However, develop- In thi K dicti definiti to ad
ing models that learn useful representations of n this work, we use dicionary definitions 1o ad-

phrases and sentences has proved far harder. dress this issue. The composed meaning of the
We propose using the definitions found in words in a dictionary definitiona(tall, long-necked,
everyday dictionaries as a means of bridg-  spotted ruminant of Africashould correspond to
ing this gap between lexical and phrasal se-  the meaning of the word they defingiraffe). This
mantics. Neural language embedding mod-  prigge between lexical and phrasal semantics is use-
€ls can be effectively trained to map dictio- | hecause high quality vector representations of
nary definitions (phrases) to (lexical) repre- single words can be used as a target when learning

sentations of the words defined by those defi- . )
nitions. We present two applications of these to combine the words into a coherent phrasal repre-

architecturesreverse dictionarieshat return sentation.

the name of a concept given a definition or This approach still requires a model capable of
description and general-knowledge crossword  |earning to map between arbitrary-length phrases
question answerers. On both tasks, neurallan- 44 fixed-length continuous-valued word vectors.
guage embedding models trained on defini- i purpose we experiment with two broad

tions from a handful of freely-available lex- | ; | dels (NLMs): R
ical resources perform as well or better than classes of neural language models ( s): Recur-

existing commercial systems that rely on sig- rent Neural Networks (RNNs), which naturally en-
nificant task-specific engineering. The re- code the order of input words, and simpler (feed-
sults highlight the effectiveness of both neu- forward) bag-of-words (BOW) embedding models.
ral embedding architectures and definition-  Prior to training these NLMs, we learn target lexi-

based training for developing models that un- 3| representations by training the Word2Vec soft-
derstand phrases and sentences. ware (Mikolov et al., 2013) on billions of words of
raw text.

1 Introduction We demonstrate the usefulness of our approach
. . by building and releasing two applications. The

Much recent research in computational semanyg i areverse dictionaror concept findera sys-

tics has focussed on learning representations m that returns words based on user descriptions

arbitrary-length phrases and sentences. This taskd'§ definitions (Zock and Bilac, 2004). Reverse dic-

challenging partly because there is no obvious gOlﬁjonaries are used by copywriters, novelists, trans-

standard of phrasal representation that could be usﬁ'ﬂors and other professional writers to find words
* Work mainly done at the University of Montreal. for notions or ideas that might be on the tip of their
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tongue. For instance, a travel-writer might look tadia. The objective of the model is to map these
enhance her prose by searching for examples ofdefining phrases or sentences to an embedding of
country that people associate with warm weather the word that the definition defines. The tar-
an activity that is mentally or physically demand-get word embeddings are learned independently
ing. We show that an NLM-based reverse dictionarpf the RNN weights, using the Word2Vec soft-
trained on only a handful of dictionaries identifiesware (Mikolov et al., 2013).
novel definitions and concept descriptions compara- The set of all words in the training data consti-
bly or better than commercial systems, which relyutes the vocabulary of the RNN. For each word in
on significant task-specific engineering and accesBis vocabulary we randomly initialise a real-valued
to much more dictionary data. Moreover, by exvector (input embedding) of model parameters. The
ploiting models that learn bilingual word represenRNN ‘reads’ the first word in the input by applying
tations (Vulic et al., 2011; Klementiev et al., 2012;a non-linear projection of its embedding parame-
Hermann and Blunsom, 2013; Gouws et al., 2014jerised by input weight matriXi” andb, a vector of
we show that the NLM approach can be easily exdiases.
tended to produce a potentially useful cross-lingual
reverse dictionary. Ap = ¢p(Wur +b)

The ?econd application of our quels 'S as §ielding the first internal activation staié;. In our
general-knowledge crossword question answerer, . .
) . — implementation, we usg(z) = tanh(x), though in
When trained on both dictionary definitions and th?heor 4 can be any differentiable nondinear func-
opening sentences of Wikipedia articles, NLMs pro-. y y

. . tion. Subsequent internal activations (after time-step
duce plausible answers to (non-cryptic) crosswor . .
t) are computed by projecting the embedding of the

e et o o, S8 ord and using 11 oot e’ e
. Internal activation state.

outperform bespoke commercial crossword solvers,
particularly when clues contain a greater number of Ay = Q(UA_1 + Wy +b).
words. Qualitative analysis reveals that NLMs can
learn to relate concepts that are not directly con- As such, the values of the final internal activation
nected in the training data and can thus generalisgate unitsd are a weighted function of all input
well to unseen input. To facilitate further researchword embeddings, and constitute a ‘summary’ of the
all of our code, training and evaluation sets (togethdnformation in the sentence.
with a system demo) are published online with this
paper 2.1 Long Short Term Memory

A known limitation when training RNNSs to read lan-
2 Neural Language Model Architectures  guage using gradient descent is that the error sig-

The first model we apply to the dictionary-basedqal (gradient) on the training examples either van-

learning task is a recurrent neural network (RNN)'.Shes or explqdes as the numb_er of time steps (sen-
fence length) increases (Bengio et al., 1994). Con-

RNNSs operate on variable-length sequences of in-

puts: in our case, natural language definitionss,equently’ after reading longer sentences the final

descriptions or sentences. RNNs (with LSTMs hternal activationAy typically retains useful in-

have achieved state-of-the-art performance in la ormation about the most recently read (sentence-

guage modelling (Mikolov et al., 2010), image cap—mal) words, but can neglect important informa-

tion generation (Kiros et al., 2015) and approacl?'on near the start of the input sentence. LSTMs

. . Hochreiter and Schmidhuber, 1997) were designed
state-of-the-art performance in machine translat— oate this | ¢ q d bl
tion (Bahdanau et al., 2015). o mitigate this long-term dependency problem.

During training, the input to the RNN is a dic- At each t'm? step, in place of the single mte_r
. - nal layer of unitsA, the LSTM RNN computes six
tionary definition or sentence from an encyclope: w i f .

internal layers®™, ¢*, ¢/, ¢°, h andm. The first,g*,

! https:/ivww.cl.cam.ac.uk/ ~fh295/ represents the core information passed to the LSTM
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unit by the latest input word dt It is computed as The BOW model simply maps an input definition
a simple linear projection of the input embeddingvith word embeddings), . .. v, to the sum of the

v (by input weightsi¥V,,) and theoutput stateof projected embeddings’ ;" ; Wv;. This model can
the LSTM at the previous time stép_; (by update also be considered a special case of an RNN in

weightsU,,): which the update functioty and nonlinearityp are
w both the identity, so that ‘reading’ the next word in
it = Wyvr + Upht—1 + by the input phrase updates the current representation
more simply:

The layers)?, g/ andg® are computed as weighted
sigmoid functions of the input embeddings, again
parameterised by layer-specific weight matrié€s
andU:

At = At—l + W’Ut.

) 2.3 Pre-trained Input Representations
s _ . . . .
9t 1+ exp(— (W, + Ushe_1 + b)) We_ expenment Wlth_vgrlants of the_se models in
which the input definition embeddings are pre-
where s stands for one of, f or o. These vectors |earned and fixed (rather than randomly-initialised
take values o, 1] and are often referred to g8t-  and updated) during training. There are several po-
ing activations Finally, theinternal memory state tential advantages to taking this approach. First, the
m and new output staté,, of the LSTM att are  word embeddings are trained on massive corpora
computed as and may therefore introduce additional linguistic or
conceptual knowledge to the models. Second, at test
time, the models will have a larger effective vocab-
o . . . .
hy =g{ © ¢(my), ulary, since the pre-trained word embeddings typi-
- . .. call an a larger vocabulary than the union of all
where ® indicates elementwise vector multiplica- . y sp Arger voc bulary . € union o a
: . . . dictionary definitions used to train the model. Fi-
tion and¢ is, as before, some non-linear function .
nally, the models will then map to and from the same

(we usetanh). Thus,g" determines to what extent ) . .
. . . . space of embeddings (the embedding space will be
the newinput word is considered at each time step .
lflosed under the operation of the model), so con-

g/ determines to what extent the existing state of . . .
; . . . ceivably could be more easily applied as a general-

the internal memory is retained fargottenin com- ) - Y
puting the new internal memory, ard determines purpose ‘composition engine”
how much this memory is considered when comput2—_4 Training Objective
ing the output state at

The sentence-final memory state of the LSTMWVe train all neural language modelg to map the
my, a ‘summary’ of all the information in the sen-input definition phrase. defining wordc to a lo-
tence, is then projected via an extra non-linear préation close to the the pre-trained embeddin®f
jection (parameterised by a further weight matrixy- We experiment with two different cost functions
to a target embedding space. This layer enables tf@ the word-phrase paic, s.) from the training
target (defined) word embedding space to take a diflata. The first is simply the cosine distance between
ferent dimension to the activation layers of the RNNJ (s.) andv.. The second is the rank loss
and in principle enables a more complex definition-
reading function to be learned. max(0, m — cos(M(s.),ve) — cos(M(s¢), vy))

my =iy © g +my_1 © Qtf

2.2 Bag-of-Words NLMs wherew, is the embedding of a randomly-selected
We implement a simpler linear bag-of-words (BOW)word from the vocabulary other than This loss
architecture for encoding the definition phrases. ARinction was used for language models, for example,
with the RNN, this architecture learns an embedding (Huang et al., 2012). In all experiments we apply
v; for each word in the model vocabulary, togethen marginm = 0.1, which has been shown to work
with a single matrix of input projection weight¥.  well on word-retrieval tasks (Bordes et al., 2015).



2.5 Implementation Details 3 Reverse Dictionaries

Since training on the dictionary data took 6-10The mostimmediate application of our trained mod-
hours, we did not conduct a hyper-parameter sear€fs is as aeverse dictionaryor concept finder It

on any validation sets over the space of possiblé simple to look up a definition in a dictionary
model configurations such as embedding dimensiogiven a word, but professional writers often also re-
or size of hidden layers. Instead, we chose thesilire suitable words for a given idea, concept or
parameters to be as standard as possible baseddﬁﬂini'[ion.?’ Reverse dictionaries satisfy this need
previous research. For fair comparison, any asped® returning candidate words given a phrase, de-
of model design that are not specific to a particuSCl’iptiOﬂ or definition. For instance, when queried

lar class of model were kept constant across expetith the phrasean activity that requires strength
ments. and determinationthe OnelLook.com reverse dictio-

The pre-trained word embeddings used in all ofary rdeturns the gorcept&erc}:seand WQ”_(I Ofur
our models (either as input or target) were IearneﬁaIne RNN model can perform a similar func-

by a continuous bag-of-words (CBOW) model using{'on’ simply by mapping a phrase to a point in the
the Word2Vec software on approximately 8 billion arget (Word2Vec) embedding space, and returning

words of running text. When training such models the words corresponding to the embeddings that are

on massive corpora, a large embedding length of L%osest to that point. _ _
to 700 have been shown to yield best performance S€veral other academic studies have proposed

(see e.g. (Faruqui et al., 2014)). The pre-trained enf€Verse dictionary models. These generally rely

beddings used in our models were of length 50PN common techniques from information retrieval,

as a compromise between quality and memory COIL;_om_paring definitions in their internal database to
straints the input query, and returning the word whose def-

| h h 4 embeddi | injtion is ‘closest’ to that query (Bilac et al., 2003;
h cases where the word embeddings are leam lac et al., 2004; Zock and Bilac, 2004). Proxim-

during training on the dictionary objegtive, we makqt is quantified differently in each case, but is gen-
these embeddings shorter (256), since they mu&i{ally a function of hand-engineered features of the

be learned from much less language data. In ﬂQt‘vavo sentences. Forinstance, Shaw et al. (2013) pro-

ENN ;nodels, ar_1d at ela}ch time sFep eaofh O_f thﬁose a method in which the candidates for a given
our LSTM RNN internal layers (gating an aCt'Va'input query are all words in the model’'s database

tion states) had length 512 — another standard ChOi(V‘\fhose definitions contain one or more words from

(see e.g. (C:(IJ_ et aII., 201|4))' r‘:’f;%gnarl] hlg_den St_aﬁ"\e qguery. This candidate list is then ranked accord-
was mapped linearly to lengt , the dimensio g to a query-definition similarity metric based on

of the Farget er_nbedqmg. _In the BOW r_nodels,_ th e hypernym and hyponym relations in WordNet,
projection matrix projects input embeddings (eltheg

i eatures commonly used in IR such thsdf and a
learned, of length 256, or pre-trained, of length 500

) arser.
to length 500 for summing. There are, in addition, at least two commercial

Al models  were implemented  with gnline reverse dictionary applications, whose ar-
Theano (Bergstraetal., 2010) and trained witthitecture is proprietary knowledge. The first is
minibatch SGD on GPUs. The batch size wage Dictionary.com reverse dictionafy which re-
fixed at 16 and the learning rate was controlled byfieves candidate words from the Dictionary.com
adadelta(Zeiler, 2012). dictionary based on user definitions or descrip-

tions. The second i®nelLook.com whose algo-
"~ 2The  Word2Vec  embedding  models  arelithm searches 1061 indexed dictionaries, including

well  known; further details can be found all major freely-available online dictionaries and re-
at https://code.google.com/p/word2vec/ The
training data for this pre-training was compiled from vaso 3See the testimony from professional writers at

online text sources using the scrg@mo-train-big-model-vl.sh http://www.onelook.com/?c=awards
from the same page. 4 Available athttp://dictionary.reference.com/reverse/
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sources such as Wikipedia and WordNet. 3.2 Comparisons

As a baseline, we also implemented two entirely
_ o o ~unsupervised methods using the neural (Word2Vec)
To compile a bank of dictionary definitions for train-\, g embeddings from the target word space. In the
ing the model, we started with all words in the tars; st (W2V add), we compose the embeddings for
get embedding space. For each of these words, W word in the input query by pointwise addition,

extracted dictionary-style definitions from five elec-3q return as candidates the nearest word embed-
tronic resourcesWordnet, The American Heritage dings to the resulting composed vedohe sec-

Dictionary, The Collaborative International Dictio- ;nq paseline W2V mult), is identical except that

nary of English, Wiktionaryand Websters We e embeddings are composed by elementwise mul-
chose these five dictionaries because they are freeh’plication. Both methods are established ways of
available via the WordNik APY, but in theory any pyiiding phrase representations from word embed-
dictionary could be chosen. Most words in our tra'n'dings (Mitchell and Lapata, 2010).
ing data had multiple definitions. For each word \5ne of the models or evaluations from previous
w with defm'tlons{dl“jd"} we included all pairs 5.5 4emic research on reverse dictionaries is pub-
(w,d1)... (w,dn) as training examples. licly available, so direct comparison is not possi-
To allow models access to more factual knowly o However. we do compare performance with
edge than might be present in a dictionary (for iNghe commercial systems. The Dictionary.com sys-

stance, information about specific entities, places Q& returned no candidates for over 96% of our in-
people, we supplemented this training data with ing, ;1 gefinitions. We therefore conduct detailed com-

formation extracted from Simple Wikipedi&. For parison with OneLook.com, which is the first re-

every word in the model's target embedding spac§erse dictionary tool returned by a Google search

that is also the title of a Wikipedia article, we treaty 4 seems to be the most popular among writers.
the sentences in the first paragraph of the article as

When a word in Wikipedia also occurs in one (or

more) of the five training dictionaries, we simpIyTo our knowledge there are no established means of

add these pseudo-definitions to the training set gFEasUring reverse dictionary performance. In the
definitions for the word. Combining Wikipedia andonly previous academic research on English reverse

dictionaries in this way resulted i 900, 000 word- dictionaries that we are aware of, evaluation was
‘definition’ pairs of~ 100, 000 unique v:/ords conducted on 300 word-definition pairs written by

To explore the effect of the quantity of trainingIeXiCOQrapherS (Shaw et al., 2013). Since these are

data on the performance of the models, we alddot publicly available we developed new evaluation

trained models on subsets of this data. The first suS€tS and make them freely available for future eval-

set comprised only definitions from Wordnet (apY@tions:

proximately 150,000 definitions of 75,000 words), |he évaluation items are of three types, designed
The second subset comprised only words in Word® t€st different properties of the models. To cre-
net and theifirst definitions (approximately 75,000 até theseenevaluation, we randomly selected 500
word, definition pairs]. For all variants of RNN Words from the WordNet training data (seen by all
and BOW models, however, reducing the traininandels)’ and then randomly selected a definition for
data in this way resulted in a clear reduction in pef#ch word. Testing models on the resulting 500

formance on all tasks. For brevity, we therefore gdvord-definition pairs assesses their ability to recall
not present these results in what follows. or decode previously encoded information. For the

unseenevaluation, we randomly selected 500 words
°Seehttp://developer.wordnik.com from WordNet and excluded all definitions of these
Shttps://simple.wikipedia.org/wiki/Main_Page
"As with other dictionaries, the first definition in WordNet  8Since we retrieve all answers from embedding spaces by
generally corresponds to the most typical or common senae oftosine similarity, addition of word embeddings is equindl®
word. taking the mean.

3.1 Data Collection and Training
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Dictionary definitions

Test Set Seerf500 WN defs)| Unseen(500 WN defs)| Concept descriptions(200)

Unsup. W2V add| - - - 923 .04/.16 1683 339 .07/.30 150
models W2V mult| - - - 1000 .00/.00 107 1000 .00/.00 27*

I OnelLook| O .89/91 67| - - - |[185 .3858 153 |

RNN cosine| 12 .48/.73 103 22 41/.70 116 69 .28/.54 157
RNN w2v cosine| 19 .44/.70 111 19 44/.69 126 26.38.66 111
RNN ranking| 18 .45/.67 128 24 43/.69 103 25  .34/.66 102
NLMs | RNN w2vranking| 54 .32/.56 155 33 .36/.65 137 30 .33/.69 77
BOW cosine| 22 .44/.65 129 19 43/.69 103 50 .34/.60 99
BOW w2v cosine| 15 .46/.71 124 14  .46/.71 104 28  .36/.66 99
BOW ranking| 17 .45/.68 115 22 42/.70 95 32  .35/.69 101
BOW w2vrankng| 55 .32/.56 155 36 .35/.66 138 38 B3/ 85

| medianrank  accuracy@10/100  rank variange

Table 1: Performance of different reverse dictionary medeldifferent evaluation settings. *Low varianceriult
models is due to consistently poor scores, so not highlighte

words from the training data of all models. Given a test description, definition, or question,
Finally, for a fair comparison with OnelLook, all models produce a ranking of possible word an-
which has both the seen and unseen pairs in its iswers based on the proximity of their representations
ternal database, we built a new datasetoficept of the input phrase and all possible output words.
descriptions that do not appear in the training datalo quantify the quality of a given ranking, we re-
for any model. To do so, we randomly selected 200ort three statistics: thmedian rankof the correct
adjectives, nouns or verbs from among the top 300@nswer (over the whole test set, lower better), the
most frequent tokens in the British National Cor-roportion of training cases in which the correct an-
pus (Leech et al., 1994) (but outside the top 100xwer appears in the top 10/100 in this rankiagqu-
We then asked ten native English speakers to writ@cy@10/10G higher better) and the variance of the
a single-sentence ‘description’ of these words. Teank of the correct answer across the test stk
ensure the resulting descriptions were good quavariance- lower better).
ity, for each description we asked two participants
who did not produce that description to list any3.4 Results

words that fitted the description (up to a maximu .
of three). If the target word was not produced t;T;I'able 1 shows the performance of the different mod

o o els in the three evaluation settings. Of the unsu-
one of the two checkers, the original participant was 9

asked to re-write the description until the vaIidatiorPerVIsed composition models, elementwise addition

. Is clearly more effective than multiplication, which
was passedl. These concept descriptions, together
) . almost never returns the correct word as the near-
with other evaluation sets, can be downloaded from ) "
. . est neighbour of the composition. Overall, however,
our website for future comparisons.

the supervised models (RNN, BOW and OneLook)
Test set| Word Description clearly outperform these baselines.

Dictionary | valve “control consisting of a mechanicalThe results indicate interesting differences be-

definition device for controlling fluid flow” tween the NLMs and the OneLook dictionary search
Concept| prefer "when you like one thing engine. The Seen (WN first) definitions in Table 1
description more than another thing” occur in both the training data for the NLMs and

the lookup data for the OneLook model. Clearly the

OneLook algorithm is better than NLMs at retriev-

ing already available information (returning 89% of
°Re-writing was required in 6 of the 200 cases. correct words among the top-ten candidates on this

Table 2: Style difference betweaetlictionary definitions
andconcept descriptionis the evaluation.



set). However, this is likely to come at the cost of @mbeddings have some semantic memory acquired
greater memory footprint, since the model requirefom general running-text language data and other
access to its database of dictionaries at query tftne knowledge acquired from the dictionaries.

The performance of the NLM embedding models
on the (unseen) concept descriptions task shows tl?a?
these models can generalise well to novel, unse&pme example output from the various models is
queries. While the median rank for OneLook orpresented in Table 3. The differences illustrated
this evaluation is lower, the NLMs retrieve the cor-here are also evident from querying the web demo.
rect answer in the top ten candidates approximatelyhe first example shows how the NLMs (BOW and
as frequently, within the top 100 candidates mor&NN) generalise beyond their training data. Four
frequently and with lower variance in ranking overof the top five responses could be classed as ap-
the test set. Thus, NLMs seem to generalise moggopriate in that they refer to inhabitants of cold
‘consistenly’ than OneLook on this dataset, in thagcountries. However, inspecting the WordNik train-
they generally assign a reasonably high ranking tihg data, there is no mention obld or anything to
the correct word. In contrast, as can also be verifiedo with climate in the definitions dEskimg Scandi-
by querying our we demo, OneLook tends to perravian Scandinavigetc. Therefore, the embedding
form either very well or poorly on a given quety.  models must have learned thatldnessis a char-

When comparing between NLMs, perhaps th@cteristic of Scandinavia, Siberia, Russia, relates to
most striking observation is that the RNN modeld=skimos etc. via connections with other concepts
do not significantly outperform the BOW models,that are described or defined esld. In contrast,
even though the BOW model output is invariant tdhe candidates produced by the OneLook and (unsu-
changes in the order of words in the definition. UserBervised) W2V baseline models have nothing to do
of the online demo can verify that the BOW modelgvith coldness.
recover concepts from descriptions strikingly well, The second example demonstrates how the NLMs
even when the words in the description are pegéenerally return candidates whose linguistic or con-
muted. This observation underlines the importanceeptual function is appropriate to the query. For a
of lexical semantics in the interpretation of languagguery referring explicitly to a means, method or pro-
by NLMs, and is consistent with some other receress, the RNN and BOW models produce verbs in
work on embedding sentences (lyyer et al., 2015). different forms or an appropriate deverbal noun. In

It is difficult to observe clear trends in the dif- contrast, OneLook returns words of all typesio-
ferences between NLMs that learn input word emdynamics, draughtthat are arbitrarily related to the
beddings and those with pre-trained (Word2Vec) invords in the query. A similar effect is apparent in
put embeddings. Both types of input yield goodhe third example. While the candidates produced
performance in some situations and weaker perfoRY the OneLook model are the correct part of speech
mance in others. In general, pre-training input emdNoun), and related to the query topic, they are not
beddings seems to help most on the concept déémantically appropriate. The dictionary embedding
scriptions, which are furthest from the training datdnodels are the only ones that return a list of plausi-
in terms of linguistic style. This is perhaps unsurble habits the class of noun requested by the input.
prising, since models that learn input embeddlngi6 Cross-Lingual Reverse Dictionaries

from the dictionary data acquire all of their concep- _
tual knowledge from th|s data (and thus may overwe now ShOW hOW the RNN al’ChIteCtUI’e can be eas-

fit to this setting), whereas models with pre-trainedy modified to create ailingual reverse dictionary
- a system that returns candidate words in one lan-
®The trained neural language models are approximately haffuage given a description or definition in another.
the size of the six training dictionaries stored as plairt,te ~ p bilingual reverse dictionary could have clear ap-

would be hundreds of times smaller than the OneLook databaS(Tications for translators or transcribers. Indeed. the
of 1061 dictionaries if stored this way. P ) !

e also observed that theeanranking for NLMs was Problem of attaching appropriate words to concepts
lower than for OneLook on the concept descriptions task.  may be more common when searching for words in

Qualitative Analysis



Input
Description OnelLook W2V add RNN BOW
"a native of lcountry2:citizen l:a2the 1l:eskima2:scandinavian 1:frigid 2:cold
a cold 3foreign4:naturalize 3:another4:of 3:arctic 4:indian 3iicy 4:russian
country” 5cisco 5:whole 5:siberian 5:indian
"a way of 1ldrag 2:whiz 1:the2:through 1:glide 2:scooting 1:flying 2:gliding
moving | 3aerodynamicg:draught 3:a4:moving 3:glides4:gliding 3:glide 4:fly
through 5coefficient of drag 5:in 5:flight 5:scooting
the air”
"a habitthat| 1sisterinlaw2:fatherinlaw 1:annoy2:your 1:bossines®:ealousy Ll:infidelity2:bossiness
might annoy| 3motherinlawd:stepson  3:might4:that 3:annoyance:rudeness 3:foible4:unfaithfulness
your spouse” Stepchild 5:either 5:boorishness 5:adulterous

Table 3: The top-five candidates for example queries (iragthy the authors) from different reverse dictionary mod-
els. Both the RNN and BOW models are without Word2Vec input ase the cosine loss.

Input description | RNN EN-FR W2V add RNN + Google
"an emotion that you might fee| triste, pitoyable insister, effectivement sentiment, regretter
after being rejected’] répugnantgépouvantable pourquoi, nous peur, aversion
"a small black flying insect thaj mouchecanard attentivement, pouvions voler, faucon
transmits disease and likes horsgs”  hirondelle pigeon pourrons, naturellement mouchesliant

Table 4: Responses from cross-lingual reverse dictionargais to selected queries. Underlined responses are ‘cor-
rect’ or potentially useful for a native French speaker.

a second language than in a monolingual context. pare this approach qualitatively with two alternative
To create the bilingual variant, we simplymethods for mapping definitions to words across
replace the Word2Vec target embeddings witlanguages. The first is analogous to the W2V Add
those from a bilingual embedding space. Bilinimodel of the previous section: in the bilingual em-
gual embedding models use bilingual corpordedding space, we first compose the embeddings of
to learn a space of representations of the wordbe English words in the query definition with ele-
in two languages, such that words from eidmentwise addition, and then return the French word
ther language that have similar meanings are@hose embedding is nearest to this vector sum. The
close together (Hermann and Blunsom, 2013econd uses the RNN monolingual reverse dictio-
Chandar et al., 2014; Gouws et al., 2014). Fonary model to identify an English word from an En-
a test-of-concept experiment, we used Engliskglish definition, and then translates that word using
French embeddings learned by the state-of-the-g&oogle Translate.
BIIBOWA model (Gouws et al., 2014) from the

Wikipedia (monolingual) and Europarl (bilingual) Table 4 shows that the RNN model can be ef-

. fectively modified to create a cross-lingual reverse
12
corpora.” We trained the RNN model to map dictionary. It is perhaps unsurprising that the W2V

fr.o.m English definitions to .Engllsh words n theAdd model candidates are generally the lowest in
bilingual space. At test time, after reading an

; L . guality given the performance of the method in the
English definition, we then simply return the nearest ' iooual setting. In comparing the two RNN-
French word neighbours to that definition. g g paring

: ... based methods, the RNN (embedding space) model
Because no benchmarks exist for quam'tat'vgppears to have two advantages over the RNN +

evaluation of bilingual reverse dictionaries, we ComGoogle approach. First, it does not require on-

12The approach should work with any bilingual embeddings!in€ access to a bilingual word-word mapping as
We thank Stephan Gouws for doing the training. defined e.g. by Google Translate. Second, it less



prone to errors caused by word sense ambiguitieen achieved by restricting questions to a spe-
For example, in response to the queny emotion cific topic or domain (Molla and Vicedo, 2007),
you feel after being rejectedhe bilingual embed- allowing systems access to pre-specified pas-
ding RNN returns emotions or adjectives describingages of text from which the answer can be in-
mental states. In contrast, the monolingual+Googlterred (lyyer et al., 2014; Weston et al., 2015), or
model incorrectly maps the plausible English reeentering both questions and answers on a par-
sponseregret to the verbal infinitiveregretter The ticular knowledge base (Berantand Liang, 2014;
model makes the same error when responding toBordes et al., 2014).

description of a fly, returning the vesler (to fly). In what follows, we show that the dictionary em-
_ _ bedding models introduced in the previous sections
3.7 Discussion may form a useful component of an open QA sys-

We have shown that simply training RNN or BOwtem. Given the absence of a knowledge base or

NLMs on six dictionaries yields a reverse dictionaryVeb-scale information in our architecture, we nar-

that performs comparably to the leading commetOW the scope of the task by focusing on general

cial system, even with access to much less dictidknowledge crossword questions. General knowl-

nary data. Indeed, the embedding models consi§dge (non-cryptic, or quick) crosswords appear in

tently return syntactically and semantically plausinational newspapers in many countries. Crossword

ble responses, which are generally part of a mof@estion answering is more tractable than general

coherent and homogeneous set of candidates th@pen QA for two reasons. First, models know the

those produced by the commercial systems. We alé@ngth of the correct answer (in letters), reducing

showed how the architecture can be easily extendéde search space. Second, some crossword questions

to produce bilingual versions of the same model. mirror definitions, in that they refer to fundamental
In the analyses performed thus far, we only teqiroperties of concepts (welve-sided shaper re-

the dictionary embedding approach on tasks that fuest a category membex ¢ity in Egyp}.*®

was t_ral_ned to accomplish (mapping de_fmltlons 05.1 Evaluation

descriptions to words). In the next section, we ex-

plore whether the knowledge learned by dictionarfzeneral Knowledge crossword questions come in

embedding models can be effectively transferred tdifferent styles and forms. We used the Eddie James

a novel task. crossword website to compile a bank of sentence-
like general-knowledge questiois Eddie James is
4 General Knowledge (crossword) one of the UK’s leading crossword compilers, work-
Question Answering ing for several national newspapers. dang ques-

tion set consists of the first 150 questions (starting

The automatic answering of questions posed in Nafrom puzzle #1) from his general-knowledge cross-
ural language is a central problem of Artificial In-words, excluding clues of fewer than four words
telligence. Although web search and IR techniquegnd those whose answer was not a single word (e.g.
provide a means to find sites or documents related Khgjames.
language queries, at present, internet users requiringTg evaluate models on a different type of clue, we
a specific fact must still sift through pages to locatggq compiled a set afhorter questions based on
the desired information. the Guardian Quick Crossword. Guardian questions

Systems that attempt to overcome this, Viatill require general factual or linguistic knowledge,
fully open-domain or general knowledge questionpyt are generally shorter and somewhat more cryptic

answering (open QA), generally require larg&han the longer Eddie James clues. We again formed

teams of researchers, modular design and pow-
erful infrastructure, exemplified by IBM's Wat- BAs our interest is in the language understanding, we
. . t add th ti f fitti int id
son (Ferrucci et al., 2010). For this reason, mucfic.Not address the question of fitting answers into a grid,
. . ] ~“which is the main concern of end-to-end automated crossword
academic research focuses on settings in WhiGyers (Littman et al., 2002).

the scope of the task is reduced. This has “http://www.eddiejames.co.uk/


http://www.eddiejames.co.uk/

a list of 150 questions, beginning on 1 January 201Been featured in national medi. We are unable
and excluding any questions with multiple-word an{o compare against a third well-known automatic
swers. For clear contrast, we excluded those fearossword solver Fill (Ginsberg, 2011), because
guestions of length greater than four words. Oftheseode for Dr Fill's candidate-generation module
150 clues, a subset of 30 wesigle-word clues. is not readily available. As with the RNN and
All evaluation datasets are available online with thdaseline models, when evaluating existing systems
paper. we discard candidates whose length does not match

As with the reverse dictionary experiments, canthe length specified in the clue.
didates are extracted from models by inputting def- Certain principles connect the design of the ex-
initions and returning words corresponding to thdsting commercial systems and differentiate them
closest embeddings in the target space. In this cagegm our approach. Unlike the NLMs, they each re-
however, we only consider candidate womdsose duire query-time access to large databases contain-

length matches the length specified in the clue ing common crossword clues, dictionary definitions,
the frequency with which words typically appear

Test set Word Description as crossword solutions and other hand-engineered
Long | Baudelaire "French poet and task-specific components (Littman et al., 2002;
(150) and key figure Ginsberg, 2011).
in the development
of Symbolism.” 4.3 Results
_____ Short (120)| satanist "devildevotee”  The performance of models on the various question
Single-Word (30)|  guilt "culpability” types is presented in Table 6. When evaluating the

two commercial systems, One Across and Cross-
Table 5: Examples of the different question types in thg,org Maestro, we have access to web interfaces that
crossword question evaluation dataset. return up to approximately 100 candidates for each

query, so can only reliably record membership of the

top ten (accuracy@10).
4.2 Benchmarks and Comparisons On the long questions, we observe a clear advan-

) o ) tage for all dictionary embedding models over the

As with the reverse dictionary experiments, W&q,mmercial systems and the simple unsupervised
compare RNN and BOW NLMs with a simple y5qeline.  Here, the best performing NLM (RNN
unsupervised baseline of elementwise addition Qf;itn \Word2Vec input embeddings and ranking loss)

Word2Vec vectors in the embedding space (Wgynks the correct answer third on average, and in the
discard the ineffectivaV2V multbaseline), again top-ten candidates over 60% of the time.

restricting candidates to words of the pre-specified As the questions get shorter, the advantage of

length.  We al_so ComPare to tWO_ bespoke onIIn?ne embedding models diminishes. Both the unsu-
crossword-solving engines. The f|rs_t, One AcrosBervised baseline and One Across answer the short
(http://www.ongacross.com/ ) is the c_an-_ guestions with comparable accuracy to the RNN and
didate generation module of .the award—wmnmqaow models. One reason for this may be the differ-
Proverb cros_sword system (Littman etal., 2(_)02)'ence in form and style between the shorter clues and
Proverb, which was prod_uced _by acader_mc "'She full definitions or encyclopedia sentences in the
searchers, has _featured in national media Su(H?ctionary training data. As the length of the clue de-
gs New SC|ent|st,_ and beaten expert humar&eases, finding the answer often reduces to generat-
in crossword_ soIV|_ng tc_)urnaments. The Secfng synonymsulpability - guilt), or category mem-
ond comparison is with Crossword Iv""“aStmoers all animal - giraffe. The commercial systems
(http://www.crosswordmaestro.com/ ). & can retrieve good candidates for such clues among

commerugl crossword soIv_mg system that handleﬁﬁeir databases of entities, relationships and com-
both cryptic and non-cryptic crossword clues (we

focus only on the non-cryptic setting), and has also *° See e.ghttp://iwww.theguardian.com/crosswords/crossword


http://www.oneacross.com/
http://www.crosswordmaestro.com/
http://www.theguardian.com/crosswords/crossword-blog/2012/mar/08/crossword-blog-computers-crack-cryptic-clues

Question Type | avg rank -accuracy@10/100 - rank varian¢e

Long (150) Short (120) Single-Word (30)
One Across .39/ .68/ .70/
Crossword Maestrd 271 43/ 73/
“W2Vadd | 42 .31/.63 92| 11 .50/.78 662 .79/.90 45 |
"RNNcosine | 15 .43/69 108 22 .39/.67 117 72 .31/52 187
RNN w2v cosine 4 .61/82 60 7 .56/.79 60| 12 .48/.72 116
RNN ranking 6 .58/.84 48 | 10 .51/.73 57| 12 .48/.69 67
RNNw2vranking | 3 .62/.80 61| 8 .57/.78 49 12 .48/.69 114
BOW cosine 4 60/.82 54 7 56/.78 51| 12 .45/.72 137
BOW w2v cosine 4 .60/.83 58 7 .54/80 48| 3 .59/.79 111
BOW ranking 5 .62/87 50| 8 .58/83 37| 8 .55/..79 39
BOWw2vranking| 5 .60/.86 48 | 8 .56/.83 35 | 4 .55/.83 43

Table 6: Performance of different models on crossword duesbf different length. The two commercial systems
are evaluated via their web interface so only accuracy @t ®eaeported in those cases.

mon crossword answers. Unsupervised Word2Vengly effective, as shown by the fact that it returns
representations are also known to encode these saitshuain its top candidates for the third query.

of relationships (even after elementwise addition for The final example in Table 7 illustrates the sur-
short sequences of words) (Mikolov et al., 2013)prising power of the BOW model. In the training

This would also explain why the dictionary embed-data there is a single definition for the correct an-
ding models with pre-trained (Word2Vec) input em-swerSchoenbergUnited States composer and musi-
beddings outperfom those with learned embeddingeal theorist (born in Austria) who developed atonal

particularly for the shortest questions. composition The only word common to both the
query and the definition is 'composer’ (there is no
4.4 Qualitative Analysis tokenization that allows the BOW model to directly

_ _ connectatonal and atonality). Nevertheless, the
A better understanding of how the different modelsnqqe| is able to infer the necessary connections be-

arrive at their answers can be gained from considefyeen the concepts in the query and the definition to
ing specific examples, as presented in Table 7. Thegy Schoenberg as the top candidate.

first three examples show that, despite the apparentlyDespite such cases, it remains an open ques-
superficial nature of its training data (definitions ang,, ., \vhether. with m;)re diverse training data
introductory sentences) embedding models can afke world knowledge required for full open QA
swer questions that require factual knowledge abo secondary facts abo@choenberg such
people and pl_aces. Another notable characteristi_c ok his family) could be encoded and retained as
these model is the consistent semantic approprlat\%—e@hts in a (larger) dynamic network, or whether
ness of the candidate set. In the first case, the tap, 1 pe necessary to combine the RNN with
five candidates are all mountains, valleys or places ify, o ternal memory that is less frequently (or
the Alps; in the second, they are all biblical name%ever) updated. This latter approach has begun to

In.the third, the RNN mode retrieves currencies, irélchieve impressive results on certain QA and entail-
this case performing better than the BOW mOdGIment tasks (Bordes et al., 2014; Graves et al., 2014;
which retrieves entities of various type associateg\/es,[On etal., 2015)

with the Netherlands. Generally speaking (as can

be opserved_ by the_web demo), Fhe ‘smoothnt_ass’ 9 Conclusion

consistency in candidate generation of the dictionary

embedding models is greater than that of the conBictionaries exist in many of the world's languages.
mercial systems. Despite its simplicity, the unsupeMe have shown how these lexical resources can con-
vised W2V addition method is at times also surprisstitute valuable data for training the latest neural lan-



Input Description One Across Crossword Maestro BOW RNN
"Swiss mountain Toted2:front l:after 2:favor 1:Eiger 2.Crags 1:Eiger 2:Aosta
peak famed for ity Eiger 4:.crown 3:ahead4:along 3:Teton4:Cerro 3:Cuneod.Lecco
north face (5)” Sfount 5:being 5:Jebel 5:Tyrol
"Old Testament| 1loshua2:Exodus  l:devise2:Daniel 1:saiah2:Elijah 1:JoshuaZ2:lsaiah
successorta  Btebrewd:person  3:Haggai4: Isaiah 3:Joshua4:Elisha 3:Gideon4:Elijah
Moses (6)” bacross 5:Joseph 5:Yahweh 5:Yahweh
"The former | 1Holland2:general 1:Holland 2:ancient 1:Guilder 2:Holland 1:Guilder 2:Escudos
currency of the 3:esotho 3:earlier 4:.onetime  3:Drenthed:Utrecht  3:Pesetagl:Someren
Netherlands Bjondam 5:Naarden 5:Florins
(7)”
"Arnold, 20th 1surrealism 1:disharmony 1:Schoenberg 1:Mendelsohn
Century composef Bborparty 2:dissonance 2:Christleib 2:Williamson
pioneer of 3tonemusics 3:bringabout 3:Stravinsky 3:Huddleston
atonality 4introduced 4:constitute 4:Elderfield 4:Mandelbaum
(20)” 5:Schoenberg 5:triggeroff 5:Mendelsohn 5:Zimmerman

Table 7: Responses from different models to example crasselaes. In each case the model output is filtered to
exclude any candidates that are not of the same length athectanswer. BOW and RNN models are trained
without Word2Vec input embeddings and cosine loss.

guage models to interpret and represent the mean-We make all code, training data, evaluation sets
ing of phrases and sentences. While humans uaead both of our linguistic tools publicly available on-
the phrasal definitions in dictionaries to better unline for future research. In particular, we propose the
derstand the meaning of words, machines can useverse dictionary task as a comparatively general-
the words to better understand the phrases. We uspdrpose and objective way of evaluating how well
two dictionary embedding architectures - a recurremhodels compose lexical meaning into phrase or sen-
neural network architecture with a long-short-terntence representations (whether or not they involve
memory, and a simpler linear bag-of-words model training on definitions directly).

to explicitly exploit this idea.

On the reverse dictionary task that mirrors its
training setting, NLMs that embed all known con-
cepts in a continuous-valued vector space perform In the next stage of this research, we will ex-
comparably to the best known commercial applicaplore ways to enhance the NLMs described here,
tions despite having access to many fewer definespecially in the question-answering context. The
tions. Moreover, they generate smoother sets of camodels are currently not trained on any question-
didates and require no linguistic pre-processing dike language, and would conceivably improve on
task-specific engineering. We also showed how thexposure to such linguistic forms. We would also
description-to-word objective can be used to traitike to understand better how BOW models can per-
models useful for other tasks. NLMs trained on théorm so well with no ‘awareness’ of word order,
same data can answer general-knowledge crosswandd whether there are specific linguistic contexts in
guestions, and indeed outperform commercial sysvhich models like RNNs or others with the power
tems on questions containing more than four word$o encode word order are indeed necessary. Finally,
While our QA experiments focused on crosswordsye intend to explore ways to endow the model with
the results suggest that a similar embedding-baseither world knowledge. This may require the in-
approach may ultimately lead to improved outputegration of an external memory module, similar to
from more general QA and dialog systems and inthe promising approaches proposed in several recent
formation retrieval engines in general. papers (Graves et al., 2014; Weston et al., 2015).
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