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Abstract

There is currently an arms race to design low-precision hardware accelerators capable
of training machine learning models. This is because purpose-built, low-precision hardware
accelerators can lower both the time and energy needed to complete a task. In contrast,
traditional hardware architectures are over-provisioned, in terms of numerical precision, for
machine learning tasks. Unfortunately, the statistical effects of low-precision computation
during training are still not well understood. As a result, it is difficult to reach the statistical
accuracies of traditional architectures on these new accelerators which have limited support
for higher precision computation. This is due to a tradeoff with standard low-precision
training algorithms: as the number of bits is decreased, noise that limits statistical accuracy
is increased. In this paper we argue that one can reap the hardware benefits of low-precision
accelerators while maintaining the statistical accuracies of traditional, higher-precision data
formats. To do this we introduce a training algorithm called High-Accuracy Low-Precision
(HALP). HALP is a low-precision stochastic gradient descent variant that uses entirely low-
precision computation in its inner loop while infrequently recentering this computation with
higher-precision computation done in an outer loop. HALP uses three techniques to reduce
noise: (1) a known variance reduction method based on stochastic variance-reduced gradient
(SVRG); (2) a novel bit centering technique that uses infrequent high-precision computation
to reduce quantization noise; and (3) a novel dynamic bias adjustment technique to prevent
overflow and underflow. On strongly convex problems, we show both theoretically and
empirically that HALP converges at the same linear rate as full-precision SVRG. Inspired
by these results, we show on two neural network applications (CNN and LSTM) that HALP
can empirically compete with higher-precision training algorithms.

1. Introduction

Low-precision (less than 32-bit) hardware architectures are already here (Jouppi et al., 2017;
Burger, 2017; Caulfield et al., 2017; Micikevicius, 2017) and future hardware roadmaps
(Corporation, 2018; Micikevicius et al., 2017b) suggest that these lower-precision hardware
architectures will soon be commonplace. Such architectures promise to improve the speed
and efficiency of machine learning tasks when compared to traditional hardware architectures
that only support more costly higher precision (32-bit) computation. Still, the effects of
low-precision arithmetic on training algorithms are not yet well understood. As a result,
if only low-precision computation is used throughout training, it is often very difficult to
match the statistical accuracies of traditional, higher-precision hardware architectures. Even
worse, these new, low-precision hardware accelerators often have limited capacity for higher-
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precision computation, either from the host or due to the cost of reduced throughput. In this
work, we argue that one can match the statistical accuracies of the traditional, high-precision
hardware architectures by running the majority of the computation in lower-precision on an
accelerator while infrequently (orders of magnitude less often) performing some full-precision
computation.

It is well-accepted that the systems benefits of low-precision (LP) arithmetic commonly
come with a cost. The round-off or quantization error that results from converting numbers
into a low-precision representation introduces noise that can affect the convergence rate and
accuracy of SGD. While quantization has been studied in communication (Tang et al., 2018),
its effect when used on the updates in the innermost loop of training algorithms is much
less well understood and more complex to understand due to error accumulation. Explicitly,
we say that an algorithm has a low-precision inner loop if all the numeric computation in
the inner loop is done in low precision. It is therefore unsurprising that algorithms where
innermost loops are in low-precision tradeoff the number-of-bits against the resulting the
statistical accuracy—the fewer bits used, the worse the solution will become. Theoretical
upper bounds on the performance of low-precision SGD (De Sa et al., 2015; Li et al., 2017)
and empirical observations of implemented low-precision algorithms (Courbariaux et al.,
2014; Gupta et al., 2015; De Sa et al., 2017; Zhang et al., 2017) further confirm that current
algorithms are limited by this precision-accuracy tradeoff.1

In this paper, we show that it is possible to get high-accuracy solutions from an algorithm
with a low-precision inner loop, as long as the problem is sufficiently well-conditioned. We
do this by introducing a technique called bit centering, in which each number is represented
as the sum of a high-precision offset term, which is modified only infrequently, and a
low-precision delta term, which is modified every iteration, as follows:

x = ox︸︷︷︸
high-precision offset

+ δx︸︷︷︸
low-precision delta.

The key insight behind bit centering is that floating point errors are relative to the magnitude
of the number, and so a smaller low-precision delta means a smaller error due to the low-
precision compute. That is, if we are able to choose ox so that it is close to the value x will
take on, then δx will be small. Therefore we can compute it using low-precision computations
with much lower error than we would get if we had represented x directly in a low-precision
format. Using bit centering, we develop an algorithm called HALP which transcends the
accuracy limitations of ordinary low-precision SGD by reducing the three sources of errors
that are present in standard low-precision SGD: gradient variance, quantization noise, and
overflow/underflow. We address error from gradient variance using a known technique
called SVRG, stochastic variance-reduced gradient (Johnson and Zhang, 2013). To address
noise from quantization, we use bit centering, assigning our offsets ox using the outer-loop
full-gradient computation already present in the SVRG algorithm. Finally, we prevent
overflow and underflow from occurring by dynamically rescaling the range of represented
numbers for the delta term.

1. A simple way to avoid this and make an algorithm of arbitrary accuracy would be to increase the number of bits
of precision as the algorithm converges. However, this is unsatisfying as it increases the cost of computation, and
we want to be able to run on specialized low-precision accelerators that have a fixed bit width.
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We prove that, for strongly convex problems, HALP can produce arbitrarily accurate
solutions with the same linear asymptotic convergence rate as full-precision SVRG, while its
inner loop uses entirely low-precision computation with a fixed number of bits.

We experimentally validate HALP on both convex and non-convex applications with
varying levels of floating point precision. To accomplish this, we built three simulators,
each serving a distinct experimental purpose: one in Julia capable of running arbitrary
floating point precisions, one in PyTorch capable of running float16 (10 bit mantissa, 5
bit exponent) on Nvidia cuDNN, and one in C++ that runs high-performance bfloat16 (8
bit mantissa, 7 bit exponent) simulation on CPUs. On a linear regression model we show
that 8-bit HALP matches the convergence trajectory of SVRG (as the theory suggests it
should for convex applications). On multi-class logistic regression, we show that float16

HALP beats 32-bit SGD and matches 32-bit SVRG in terms of both test accuracy and
training loss. Further, on a CNN we show that float16 HALP matches 32-bit training
algorithms in terms of both test accuracy and training loss. Finally, on a LSTM we show
that bfloat16 beats 16-bit SVRG in terms of both test accuracy and training loss. Others
(Jia et al., 2018) were inspired by earlier versions of this manuscript and went on to show
that similar techniques can lead to state-of-the-art ImageNet training in only four minutes.
We are excited to see where else these can techniques go they become more mainstream.

Our contributions and an outline are as follows:

• In Section 3, we introduce the technique of bit centering, and analyze its performance
on a dot-product example. This simple examples illustrates the core mechanics of bit
centering and its benefits in an important setting that is highly prevalent in machine
learning applications.

• In Section 4, we describe how bit centering can be used in combination with SGD
and SVRG to train a machine learning model, using linear regression as an example.
We describe how overflow and underflow can be avoided by dynamically rescaling
the bias of our floating point numbers. Using this, we introduce HALP, our High-
Accuracy Low-Precision algorithm, for linear regression, and we show empirically that
it outperforms both non-bit-centered algorithms and bit-centered algorithms that do
not use re-scaling. Our theory exposes a novel relationship between the amount of
precision that is needed and the condition number of the problem, and we validate
this relationship empirically.

• In Section 5 we show how bit centering can be used to compute arbitrary Lipschitz-
differentiable loss functions and their gradients, and we prove bounds on the error of
these computations.

• In Section 6, we present a general version of HALP that can be applied to arbitrary
loss functions using our methods from Section 5. We describe conditions under which
we can prove that HALP converges down to solutions with error limited only by the
high-precision offset format—and that HALP can produce arbitrarily accurate solutions
if we assume the high-precision format has zero error.

• In Section 7, on a convex problem (multi-class logistic regression) and two non-convex
problems (CNN and LSTM), we validate that an implementation of HALP beats the
test accuracies and training loss of 16-bit SVRG. To run these experiments we built
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two simulators with 16-bit precision: one in PyTorch using float16 and one in C++
using bfloat16. Using these simulators we show that HALP not only can be useful on
strongly convex problems (as the theory suggests), but can also be useful on popular
non-convex problems such as deep learning applications.

2. Related work

Substantial previous research on low-precision machine learning has focused on evaluating
and guaranteeing the effectiveness of low-precision training. Researchers have gathered
empirical evidence for low-precision training in specific settings, although these results have
typically not produced empirical support for 8-bit training (Savich and Moussa, 2011; Seide
et al., 2014; Courbariaux et al., 2014; Gupta et al., 2015; Strom, 2015; Micikevicius et al.,
2017b). Researchers have also proven bounds on the error that results from using low-
precision computation on convex problems and non-convex matrix recovery problems (De Sa
et al., 2015; Li et al., 2017). Recently, Zhang et al. (2017) has developed techniques called
double sampling and optimal quantization which enable users to quantize the training
dataset with provable guarantees on the accuracy for convex linear models. Similarly, De Sa
et al. (2017), outlined how quantizing in different ways has different effects on accuracy
and throughput when SGD is made low-precision. These works showed that low-precision
training has many benefits but their accuracy degrades as precision is decreased. Our goal
in this work is to show that this need not always be true.

While SGD is a very popular algorithm, the number of iterations it requires to achieve
an objective gap of ε for a strongly convex problem is O(1/ε). In comparison, ordinary
gradient descent (GD) has an asymptotic rate of O(log(1/ε)), which is known as a linear
rate2, and is asymptotically much faster than SGD. There has been work on modifications to
SGD that preserve its high computational throughput while also recovering the linear rate of
SGD (Roux et al., 2012; Shalev-Shwartz and Zhang, 2013). SVRG is one such method, which
recovers the linear rate of gradient descent for strongly convex optimization, while still using
stochastic iterations (Johnson and Zhang, 2013); recently it has been analyzed in the non-
convex case as well and shown to be effective in some settings (Allen-Zhu and Hazan, 2016;
Reddi et al., 2016). These variance-reduced methods are interesting because they preserve
the simple hardware-efficient updates of SGD, while recovering the statistically-efficient
linear convergence rate of the more expensive gradient descent algorithm. While we are not
the first to present theoretical results combining low-precision with SVRG (Alistarh et al.
(2017) previously studied using low-precision numbers for communication among workers in
parallel SGD and SVRG), to the best of our knowledge we are the first to present empirical
results on low-precision SVRG and to propose the additional bit centering technique.

Exciting results in the deep learning community suggest that neural network training can
be done effectively by mixing 32-bit floating point arithmetic with lower precision formats
(Nvidia, 2018; Corporation, 2018; Micikevicius et al., 2017a). Much of this work focuses on
16-bit training while performing 32-bit accumulations and storing a master copies of the
networks weights in 32-bit precision. Researchers have also recently released mixed-precision
training techniques that are capable performing 8-bit floating point computations for much

2. This is called a linear rate because the iterations required is linear in the number of significant figures of output
precision desired.
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of training (Wang et al., 2018). At the farthest extreme, there has been work on training
networks with binarized weights from scratch, although these networks are still trained with
full precision updates (Hubara et al., 2016; Rastegari et al., 2016). Empirically HALP is
similar in spirit to much of this work, but theoretically it stands on its own by providing
strong convergence guarantees. Because of this we are primarily focused on the strongly
convex cases that we can reason about, of which deep learning is not. Still, we believe
(and provide evidence in Section 7) that our methods can complement the exciting deep
learning techniques that exist today. In fact, there is already empirical work, motivated
by earlier versions of this manuscript, which has shown that similar techniques can lead to
state-of-the-art results on ImageNet training (Jia et al., 2018).

3. Bit Centering

In this section, we introduce the bit centering technique and describe how it can reduce
errors due to quantization. We illustrate the benefits of bit centering by analyzing its error
on a simple dot-product example.

The technical inspiration for this paper is the recent resurgence of hardware accelerators
for machine learning and other applications.3 In such a scenario, a hardware accelerator
designed for machine learning runs inside a host device with a larger memory and general
purpose processor (e.g., a CPU). The accelerator typically has many more computational
units of lower precision and smaller memory compared with the general purpose host. This
motivates the development of algorithms that use low-precision arithmetic, and much past
work has been devoted to studying such algorithms. However, standard analysis of low-
precision algorithms often ignores the host, and analyzes a fully-low-precision or accelerator-
only model of computation. This motivates us to ask whether performance can be improved
by also using the host, which we call a host-accelerator model of computation (Figure 1).
In this section, we describe a principled way to do this. We develop a novel technique
called bit centering which greatly improves the accuracy of low-precision computation on
the accelerator by leveraging infrequent full-precision computation on the host (orders of
magnitude less frequent than the computation on the accelerator).

As we will see, the conventional wisdom is that training algorithms using low-precision
iterations are limited to low accuracy. Our goal is to formalize situations in which adding a
modest amount of host memory and computation allows us to achieve dramatically better
error with minimal overhead.

The core idea. Bit centering is a technique in which, instead of representing a number x
as a single floating-point number, we represent x as the sum of a pre-computed full-precision
offset and a low-precision delta:

x = ox + δx.

For example, we could store ox as a 64-bit double-precision float and store δx as a 16-bit
half-precision float. The benefit of bit centering, as compared with simply storing the number
x itself in low-precision, comes from the fact that floating point computation has relative

3. Christopher De Sa, Christopher Aberger, Kunle Olukuton, and Christopher Ré have a financial interest in Sam-
baNova Systems, which produces machine learning and big data platform including hardware accelerators and an
accelerated software stack.
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(e.g. FPGA, TPU)
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large-memory
high-precision
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(e.g. CPU, GPU)
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Figure 1: An illustration of the host-accelerator model of computation. In this model, a fast
machine learning accelerator device capable of only low-precision computation is connected
to a slower standard computation device that can perform high-precision arithmetic via an
infrequently used communication channel.

error. That is, if we do some computation in low precision that is intended to approximate
some number x ∈ R, and the result of that computation is a floating point number x̃, then

|x̃− x| ≤ ε |x| ,

where ε, which is called the machine epsilon, is some fixed-but-small number that is a
function of the number of bits used. In comparison, if we use bit centering to compute x,
and we compute only the delta δ̃x in low-precision (assuming negligible error in computing
ox), the error will look like

|x̃− x| =
∣∣∣δ̃x − δx∣∣∣ ≤ ε |δx| = ε |x− ox| .

So if we can choose ox so that it will be close to x (equivalently, so that δx will be small), then
bit centering can produce a much more accurate estimate of x using the same low-precision
format. In this section, we will introduce our notation for bit centering and illustrate its
benefits by analyzing a simple dot-product example, supposing that an offset ox is already
given. We will describe how to select the offset in the following sections.

3.1 Notation

As much as possible, we will follow the notation of Trefethen and Bau III (1997) and their
error model. Namely, given a number x and a floating point number system with machine
error εmachine, then if fl(x) is the floating point representation of x, there will exist an ε such
that |ε| ≤ εmachine and:

fl(x) = (1 + ε)x.

Moreover, if ∗ denotes any basic operation in scalar arithmetic (and also fused-multiply and
add on two floating point representations), and ~ denotes its floating point analogue, then
for some ε such that |ε| ≤ εmachine

x~ y = (1 + ε)(x ∗ y).

Equivalently,
|x~ y − x ∗ y| = εmachine.
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This is sometimes called the fundamental axiom of floating point arithmetic.4

Note that this model does not explicitly consider overflow or underflow, but it is an
accurate model of floating point arithmetic in situations when overflow and underflow cannot
occur (e.g. if a very large number of exponent bits are used). The point at which a number
underflows is the underflow threshold, the smallest representable number, which we denote
ηmachine. In situations where a number could underflow (but not overflow), we represent the
result of a floating point computation with a modified version of the fundamental axiom of
floating point arithmetic: for some ε with |ε| ≤ εmachine and some η with |η| ≤ ηmachine,

x~ y = (1 + ε)(x ∗ y) + η.

Overflow, on the other hand, always results in an infinite value, and so its error cannot be
bounded with a formula such as this. We let Mmachine denote the maximum representable
value of the floating point representation, above which overflow could occur. In our analysis
that follows, when we do consider overflow, we will ensure that it is avoided. For the first
part of this paper, we will consider an idealized version of floating point in which overflow
and underflow do not occur, and then we will come back to overflow and underflow later in
Section 4.3.

In this paper, we will deal with two floating point number systems: (1) a low precision
number system with machine precision εmachine-lo and (2) a high precision number system
with machine precision εmachine-hi. We let the low-precision representation of a number x be
denoted fllo(x) and the high-precision representation be denoted flhi(x). In the analysis that
follows, we will use εlo to denote a value that satisfies |εlo| ≤ εmachine-lo +O(εmachine-lo

2) and
εhi to denote a value that satisfies |εhi| ≤ εmachine-hi+O(εmachine-hi

2). This is a straightforward
generalization of the 1 + ε model of floating point error described above to the case of
mixed-precision algorithms. This also allows us to simplify the expression of factors that
are quadratic in the machine epsilon using the big-O notation, which is typical in rounding
error analysis. We use analogous notation for bounding overflow and underflow: we use
ηmachine-lo to denote the underflow limit of the low-precision format, and let ηlo generally
denote a value that satisfies |ηlo| ≤ ηmachine-lo +O(εmachine-lo · ηmachine-lo + ηmachine-lo

2), and
similarly for the high-precision format. We also define the precision ratio k as

k =
εmachine-lo

εmachine-hi
.

To more easily denote arithmetic operations with floating point numbers of multiple
precisions, we use the following conventions. We follow the notation of Trefethen and Bau III
(1997) in using operators with a circle around them to denote a floating point operation,
and we use an underset letter H or L to denote high-precision or low-precision respectively.
For example,

flhi(x�
L
y)⊕

H
z

denotes the result of multiplying x and y in the low-precision format, converting that into
high precision, and then adding it to z using high-precision computation. We extend this

4. Note that in some sources, δ is used for these sorts of expressions, rather than ε. Here we use ε both to follow
Trefethen and Bau III (1997) and to keep the letter δ free for use as the delta in bit centering.
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notation to allow floating point operators to also operate on vectors and matrices: for
example, if A is a matrix, and x and y are vectors, then

yT �
H
flhi(A�

L
x)

denotes the result of multiplying matrix A by vector x using low-precision arithmetic,
converting the (vector) result into the high-precision format, and then taking its dot product
in high-precision with the vector y. We also extend the notation for computing functions
and sums. For example,

exp
L

(x)

denotes the result of computing the exponential function of x in low precision and

N

©H

∑
i=1

xi

denotes the result of summing up the xi in high-precision arithmetic. Ordinary numeric
operations without circles or subscripts denote those operations performed in exact arithmetic,
as usual. Unless otherwise indicated, any norm ‖·‖ indicates the Euclidean `2 norm.

3.2 Case Study: Dot Product

In this subsection, we will describe bit centering and compare it with other quantization
strategies when used to compute a simple dot product, xT y, for x and y non-negative vectors
of real numbers. We suppose that x and y are representable exactly in both the low-precision
and high-precision formats, are available on both the host and the accelerator, and that
we want to produce an output in the low-precision floating-point format. The quantization
strategies are:

• High-precision. Perform the whole computation in high precision. This is the null
quantization strategy, as it cannot use any of the low-precision capabilities of the
accelerator. (It is also in a sense cheating, since it does not produce low-precision
output.)

• Quantize last. Perform the computation in high-precision floating poin, and then
quantize the output to low-precision floating point at the end. When this strategy is
used to quantize a training algorithm, it is sometimes called gradient quantization,
since the full gradient is computed using high-precision arithmetic, and then only the
computed gradient itself is quantized.

• Quantize first. Quantize all the inputs to the computation into low-precision floating
point, and then perform the computation in low-precision. This quantizes all operations,
but can cause accuracy to suffer.

• Bit centering. Compute using bit-centered numbers with a pre-computed-on-the-host
high-precision offset and a computed-on-the-accelerator low-precision floating-point
delta, and then quantize the output into low-precision on the accelerator.
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Strategy # LP Ops # HP Ops Result

High-precision —
n multiplies

n− 1 adds
(xT y) (1 + εhi · n)

Quantize last —
n multiplies

n− 1 adds
(xT y) (1 + εhi · (n+ k))

Quantize first
n multiplies

n− 1 adds
— (xT y)(1 + εhi · kn)

Bit centering
n multiplies

n adds

n multiplies

n− 1 adds

precomputed on host

(xT y) (1 + εhi · (n+ k))

+(δTx y) · εhi · kn
+(xT y) · εhi · k + (δTx y) · (n+ 3k)

Table 1: Results of performing a dot product using various quantization strategies. We refer
to eq. (2) for discussions on the count of Ops for bit centering.

In the derivations that follow, we will use the well-known fact (Bindel, 2012) that for
a nonnegative floating-point dot product with machine error εmachine, the result of the
computation will be, for some |ε| ≤ εmachine,

xT � y = xT y + |x|T |y|nε

where |x| denotes the absolute value of x applies entrywise, and where we are ignoring
terms proportional to ε2. (Note that this is for using naive summation; if we used pairwise
summation the n would be replaced by a log n factor.) For non-negative x and y, this is
equivalent to

xT � y = xT y · (1 + nε), (1)

a fact we use in the subsequent derivation. Our results in this section are summarized in
Table 1.

High-precision The result of computing a dot product in high precision follows immedi-
ately from eq. (1). We will have

flhi(x)T �
H
flhi(y) = xT y · (1 + εhi · n).

Quantize last We compute the dot product first in high precision, producing an interme-
diate value which will satisfy

flhi(x)T �
H
flhi(y) = xT y · (1 + εhi · n).
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If we then quantize that high-precision intermediate value to low precision, we will get

fllo(flhi(x)T �
H
flhi(y)) = (xT y)(1 + εhi · n)(1 + εlo)

= (xT y)(1 + εhi · n+ εlo)

= (xT y)

(
1 + εhi ·

(
n+

εmachine-lo

εmachine-hi

))
= (xT y) (1 + εhi · (n+ k)) .

Note again that we drop terms that are O(ε2), as is standard in Trefethen and Bau III
(1997), and as is justified by our definitions of εlo and εhi in Section 3.1. While this is a
small relative error (as long as εmachine-hi is small enough that εmachine-hi · (n+ k)� 1), all
of the computation we did here was in high precision.

Quantize first If we first quantize to low precision and then do the multiplication, then

fllo(x)T �
L
fllo(y) = (xT y)(1 + εlo · n) = (xT y)(1 + εhi · kn)

That is, we suffer the extra error multiplicatively, rather than additively, as we did in the
quantize-last case.

Hybrid method: bit centering In bit centering, some of the computation is done in
high-precision and some is done in low-precision. Here, we suppose that x = ox+ δx for some
high-precision precomputed vector ox and some low-precision vector δx. We also suppose
that y is stored in high-precision on the host. The dot product of these two terms is

xT y = (ox + δx)T y = oTx y + δTx y.

The first dot product term here, oTx y, depends only on the offset of x, not on the delta,
so oTx y can be precomputed on the host in full-precision, and then sent to the accelerator.
While doing this, we can also precompute a low-precision version of y. The remaining terms
can be computed in low-precision on the accelerator. Explicitly, this results in the following
algorithm, Algorithm 1. In the remaining of this section, we will demonstrate that the error
of this bit centered dot product interpolates those of quantize first and quantize last. At
the same time, it can use less overall computation than quantize last if we evaluate the dot
products with y for multiple different values of δx, with the same offset ox.
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Algorithm 1 Simple Bit Centered Dot Product

. high-precision precomputation on host

given: high-precision offset ox and value y
compute in high precision: oxT y ← oTx �

H
y

send to accelerator: fllo(y) and fllo(oxT y)

. low-precision computation on accelerator
given: low-precision delta δx
receive from host: fllo(y) and fllo(oxT y)

compute in low precision: δxT y ← δTx �
L
fllo(y)

output δxT y ⊕
L
fllo(oxT y)

Here, part of the dot product is computed in high precision (the offset part), and part
is computed in low precision (the delta part). We expect that if the delta is small, this
algorithm will have low error. Let’s upper bound the error of this algorithm, assuming for
simplicity that ox, δx, and y are nonnegative.5 First, for the offset, we immediately get

fllo(flhi(ox)T �
H
flhi(y)) = fllo(oTx y · (1 + εhi · n))

= oTx y · (1 + εhi · n) · (1 + εlo)

= oTx y · (1 + εhi · n+ εlo),

where following convention we ignore O(ε2) terms. Second, for the delta, we have

δTx �
L
fllo(y) = δTx fllo(y) · (1 + εlo · n)

= δTx (y · (1 + εlo)) · (1 + εlo · n)

= δTx y · (1 + εlo · (n+ 1)).

Adding these together,

fllo(flhi(ox)T �
H
flhi(y))⊕

L

(
δTx �

L
fllo(y)

)
=

(
fllo(flhi(ox)T �

H
flhi(y)) +

(
δTx �

L
fllo(y)

))
· (1 + εlo)

=
(
oTx y · (1 + εhi · n+ εlo) + δTx y · (1 + εlo · (n+ 1))

)
· (1 + εlo)

=
(
(x− δx)T y · (1 + εhi · n+ εlo) + δTx y · (1 + εlo · (n+ 1))

)
· (1 + εlo)

=
(
xT y · (1 + εhi · n+ εlo) + δTx y · (εhi · n+ εlo · (n+ 2))

)
· (1 + εlo)

= xT y · (1 + εhi · n+ 2εlo) + δTx y · (εhi · n+ εlo · (n+ 3))

= xT y · (1 + εhi · (n+ k)) + δTx y · εhi · kn+ xT y · εhi · k + δTx y · (n+ 3k)

(2)

5. The non-negativity assumption here is not necessary to bound the error, but just used to simplify the illustration.
Later, in Section 5 we will provide a full analysis of general loss functions that does not make any assumptions of
non-negativity, and this analysis will apply to the dot product as a special case.
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This formula interpolates between the two formulae for the quantize-first and quantize-last
approaches. We’ve written this so that the first term is identical to the result of the quantize
last strategy, the second term is the quantize first error, and the remaining terms measure
a small extra error from doing the extra addition to add the offset and delta components
together. Since the quantize last term is the best we could hope for, we can view the
second and third terms as additional error. When δx is small enough this approach improves
error—as we suspected.

A difference of this approach from quantize first is that we pre-compute fllo(oTx �
H
y) on

the host and then load it into memory. In terms of accelerator compute, it costs at worst a
2/n additional relative computation time over quantize first (since we need to do an extra
add and an extra load from the host, compared with quantize first). This may actually save
compute overall if we are evaluating dot products with y for multiple different values of δx,
but the same offset ox. In the next section we will show how we can arrange such a situation
in the training of linear models using bit centering.

4. Learning Using Bit Centering: Linear Regression

In this section, we describe how we can train a machine learning model using bit centering,
by focusing first on the simple case of linear regression; we will extend from linear models to
general loss function in Section 5. A linear regression problem has a loss of the form

f(w) =
1

n

n∑
i=1

fi(w) =
1

2n

n∑
i=1

(
xTi w − yi

)2
,

where n is the number of training examples, w ∈ Rd is the model, each xi ∈ Rd is a training
example, and yi ∈ R is the corresponding training label. We choose to introduce our
algorithms using linear regression because it results in a particularly simple inner loop for
SVRG, which has update step

wk,t = wk,t−1 − α (∇fi(wk,t−1)−∇fi(w̃k) +∇f(w̃k))

= wk,t−1 − α
(
(xTi wk,t−1 − yi) · xi − (xTi w̃k − yi) · xi +∇f(w̃k)

)
.

Since this update step can be computed with just dot products and basic vector arithmetic,
we can bound its error using the analysis of dot products we developed in the previous
section.

4.1 Learning Using Stochastic Gradient Descent

Stochastic gradient descent (SGD) is one of the most basic and fundamental training
algorithms used in machine learning, and many more sophisticated algorithms are built on
top of SGD. In this subsection, we will follow this trend by describing low-precision and
bit-centered variants of SGD. Low-precision SGD (Algorithm 2) has been explored many
times in prior work (De Sa et al., 2015; Li et al., 2017). This is just ordinary SGD computed
entirely using the low-precision format, and corresponds to the “quantize first” strategy
described in Section 3.2.

12
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Algorithm 2 LP-SGD: Low-precision SGD on linear regression

1: given: N low-precision training examples xi and labels yi, number of steps T , low-
precision step size α, initial low-precision iterate w0.

2: for t = 1 to T do
3: sample i uniformly from {1, . . . , N}

4: wt ← wt−1 	
L
α�

L

((
xTi �

L
wt−1 	

L
yi

)
�
L
xi

)
5: end for
6: return wT

Algorithm 3 BC-SGD: Bit-centered SGD for linear regression

given: N low-precision training examples xi and labels yi, number of epochs K, epoch
length T , low-precision step size α, initial iterate w0.
ow,1 ← flhi(w0)
for k = 1 to K do

. high-precision precomputation on host
for i = 1 to N do {This loop is fully parallelizable.}

gk,i ←
(
flhi(xi)

T �
H
ot−1 	

H
flhi(yi)

)
�
H
flhi(xi)

hk,i ← fllo(gk,i)
end for

δw,k,0 ← fllo(0)

. low-precision computation on accelerator
for t = 1 to T do

sample i uniformly from {1, . . . , N}

δw,k,t ← δw,k,t−1 	
L
α�

L

((
xTi �

L
δw,k,t−1

)
�
L
xi ⊕

L
hk,i

)
end for

ow,k+1 ← ow,k ⊕
H
flhi(δw,k,T )

end for
return ow,K+1

A bit-centered version of SGD is described in Algorithm 3. BC-SGD computes the
gradient samples used for SGD using bit centering. Each outer loop iteration is composed of
a phase of high-precision parallelizable precomputation (highlighted in blue) followed by an
inner loop which runs a bit-centered version of the SGD update loop using only low-precision
operations (highlighted in red). It is straightforward to verify that in the absence of any
numerical error (i.e. if both the “low-precision” and “high-precision” formats are exact
arithmetic), BC-SGD and LP-SGD are both identical to ordinary SGD. In other words, we
should expect these algorithms to differ only in their interaction with quantization error.
From our results in Section 3.2, we should expect a bit-centered computation to have less
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numerical error than one based on the “quantize-first” low precision strategy, so we should
expect BC-SGD to perform better than LP-SGD.

Empirical validation. To validate this intuition, we ran an experiment comparing the
convergence of these two algorithms. To do this, we generated a synthetic linear regression
dataset with n = 1024 examples in dimension d = 256. We generated training examples by
first sampling a weight vector wgen at random and then sampling examples according to

wgen ∼ N (0, Id), xi ∼ N
(

0,
1√
d
Id

)
, yi ∼ N

(
xTi wgen,

1

100

)
,

where N (µ,Σ) denotes the normal distribution with mean µ and covariance matrix Σ. We
evaluated both SGD and BC-SGD on this synthetic training set for three different low-
precision formats: IEEE 32-bit floats (8-bit exponent and 23-bit mantissa), IEEE 16-bit floats
(5-bit exponent and 10-bit mantissa), and the bfloat16 16-bit float format (8-bit exponent and
7-bit mantissa). We used 64-bit floats for the high-precision representation, and randomized
rounding was used for all the low-precision formats. We ran each algorithm for K = 100
epochs of T = 24× 1024 iterations each. For each algorithm-precision pair, we initialized
with w0 = 0 and ran for step sizes α in {1.0, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001}
and plotted the convergence trajectory for the step size α that resulted in the lowest value
of the `2 norm of the full gradient ‖∇f(w)‖ after 100 epochs.

Our results are presented in Figure 2. These results validate our intuition that bit-
centered versions of SGD should be more accurate. A clear example of the difference
produced by bit centering can be seen in the trajectories for bfloat formats: while the
LP-SGD bfloat trajectory (blue circles) is limited by numerical precision and has the worst
eventual gradient norm of all formats, the BC-SGD bfloat trajectory (red circles) eventually
converges down to an error that is nearly that achieved by the 32-bit float format.

While the results in Figure 2 indicate that bit centering can decrease the numerical
error caused by using low-precision numbers in SGD, even BC-SGD still converges to a
limited level of accuracy—sometimes called a noise ball. This is because there is still a
substantial source of noise in the algorithm: the variance of the gradient samples. While
this variance can be reduced by lowering the step size, we can observe empirically that a
lower step size also increases the negative effect from using low-precision arithmetic. This
is illustrated in Figure 3, which compares the loss gradient after 100 epochs in the same
experiment as Figure 2 for different values of the learning rate α. From the figure, we can
see that additional error caused by low-precision becomes more of an issue as the learning
rate is decreased: while all the algorithms behave roughly the same when α = 1, as α is
decreased most of the lower-precision (16-bit) methods start to perform worse compared
with the 32-bit SGD baseline, and they only match its performance again when the step size
is too small for even the 32-bit baseline to make much progress. As a result of this effect,
lowering the step size is not a panacea for lowering the error in low-precision SGD as it is in
SGD when numerical issues are not considered. This motivates us to explore other methods
for improving the accuracy of bit-centered learning algorithms.
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Figure 2: A comparison of the convergence of SGD and bit-centered SGD (BC-SGD) for
a variety of low-precision numerical formats on a synthetic linear regression dataset. The
notation exmy indicates that x bits are used for the exponent and y bits are used for the
mantissa.

10−4

10−3

10−2

10−1

0.0001 0.001 0.01 0.1 1

n
or

m
o
f

lo
ss

gr
ad

ie
n
t

learning rate (α)

Learning Rate vs Noise Ball Size for Synthetic Linear Regression

SGD, e8m23
SGD, e5m10
SGD, e8m7
BC-SGD, e8m23
BC-SGD, e5m10
BC-SGD, e8m7

Figure 3: A comparison of the convergence of SGD and bit-centered SGD (BC-SGD) for a
variety of numerical formats on a synthetic linear regression dataset.

4.2 Learning with Variance Reduction: SVRG

Since we cannot reduce error in the iterations of LP-SGD and BC-SGD by making the step
size arbitrarily small, we will look at other ways to reduce this error. One way to do this is
to use variance reduction, which lowers the error of the updates of SGD by lowering the
variance of the gradient samples it uses. For the remainder of this section, we will focus on
a variance reduction technique called stochastic variance-reduced gradient (SVRG) (Johnson
and Zhang, 2013). Compared with standard stochastic gradient descent, SVRG is able to
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Algorithm 4 LP-SVRG: Low-precision SVRG on linear regression

1: given: N low-precision training examples xi and labels yi, number of epochs K, epoch
length T , low-precision step size α, initial low-precision iterate w̃1.

2: for k = 1 to K do

3: g̃k ← ∇f
H

(flhi(w̃k)) =

(
N

©H

∑
i=1

(
flhi(xi)

T �
H
flhi(w̃k)	

H
flhi(yi)

)
�
H
flhi(xi)

)
�
H
N

4: h̃k ← fllo(g̃k)
5: wk,0 ← w̃k
6: for t = 1 to T do
7: sample i uniformly from {1, . . . , N}

8: wk,t ← wk,t−1 	
L
α�

L

((
xTi �

L
wk,t−1

)
�
L
xi 	

L

(
xTi �

L
w̃k

)
�
L
xi ⊕

L
h̃k

)
9: end for

10: option I: set w̃k+1 ← wk,T
11: option II: sample t uniformly from {0, . . . , T − 1}, then set w̃k+1 ← wk,t
12: end for
13: return w̃K+1

converge at a linear rate because it periodically uses full gradients g̃k to reduce the variance
of its stochastic gradient estimators.

As a warmup, we derive low-precision SVRG (LP-SVRG), which combines low-precision
computation with variance reduction (but without bit centering). This will provide a baseline
which we can use to evaluate the additional benefits of using bit centering. To construct
LP-SVRG in our mixed precision setting, we simply modify the standard SVRG algorithm
(see Appendix B.1) so that its entire inner loop is computed in low-precision: this is effectively
using the “quantize first” strategy that we analyzed in Section 3.2. For simplicity, we assume
that all the inputs to the algorithm (the training examples, the labels, the initial iterate,
and the step size) are given in the low-precision format (and representable without error in
the high-precision format as well). The LP-SVRG algorithm is shown in Algorithm 4. In
prior work (Harikandeh et al., 2015), it has been standard to use option II for the theoretical
analysis (as it simplifies the derivation) while using option I for all empirical experiments;
we follow this convention here.

We can immediately see that LP-SVRG will not converge asymptotically at a linear
rate, as it will be limited to producing outputs representable in the low-precision format
fllo(·): once it gets as close as possible to the solution in this representation, it can get no
closer, and convergence will stop. The next-best thing we can hope for is that LP-SVRG will
converge at a linear rate until it reaches this limit, at which point it will stop converging—in
fact, we can prove that this is what happens. First, we will state the assumptions that we
need to prove this.

Assumption 1 We require that the objective f is µ-strongly convex:

(w − v)T (∇f(w)−∇f(v)) ≥ µ ‖w − v‖2 ;

and the gradients ∇fi are all L-Lipschitz continuous:

‖∇fi(w)−∇fi(v)‖ =
∣∣xTi w − xTi v∣∣ · ‖xi‖ ≤ L ‖w − v‖ .
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These assumptions are standard in the analysis of optimization algorithms, and they are
the same ones used for the analysis of SVRG (Johnson and Zhang, 2013). In terms of these
parameters, the condition number of the problem is defined as κ = L/µ.

Assumption 2 We also assume, for simplicity, that the high-precision numbers used have
zero error (i.e. the high-precision arithmetic is actual real number arithmetic).

This assumption, while not strictly necessary to prove convergence, simplifies the analysis
greatly. It means that the result of theorems proven with this assumption will only depend
on the error of the low-precision representation, and so this assumption lets us cleanly
capture what the error just due to low-precision computation is. For simplicity, we will also
assume that no overflow or underflow occurs in the computation. Under these conditions we
can provide convergence guarantees for LP-SVRG.

Theorem 3 Suppose that we run LP-SVRG for linear models (Algorithm 4) under Assump-
tions 1 and 2, using option II for the epoch update. Suppose that no overflow or underflow
occurs during the computation. Let d denote the dimension of the model, and let w∗ ∈ Rd be
the global optimum. Suppose that d > 7. For any constant 0 < γ < 1 (a parameter which
controls how often we take full gradients), if we set our step size and epoch lengths to be

α =
γ

4L(1 + γ)
T ≥ 8κ(1 + γ)

γ2
,

which is the same as in the original analysis of SVRG in Johnson and Zhang (2013), then
the outer iterates of LP-SVRG will converge to an accuracy limit at a linear rate:

E
[
f̃(wK+1)− f(w∗)

]
≤
(
γ +

288κ · d · εmachine-lo

γ

)
E [f(w̃k)− f(w∗)]

+
72L · ‖w∗‖2 · d · εmachine-lo

γ
+O(εmachine-lo

2).

Because it is long, we defer the proof of this theorem to the appendix. This result is
tight in the sense that we can recover the original convergence theorem for SVRG by setting
εmachine-lo = 0 in the above expression. As a consequence, LP-SVRG will initially converge
at a linear rate, just like SVRG—but only down to an error that is limited by the precision
used. We can observe a tradeoff between bits-of-precision and accuracy here: as the number
of bits becomes smaller, εmachine-lo will become larger, and so the accuracy limit will become
worse. Also interesting is the fact that, for LP-SVRG to contract at each iteration by roughly
the same factor as the base SVRG algorithm, we need

288κ · d · εmachine-lo

γ
� 1,

which requires that εmachine-lo � (κd)−1. This suggests a relationship between the machine
epsilon, and therefore the number of bits, that is needed and the condition number of the
problem: for problems with a larger condition number (more poorly conditioned), we need
more bits.
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Bit-centered SVRG. While LP-SVRG converges at a linear rate, it only converges down
to a level of accuracy proportional to the machine epsilon of the low-precision format used.
In fact, this is a fundamental limitation of algorithms like LP-SVRG and LP-SGD: we
cannot produce a solution that is asymptotically more accurate than the most accurate
solution representable in the low-precision format we have chosen. Since the low-precision
format in the previous section is fixed throughout the algorithm, this accuracy limitation is
impossible to overcome. For the same reason, this limitation will still hold even if we use a
non-floating-point low-precision representation, such as fixed-point arithmetic. While the
use of SVRG allowed us to reach this minimum level of accuracy more quickly (at a linear
rate, in fact) compared with low-precision SGD (De Sa et al., 2015; Li et al., 2017), it has
not let us surpass this minimum.

In this section we introduce (for linear models) a bit-centered version of SVRG that can
surpass this minimum level of accuracy and converge to arbitrarily accurate solutions (limited
only by the high-precision machine epsilon) while still using low-precision arithmetic in the
inner loop. To construct our bit-centered SVRG variant, we simply modify the standard
SVRG algorithm to compute its inner loop using bit-centered computation, using the outer
loop iterate w̃k as the offset. Recall that the inner loop of SVRG for linear regression has
update step

wk,t = wk,t−1 − α
(
(xTi wk,t−1 − yi) · xi − (xTi w̃k − yi) · xi +∇f(w̃k)

)
.

If we re-write wk,t using bit centering with an offset of w̃k, then we get the following update
step for the delta,

δw,k,t = wk,t − w̃k
= wk,t−1 − w̃k − α

(
(xTi wk,t−1 − yi) · xi − (xTi w̃k − yi) · xi +∇f(w̃k)

)
= δw,k,t−1 − α

(
(xTi (δw,k,t−1 + w̃k)− yi) · xi − (xTi w̃k − yi) · xi +∇f(w̃k)

)
= δw,k,t−1 − α

(
(xTi δw,k,t−1) · xi +∇f(w̃k)

)
.

We can use this bit-centered update step in place of the ordinary update step in SVRG.
Doing this results in Algorithm 5, BC-SVRG.

Compared with LP-SVRG, BC-SVRG returns a full-precision vector w̃K+1. As a result,
it is not fundamentally limited to the outputs representable in the low-precision format, like
LP-SVRG is. Also unlike LP-SVRG, the numerical error in the inner loop of BC-SVRG
decreases as the algorithm converges. This is because all the numbers in the inner loop,
including δw,k,t and h̃k, are proportional to the distance of the outer loop iterate to the
optimum ‖w̃k − w∗‖. So as w̃k gets closer to w∗ (or, equivalently, as the delta gets smaller),
the error of the floating point computation, which is relative to the magnitude of the numbers,
also goes down. In the following theorem, we show that this is enough to allow BC-SVRG to
converge down to solutions of accuracy limited only by machine epsilon of the high-precision
format. More precisely, we show that if the high-precision format has zero error (i.e. is exact
arithmetic) then BC-SVRG can output solutions arbitrarily close to the optimum w∗.

Theorem 4 Suppose that we run BC-SVRG (Algorithm 5) under Assumptions 1 (strong
convexity and Lipschitz continuity) and 2 (zero-error high-precision arithmetic), using option
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Algorithm 5 BC-SVRG: Bit-centered SVRG for linear regression

given: N low-precision training examples xi and labels yi, number of epochs K, epoch
length T , low-precision step size α, initial low-precision iterate w̃1.
for k = 1 to K do

. high-precision precomputation on host

g̃k ← ∇f
H

(flhi(w̃k)) =

(
N

©H

∑
i=1

(
flhi(xi)

T �
H
flhi(w̃k)	

H
flhi(yi)

)
�
H
flhi(xi)

)
�
H
N

h̃k ← fllo(g̃k)

δw,k,0 ← fllo(0)

. low-precision computation on accelerator
for t = 1 to T do

sample i uniformly from {1, . . . , N}

δw,k,t ← δw,k,t−1 	
L
α�

L

((
xTi �

L
δw,k,t−1

)
�
L
xi ⊕

L
h̃k

)
end for

option I: set w̃k+1 ← w̃k ⊕
H
flhi(δw,k,T )

option II: sample t uniformly from {0, . . . , T − 1}, then set w̃k+1 ← w̃k ⊕
H
flhi(δw,k,t)

end for
return w̃K+1

II for the epoch update. Also assume that no overflow or underflow occurs in the computation,
and that d ≥ 4. For any constant 0 < γ < 1, if we set our step size and epoch lengths to be

α =
γ

4L(1 + γ)
, T ≥ 8κ(1 + γ)

γ2
,

then the iterates of BC-SVRG will satisfy

E [f(w̃k+1)− f(w∗)] ≤
(
γ +

192κd

γ
· (εmachine-lo +O(εmachine-lo

2))

)
E [f(w̃k)− f(w∗)] .

This theorem shows that we can achieve a linear asymptotic convergence rate even
using constant-bit-width low-precision computation in the inner loop. It also describes
an interesting tradeoff between the precision and the condition number. As the condition
number becomes larger while the precision stays fixed, we need to use longer epochs (T
becomes larger) and the algorithm converges at a slower rate, until eventually (for κ large
enough to make the contraction factor ≥ 1) the algorithm might stop working altogether.
This suggests that low-precision training should be combined with techniques to improve
the condition number, such as preconditioning, to achieve the best performance.

4.3 HALP: Handling overflow and underflow

From the result of Theorem 4, BC-SVRG for linear models had the remarkable property
that it was able to converge to produce solutions of high accuracy, even though it used
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entirely low-precision compute in its inner loop. However, this theorem had one unrealistic
assumption: that no overflow or underflow would occur during the computation. When using
real floating point representations, this assumption certainly will not hold. For example,
imagine that we use 16-bit floating point numbers for the low-precision format, and some
big-float arithmetic with very many bits for the high-precision format, such that we can
assume that it behaves like exact arithmetic. As BC-SVRG converges, if it follows the
convergence rate described by Theorem 4, eventually w̃k will become very close to w∗. But
when this happens, g̃k will also become very small, and its low-precision version h̃k will
underflow the 16-bit float format. Similar underflows will occur to δw,k,t. As a result of these
underflows, the algorithm may still have its accuracy limited by the 16-bit float format.

To address this, we introduce a technique called dynamic bias adjustment which prevents
overflow and underflow from occurring by altering the exponent bias of the low-precision
format dynamically. A floating point number with sign bit s, exponent e, and mantissa bits
m1,m2, . . . has value

(−1)s · 2e−bias · 1.m1m2 . . .

where “bias” here denotes some integer value that is usually fixed for each floating point
representation. For example, for 16-bit IEEE floats, the exponent bias is 15. Computing
with a different exponent bias changes the range of the floating point representation. By
increasing this bias as BC-SVRG converges, we can make the representable range smaller
and so prevent underflow from occurring. To do this, we add an extra bias term to the
exponent,

(−1)s · 2e−bias+extra bias · 1.m1m2 . . . .

To be consistent with our previous notation, we let fllo-bias(B)(x) denote the result of
converting x into a biased low-precision format with extra exponent bias B, and introduce
analogous notation for computations with the biased-exponent format, which we describe in
detail in Appendix B.2. Note that using an extra bias of B has the effect of changing the
overflow and underflow thresholds to

Mlo-bias(B) = 2B ·Mlo ηlo-bias(B) = 2B · ηlo.

This is just scaling both of them by the same factor, while the overall machine epsilon of
the format (which is determined by size of the mantissa) remains the same, since the total
number of bits is not changed when we use dynamic bias.

Setting the bias How do we decide how to set the bias? One simple heuristic is to use the
full gradient we are already computing as part of SVRG. Since, as BC-SVRG converges, the
magnitude of all the numbers in the inner loop becomes small proportional to the distance
to the optimum, it will also become small proportional to the magnitude of g̃, which is
within a constant factor of the distance to the optimum (specifically, µ ‖w̃k − w̃∗‖ ≤ ‖g̃k‖ ≤
Lµ ‖w̃k − w̃∗‖). As a result, we can reduce the bias without overflowing anywhere if we set
it such that 2−bias is proportional to ‖g̃k‖. If we do this, then any underflow that occurs will
also be small proportional to ‖g̃k‖, which means that it will be small proportional to the
distance to the optimum. This, in turn, means that the numerical error due to underflow
should become small at the same rate as the more ordinary numerical error due to the
low-precision machine epsilon (that is, proportional to the distance to the optimum), so
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Algorithm 6 HALP: Bit-centered, dynamic-bias-adjusted SVRG for linear models

given: N low-precision training examples xi and labels yi, number of epochs K, epoch
length T , low-precision step size α, initial low-precision iterate w̃1, and bias factor ζ > 0.
for k = 1 to K do

. high-precision precomputation on host

g̃k ← ∇f
H

(flhi(w̃k)) =

(
N

©H

∑
i=1

(
flhi(xi)

T �
H
flhi(w̃k)	

H
flhi(yi)

)
�
H
flhi(xi)

)
�
H
N

compute bias: B ←
⌊

log2
H

(ζ · ‖g̃k‖H)

⌋
h̃k ← fllo-bias(B)(g̃k)
s̃k ← fllo-bias(B)(2�

H
‖g̃k‖H �

H
µ)

δw,k,0 ← fllo-bias(B)(0)

. low-precision computation on accelerator
for t = 1 to T do

sample i uniformly from {1, . . . , N}

δw,k,t ← δw,k,t−1 	
L
α�

L

((
xTi �

L
δw,k,t−1

)
�
L
xi ⊕

L
h̃k

)
if ‖δw,k,t‖L > s̃k then
δw,k,t ← fllo-bias(B)(0)

end if
end for

option I: set w̃k+1 ← w̃k ⊕
H
flhi-from(B)(δw,k,T )

option II: sample t uniformly from {0, . . . , T − 1},
then set w̃k+1 ← w̃k ⊕

H
flhi-from(B)(δw,k,t)

end for
return w̃K+1

we should be able to get a linear rate of convergence. Using this heuristic to assign the
exponent bias results in Algorithm 6, which we call high-accuracy low-precision or HALP.

Compared with BC-SVRG, in addition to the dynamic biasing, the only change in
Algorithm 6 is the extra if statement comparing with s̃k. This statement acts to prevent
another kind of overflow that could still occur when running HALP, if this if statement were
not present. Without this statement, the updates to δw,k,t could accumulate until it becomes
large enough that computations like xTi �

L
δw,k,t−1 overflow. The if statement guards against

this happening by preventing δw,k,t from becoming too large. The resetting of δw,k,t to 0 if
it fails this check is justified by the fact that by strong convexity,

‖w̃k − w∗‖ ≤
1

µ
‖∇f(w̃k)−∇f(w∗)‖ =

1

µ
‖g̃k‖ =

s̃k
2
,
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tighten 
bound on 
solution

re-centering
and

re-scaling

bound on solutionglobal solution points representable in low-precision arithmetic

Figure 4: A diagram of the bit centering and dynamic biasing operation in HALP. As the
algorithm converges, we are able to bound the solution within a smaller and smaller ball.
Periodically, we re-center the points that our low-precision model can represent so they are
centered on this ball, and we re-scale the points so that more of them are inside the ball.

and so if δw,k,t has norm larger than s̃k, it follows that

‖wk,t − w∗‖ = ‖δw,k,t + w̃k − w∗‖ ≥ ‖δw,k,t‖ − ‖w̃k − w∗‖ > s̃k −
s̃k
2

=
s̃k
2
≥ ‖w̃k − w∗‖ .

This means that by resetting the delta to zero, we are actually moving closer to the global
optimum. Equivalently, we can think about the whole process as producing some bound on
where the solution could be (using strong convexity) and then remapping our representable
low-precision numbers, using both bit centering with an offset and re-scaling with dynamic
bias adjustment, to cover the region that we know our solution is in. This process is
illustrated in Figure 4. Using this, we can prove the following theorem, which shows that
HALP converges to produce arbitrarily accurate solutions, even when using low-precision
floating point numbers for which overflow and underflow are possible.

Theorem 5 Suppose that we run HALP for linear regression (Algorithm 6) under As-
sumptions 1 (strong convexity and Lipschitz continuity) and 2 (zero-error high-precision
arithmetic), using option II for the epoch update. Suppose that d > 16, that our underflow
threshold ηmachine-lo is small enough that

(L+ 1) · ζ · ηmachine-lo ≤ εmachine-lo,

and that our overflow threshold is large enough that

4κ+ 2

ζ
·max

(
1, L−1

)
· (1 +O(εmachine-lo)) ≤Mmachine-lo,

For any constant 0 < γ < 1, if we set our step size and epoch lengths to be

α =
γ

4L(1 + γ)
, T ≥ 8κ(1 + γ)

γ2
,

then the iterates of HALP will satisfy

E [f(w̃k+1)− f(w∗)] ≤
(
γ +

192κd

γ
· (εmachine-lo +O(εmachine-lo

2))

)
E [f(w̃k)− f(w∗)] .
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Figure 5: A comparison of the convergence of LP-SVRG and BC-SVRG (without dynamic
biasing) and HALP for a variety of low-precision numerical formats on a synthetic linear
regression dataset.

Experimental validation. Theorem 5 predicts that we can get highly accurate solutions
to linear regression problems using only low-precision compute in the inner loop—and real
low-precision compute, not just an idealized version with no overflow or underflow. We
validate this result empirically in Figure 5 where we ran low-precision SVRG, bit-centered
SVRG, and HALP for a variety of low-precision formats on the same synthetic dataset that
was used for Figure 2. Here, we used a learning rate of α = 0.3 for all experiments, we
used randomized rounding for the low-precision formats, and we used a 1024-bit BigFloat
format for the high-precision numbers used in these algorithms in order to match the setting
of Theorem 5, in which Assumption 2 holds, as closely as possible. Figure 5 illustrates
that HALP is able to converge down to solutions of arbitrarily low accuracy (in this figure,
ranging down to 10−120 which is even smaller than the machine epsilon of 64-bit floating
point arithmetic) even while using only low-precision computation in its inner loop. Even
an 8-bit floating point representation with 4 exponent bits and 3 mantissa bits is able to
achieve this feat, albeit at a somewhat slower convergence rate.

Effect of the condition number. Another very interesting effect predicted by our
theorems in this section is a relationship between the number of bits needed and the
condition number κ of the problem. To study this effect, we generated a series of simple
two-dimensional linear regression problems with different condition numbers. For each
condition number κ we sought to evaluate, we generated 512 synthetic examples of the form

xi = [1, 0]T yi ∼ N (0, 1) ,

and combined them with 512 synthetic examples of the form

xi =
[
0, (κ/2)−1/2

]T
yi ∼ N

(
0, (κ/2)1/2

)
.
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1× 10−12

1× 10−10

1× 10−8

1× 10−6

0.0001

0.01

1

10 100 1000 10000

n
o
rm

of
lo

ss
gr

a
d
ie

n
t

condition number (κ)

Final Gradient Norm of HALP vs. Condition Number

HALP, e8m23
HALP, e8m11
HALP, e8m9
HALP, e8m7
HALP, e6m5
HALP, e5m2

Figure 6: A comparison of the convergence of HALP on synthetic linear regression tasks
as the condition number is changed. Notice that as the condition number increases, the
performance of the lower-precision experiments becomes worse than that of the 32-bit HALP
baseline.

It is straightforward to verify that this example indeed has condition number κ. For each
condition number in the set

κ ∈ {2, 6, 20, 60, 200, 600, 2000, 6000, 20000}

and for several different low-precision formats ranging from 8-bits to 32-bits, we ran HALP
for K = 10 epochs each of length T = 30κ using a learning rate of α = 0.1, which is
what the theory in Theorem 3 predicts we should use for a setting of γ = 0.667. We used
nearest-neighbor rounding for all the quantization done in this experiment.6 The final
gradient norm after 10 epochs is reported in Figure 6.

Notice that for low-precision HALP, there is a threshold where the performance of the
algorithm starts to degrade, above which the performance is worse than the 32-bit HALP
baseline. This validates our theory, which predicts that such a phenomenon will happen,
and places a bound on the maximum machine epsilon (or equivalently, the minimum number
of bits) that will suffice for solving problems of a particular condition number.

5. Bit Centering for General Loss Functions

In the previous sections, we described how to learn using bit centering for linear regression,
which has a loss function of particularly simple form involving only a dot product and
scalar-vector computation. In this section, we describe how bit centering can be used on
arbitrary numerical computations. The key idea is that, in the linear regression and dot
product case, we were able to produce a bound on the error of the delta of the gradients (or

6. We reported results for nearest-neighbor rounding here because when randomized rounding is used for
the same experiment, other effects dominate the convergence and the relationship between condition
number and precision is less visible.
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of the dot product) of the form

error(δ) = O (‖δw‖ · εmachine-lo) .

This bound allowed us to show that the errors are getting smaller as the algorithm converges.
Next, we will show how we can develop bit-centered versions of all common numerical
operations, and thereby get a bound of the same form on the delta error of the gradients for
arbitrary loss functions which can be computed via a computation graph. Each bit-centered
operation proceeds in three steps:

1. During high-precision precomputation, compute the (high-precision) offset of the
output of the operation, as a function of the (high-precision) offsets of the inputs.

2. During high-precision precomputation, compute (in high-precision) and cache (in
low-precision) any extra values that will be needed to compute the deltas later.

3. During low-precision computation, compute the (low-precision) delta of the output of
the operation, as a function of the (low-precision) deltas of the inputs and the cached
values (if any).

We introduce the following notation for the computations done in each of these steps:

o~
C

(ox, oy)

which computes (usually in high precision on the host device) the offset of the output of the
∗ operation, given the offset of the inputs,

cache~
C

(ox, oy)

which computes (usually in high precision on the host device) any low-precision values that
will be needed later for computation of the deltas, and

δ~
C

(δx, δy, cache)

which computes (usually in low precision on the accelerator) the delta of the offset of
the operation, given the low-precision deltas of the inputs and the low-precision values
precomputed in cache. To represent an entire bit-centered operation, we let (ox, δx) denote
the value x represented using bit centering (that is, we represent it as x = ox + δx using a
high-precision-floating-point offset ox and a low-precision-floating-point delta δx, stored in a
biased low-precision format with exponent bias B7) and let

(ox, δx) ~
C

(oy, δy)

denote the entire bit-centered computation of the ∗ operation, just as we have used similar
notation to denote high-precision and low-precision computation.

In this section, we will explicitly define how to perform these bit-centered operations for
most numerical operations used in machine learning. Then we compute the error of these
bit-centered operations just like we would compute the error of floating point operations.
Our results in this vein are summarized in Table 2.

7. This handles the case of unbiased low-precision deltas as a special case with B = 0.
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Operation # LP Ops # HP Ops Result error (·εlo)

Add 1 add 1 add |δx + δy|

Subtract 1 sub 1 sub |δx − δy|

Multiply x by

constant y
1 multiply 1 multiply |δx · y|

General

multiply

2 extra loads

2 multiplies

2 adds

1 multiply

2 extra stores
4 · (|ox · δy|+ |δx · oy|+ |δx · δy|)

Divide

2 extra loads

1 multiply

1 divide

1 add

1 subtract

1 divide

2 extra stores
7 · |δx|+|ox/oy|·|δy|y2 · (|y|+ |δy|)

Exp

1 extra load

1 multiply

1 expm1

1 exp

1 extra store
4 · exp(ox) · (exp(δx)− 1)

Function

eval

1 extra load

1 eval of ∆f

1 eval of f

1 extra store
|f ′(ox)| · |δx|+ Lf · |δx| · (|ox|+ |δx|)

Table 2: A table summarizing our results on bounding the error of bit-centered operations
in Section 5. For simplicity, we suppose in this table that εmachine-hi = 0 and ηmachine-lo = 0;
i.e. we are looking only at the error caused by the low-precision format and we are not
considering underflow.
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Addition Suppose that we want to do addition using bit centering, i.e. to compute x⊕
C
y

where x = ox + δx and y = oy + δy. The natural way to do this is to let

x⊕
C
y

def
= ((ox ⊕

H
oy), (δx ⊕

L
δy)),

where more explicitly the offset of the bit-centered result is the first term ox ⊕
H
oy and the

delta is the second term δx ⊕
L
δy. Explicitly, this decomposes into

o⊕
C

(ox, oy)
def
= ox ⊕

H
oy

cache⊕
C

(ox, oy)
def
= ∅

δ⊕
C

(δx, δy, ∅)
def
= δx ⊕

L
δy.

Note that we say cache⊕
C

(ox, oy)
def
= ∅ to denote that nothing is pre-computed and stored by

this function for an add operation. This will have error∣∣∣∣x⊕
C
y − (x+ y)

∣∣∣∣ =

∣∣∣∣(ox ⊕
H
oy) + (δx ⊕

L
δy)− (ox + oy + δx + δy)

∣∣∣∣
≤
∣∣∣∣(ox ⊕

H
oy)− (ox + oy)

∣∣∣∣+

∣∣∣∣(δx ⊕
L
δy)− (δx + δy)

∣∣∣∣
= |ox + oy| · εhi + ηhi + |δx + δy| · εlo + ηlo-bias(B)

= |x+ y| · εhi + |δx + δy| · (εlo + εhi) + ηlo-bias(B) + ηhi.

It will also be the case that the magnitude of the delta that results from this operation will
be bounded by ∣∣∣∣δx⊕

C
y

∣∣∣∣ =

∣∣∣∣δx ⊕
L
δy

∣∣∣∣ ≤ |δx + δy| · εlo + ηlo-bias(B).

Subtraction We define

x	
C
y

def
= ((ox 	

H
oy), (δx 	

L
δy)).

The analysis of this is the same as for addition, so we defer it to Appendix B.3 for brevity.

Constant multiplication Suppose that we want to do multiplication by a constant using
bit centering, to compute x �

C
y where x = ox + δx and y is a constant representable in

low-precision (but is not itself represented using bit centering). This, it turns out, is easier
than doing general bit-centered multiplication, which we will consider next. The natural
way to do constant multiplication is

x�
C
y

def
=

(
ox �

H
flhi(y), δx �

L
fllo(y)

)
.
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Explicitly, this decomposes into

o�
C

(ox, y)
def
= ox �

H
y

cache�
C

(ox, y)
def
= fllo(y)

δ�
C

(δx, (ylo))
def
= δx �

L
ylo.

This will have error∣∣∣∣x�
C
y − (x · y)

∣∣∣∣ =

∣∣∣∣(ox �
H
flhi(y)) + (δx �

L
fllo(y))− (ox · y + δx · y)

∣∣∣∣
≤
∣∣∣∣(ox �

H
y)− (ox · y)

∣∣∣∣+

∣∣∣∣(δx �
L
y)− (δx · y)

∣∣∣∣
= |ox · y| · εhi + ηhi + |δx · y| · εlo + ηlo-bias(B)

= |x · y| · εhi + |δx · y| · (εlo + εhi) + ηlo-bias(B) + ηhi.

The magnitude of the delta that results from this operation will be bounded by

∣∣∣∣δx�
C
y

∣∣∣∣ =

∣∣∣∣δx �
L
y

∣∣∣∣ ≤ |δx · y| · εlo + ηlo-bias(B).

Multiplication Suppose that we want to do multiplication using bit centering, to compute
x�

C
y where x = ox + δx and y = oy + δy. The natural way to do this is

x�
C
y

def
=

(
(ox �

H
oy), fllo(ox)�

L
δy ⊕

L
δx �

L

(
fllo(oy)⊕

L
fllo(δy)

))
.

Explicitly, this decomposes into

o�
C

(ox, oy)
def
= ox �

H
oy

cache�
C

(ox, oy)
def
= (fllo(ox), fllo(oy))

δ�
C

(δx, δy, (σx, σy))
def
= σx �

L
δy ⊕

L
δx �

L

(
σy ⊕

L
fllo(δy)

)
.

Here, σx and σy denote the low-precision numbers stored in the cache and used later by
the low-precision delta computation. Note that since δy is stored in low-precision with a
biased exponent, we explicitly write fllo(δy) here to indicate that we are converting it to the
unbiased-exponent low-precision format. In order to compute this delta, we now need to
additionally quantize and load low-precision version of ox and oy; this will require additional
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loads on the accelerator. The error of this will be given by

x�
C
y = (ox �

H
oy) + fllo(ox)�

L
δy ⊕

L
δx �

L

(
fllo(oy)⊕

L
fllo(δy)

)
= (ox · oy) · (1 + εhi) + ηhi

+

(
fllo(ox)�

L
δy + δx �

L

(
fllo(oy)⊕

L
fllo(δy)

))
· (1 + εlo) + ηlo-bias(B)

= (ox · oy) · (1 + εhi) + ηhi

+

(
(ox · (1 + εlo) + ηlo) · δy · (1 + εlo) + ηlo-bias(B)

+ δx · ((oy · (1 + εlo) + ηlo + δy · (1 + εlo) + ηlo) · (1 + εlo)) · (1 + εlo)

+ ηlo-bias(B)

)
· (1 + εlo) + ηlo-bias(B)

= (ox · oy) · (1 + εhi) + ηhi + ox · δy · (1 + 3εlo) + δy · ηlo

+ δx · (oy + δy) · (1 + 4εlo) + δx · 2ηlo + 3ηlo-bias(B)

= ox · oy + ox · δy + δx · (oy + δy)

+ (ox · oy) · εhi + ηhi + ox · δy · 3εlo + δy · ηlo

+ δx · (oy + δy) · 4εlo + δx · 2ηlo + 3ηlo-bias(B)

= xy + ((x− δx) · (y − δy)) · εhi + ηhi + (x− δx) · δy · 3εlo + δy · ηlo

+ δx · y · 4εlo + δx · 2ηlo + 3ηlo-bias(B)

= xy + xy · εhi + δxy · (4εlo + εhi) + xδy · (3εlo + εhi) + δxδy · (3εlo + εhi)

+ ηhi + δy · ηlo + δx · 2ηlo + 3ηlo-bias(B)

= xy + xy · εhi + (|δxy|+ |xδy|+ |δxδy|) · (4εlo + εhi)

+ ηhi + (|δy|+ |δx|) · 2ηlo + 3ηlo-bias(B).

It follows that the error will be bounded by∣∣∣∣x�
C
y − (x · y)

∣∣∣∣ = xy · εhi + (|δxy|+ |xδy|+ |δxδy|) · (4εlo + εhi)

+ ηhi + (|δy|+ |δx|) · 2ηlo + 3ηlo-bias(B).

The magnitude of the delta that results from this operation will be bounded by∣∣∣∣δx�
C
y

∣∣∣∣ =

∣∣∣∣fllo(ox)�
L
δy ⊕

L
δx �

L

(
fllo(oy)⊕

L
fllo(δy)

)∣∣∣∣
=
∣∣ox · δy · (1 + 3εlo) + δy · ηlo + δx · (oy + δy) · (1 + 4εlo) + δx · 2ηlo + 3ηlo-bias(B)

∣∣
= |δy| · |ox| · (1 + 3εlo) + |δy| · ηlo + |δx| · y · (1 + 4εlo) + |δx| · 2ηlo + 3ηlo-bias(B).

Division Suppose that we want to do division using bit centering, to compute x�
C
y where

x = ox + δx and y = oy + δy. The natural way to do this is

x�
C
y

def
=

(
(ox �

H
oy),

(
δx 	

L
(fllo(ox �

H
oy)�

L
δy)

)
�
L

(
fllo(oy)⊕

L
fllo(δy)

))
.
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Explicitly, this decomposes into

o�
C

(ox, oy)
def
= ox �

H
oy

cache�
C

(ox, oy)
def
= (fllo(ox �

H
oy), fllo(oy))

δ�
C

(δx, δy, (σx/y, σy))
def
=

(
δx 	

L
(σx/y �

L
δy)

)
�
L

(
σy ⊕

L
fllo(δy)

)
.

Note that, as was the case for multiplication, in order to do this we will need to quantize
and load low-precision versions of oy and ox �

H
oy, which will result in additional loads on

the accelerator. The error analysis for this operation is a bit longer than for the previous
operations, so we defer it to Appendix B.3.

Exponential function Now that we have analyzed the four primary arithmetic operations,
we can start looking at special functions. The most basic one of these is the exponential
function. Given x = ox + δx, we define

exp
C

(x)
def
=

(
exp
H

(ox), fllo(exp
H

(ox))�
L

expm1
L

(δx)

)
.

Here, expm1(·) denotes the function

expm1(z) = exp(z)− 1

computed as a single floating-point operation following the fundamental axiom of floating
point arithmetic. This exp-minus-one operation is recommended in the IEEE standard (IEEE,
2008) and is usually included in floating point libraries, where it provides more precision for
small values of z than would result from actually performing the subtraction.

Explicitly, exp
C

(x) decomposes into

oexp
C

(ox)
def
= exp

H

(ox)

cacheexp
C

(ox)
def
= fllo(exp

H

(ox))

δexp
C

(δx, δy, (σ))
def
= σ �

L
expm1

L

(δx).
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Using this decomposition, we will have an error analysis of

exp
C

(x) = exp
H

(ox) + fllo(exp
H

(ox))�
L

expm1
L

(δx)

= exp(ox) · (1 + εhi) + ηhi + fllo(exp
H

(ox)) · expm1
L

(δx) · (1 + εlo) + ηlo-bias(B)

= exp(ox) · (1 + εhi) + ηhi

+ ((exp(ox) · (1 + εhi) + ηhi) · (1 + εlo) + ηlo)

·
(
expm1(δx) · (1 + εlo) + ηlo-bias(B)

)
· (1 + εlo) + ηlo-bias(B)

= exp(ox) · (1 + εhi) + ηhi

+ (exp(ox) · (1 + 2εlo + εhi) + ηlo + ηhi)

·
(
expm1(δx) · (1 + 2εlo) + ηlo-bias(B)

)
+ ηlo-bias(B)

= exp(ox) · (1 + εhi) + ηhi + exp(ox) expm1(δx) · (1 + 4εlo + εhi)

+ exp(ox) · ηlo-bias(B) + expm1(δx) · (ηlo + ηhi) + ηlo-bias(B)

= exp(x) + exp(ox) · εhi + ηhi + exp(ox) expm1(δx) · (4εlo + εhi)

+ exp(ox) · ηlo-bias(B) + expm1(δx) · (ηlo + ηhi) + ηlo-bias(B).

So, the error of this computation will be bounded by∣∣∣∣exp
C

(x)− exp(x)

∣∣∣∣ ≤ exp(ox) · εhi + exp(ox) · expm1(δx) · (4εlo + εhi)

+ exp(ox) · ηlo-bias(B) + expm1(δx) · (ηlo + ηhi) + ηlo-bias(B) + ηhi.

As usual, the parts of this expression that depend on the low-precision format will become
small as δx becomes small (because expm1(δx) becomes small as δx becomes small). The
magnitude of the delta of the result of this operator will be bounded by∣∣∣∣δexp

C
(x)

∣∣∣∣ =

∣∣∣∣fllo(exp
H

(ox))�
L

expm1
L

(δx)

∣∣∣∣
=
∣∣∣ exp(ox) expm1(δx) · (1 + 4εlo + εhi)

+ exp(ox) · ηlo-bias(B) + expm1(δx) · (ηlo + ηhi) + ηlo-bias(B)

∣∣∣
= |δx| ·

∣∣∣∣exp(ox) · expm1(δx)

δx
· (1 + 4εlo + εhi) +

expm1(δx)

δx
· (ηlo + ηhi)

∣∣∣∣
+
∣∣ηlo-bias(B)

∣∣+
∣∣exp(ox) · ηlo-bias(B)

∣∣ .
Just as for the previous operators, this is becoming small as δx becomes small.

General function application To go beyond the above analysis of the exponential
function, we now want to produce bit-centered versions of differentiable and Lipschitz
continuous scalar functions. Suppose that we want to apply a function f to a value stored
using bit centering, to compute f(x) where x = ox + δx. Assume that our floating-point
library allows us to compute f in high-precision arithmetic, following the fundamental axiom.
There are a couple of ways we could use bit centering to compute f . The simplest of these
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is to suppose that our low-precision floating-point library allows us to directly compute a
function ∆f that satisfies

∆f(x, y) = f(x+ y)− f(x)

following the fundamental axiom (and for possibly exponent-biased y). If our library supports
this, then we can define

f
C

(x)
def
=

(
f
H

(ox),∆f
L

(fllo(ox), δx)

)
.

Explicitly, we can write this as

of
C

(ox)
def
= f

H

(ox)

cachef
C

(ox)
def
= fllo(ox)

δf
C

(δx, (σx))
def
= ∆f

L

(σx, δx).

If our function f is differentiable and f ′ is Lipschitz continuous with parameter Lf , then we
can characterize the error with

f
C

(x) = f
H

(ox) + ∆f
L

(fllo(ox), δx)

= f(ox) · (1 + εhi) + ηhi + ∆f(ox · (1 + εlo) + ηlo, δx) · (1 + εlo) + ηlo-bias(B).

Now, since f ′ is Lipschitz continuous, for any z, ε, and δ, it will hold by the mean value
theorem that for some u between z + δ and z + δ + ε and some v between z and z + ε,

|∆f(z + ε, δ)−∆f(z, δ)|
= |f(z + ε+ δ)− f(z + ε)− f(z + δ) + f(z)|
=
∣∣εf ′(u)− εf ′(v)

∣∣
≤ ε · Lf · |u− v|
≤ ε · Lf · (|δ|+ |ε|)
= Lf · |δ| ·

(
|ε|+O(ε2)

)
.

So, applying this to our error analysis above,

f
C

(x) = f(ox) · (1 + εhi) + ηhi + (∆f(ox, δx) + Lf · δx · (ox · εlo + ηlo)) · (1 + εlo) + ηlo-bias(B)

= f(x) + f(ox) · εhi + ηhi + ∆f(ox, δx) · εlo + Lf · δx · (ox · εlo + ηlo) + ηlo-bias(B).

By the mean value theorem again, for some z between ox and ox + δx,

∆f(ox, δx) = f(ox + δx)− f(ox) = f ′(z) · δx = (f ′(ox)− f ′(z)) · δx + f ′(ox) · δx,

and since |f ′(ox)− f ′(z)| ≤ Lf · |δx|, it follows that∣∣∆f(ox, δx)− f ′(ox) · δx
∣∣ ≤ Lf · δ2

x.
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Substituting this into our bound gives us

f
C

(x) = f(x) + f(ox) · εhi + ηhi + f ′(ox) · δx · εlo + Lf · δ2
x · εlo

+ Lf · δx · (ox · εlo + ηlo) + ηlo-bias(B)

= f(x) + f(ox) · εhi + ηhi + f ′(ox) · δx · εlo + Lf · δx · (ox · εlo + δx · εlo + ηlo) + ηlo-bias(B).

So, the error will be bounded by∣∣∣∣f
C

(x)− f(x)

∣∣∣∣ = f(ox) ·εhi +ηhi +f ′(ox) ·δx ·εlo +Lf ·δx · (ox · εlo + δx · εlo + ηlo)+ηlo-bias(B).

The magnitude of the delta of this operation will be bounded by∣∣∣∣δf
C

(x)

∣∣∣∣ =

∣∣∣∣∆f
L

(fllo(ox), δx)

∣∣∣∣
=
∣∣f ′(ox) · δx · εlo + Lf · δx · (ox · εlo + δx · εlo + ηlo) + ηlo-bias(B)

∣∣
= |δx| ·

∣∣f ′(ox) · εlo + Lf · δx · εlo + Lf · (ox · εlo + ηlo)
∣∣+
∣∣ηlo-bias(B)

∣∣ .
Just as before, this gets small as δ gets small. Now, of course this is only one possible way of
doing bit centering for general functions. If the function ∆f is not available for computing
in the low-precision representation, other arrangements must be made. One possibility
is to follow the technique we used for exp by computing ∆f via other functions that do
exist in our low-precision floating point library. For example, for f(x) = tanh(x), we could
decompose ∆f with

∆f(x, y) = tanh(x+ y)− tanh(x)

=
tanh(x) + tanh(y)

1 + tanh(x) tanh(y)
− tanh(x)

=
tanh(y)− tanh2(x) tanh(y)

1 + tanh(x) tanh(y)

=
sech2(x)

1 + tanh(x) tanh(y)
· tanh(y)

It is readily apparent that computing this expression in low-precision will result in an error
that is low as y becomes small, which is what we need.

Another way of computing a bit-centered function is to approximate the function ∆f(ox, δ)
for each ox with a polynomial in δ (e.g. via a Chebyshev polynomial interpolation) on
the host device, and then proceed to compute that polynomial in low-precision arithmetic
whenever ∆f(ox, δ) is needed on the accelerator. When approximating ∆f in this way, care
must be taken to ensure that the numerical error from computing ∆f(ox, δ) becomes small
as δ becomes small.

Although the bounds we got for the bit-centered computations in the previous section are
all different, they all have one important property in common: both the delta of the outputs
and the error become small as the magnitude of the δ of the inputs become small. We can
formalize this notion into a bit-centered analogue of the fundamental axiom of floating point
arithmetic.
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Definition 6 (Fundamental axiom of bit-centered arithmetic) Let f be a function
or operator we are computing using bit centering, and let f

C

denote the result of that bit-

centered computation. Suppose that f takes m arguments f(x1, x2, . . . , xm). Then we say
that f satisfies the fundamental axiom of bit-centered arithmetic if there exist continuous
non-negative functions Ahi, Alo, Chi, Clo, Clo-bias, Rdelta, and Rlo-bias, such that for any
bit-centered inputs x1, x2, . . . , xm with xi = ox,i+δx,i, if overflow cannot occur (but underflow
possibly can), then the error of the bit-centered computation is bounded by∣∣∣∣f

C

(x1, x2, . . . , xm)− f(x1, x2, . . . , xm)

∣∣∣∣ ≤ Ahi · εmachine-hi + Chi · ηmachine-hi

+Alo ·

(
m∑
i=1

|δx,i|

)
· εmachine-lo

+ Clo ·

(
m∑
i=1

|δx,i|

)
· ηmachine-lo

+ Clo-bias · ηmachine-lo-bias(B)

and the magnitude of the delta of the bit-centered computation is bounded by∣∣∣∣δf
C

(δx,1, . . . , δx,m, cachef
C

(ox,1, . . . , ox,m))

∣∣∣∣ ≤ Rdelta ·

(
m∑
i=1

|δx,i|

)
+Rlo-bias · ηmachine-lo-bias(B)

where each of the functions Ahi et cetera is a function of x1, ox,1, x2, ox,2, . . ., xm, ox,m,
εmachine-hi, ηmachine-hi, εmachine-lo, ηmachine-lo, and ηmachine-lo-bias(B), and each is continuous
over all values of xi and ox,i in R and over all non-negative values of the various ε and η
terms.

We can readily see that all the operations we analyzed above satisfy this axiom. For
example, addition satisfies this axiom with parameters

Ahi(x, ox, y, oy, . . .) = |ox + ox|
Chi(x, ox, y, oy, . . .) = 1

Alo(x, ox, y, oy, . . .) = 1

Clo(x, ox, y, oy, . . .) = 0

Clo-bias(x, ox, y, oy, . . .) = 1

R(x, ox, y, oy, . . .) = |(x− ox) + (y − oy)|
S(x, ox, y, oy, . . .) = 1.

Definition 6 is particularly useful because of the following property: compositions of contin-
uous functions that satisfy the axiom also satisfy the axiom.

Theorem 7 (Bit-centered arithmetic for composite functions) Compositions of con-
tinuous functions that satisfy the fundamental axiom of bit-centered arithmetic also satisfy
that axiom. That is, if f : Rm → R and g1, g2, . . . , gm : Rn → R are continuous functions all
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of which have implementations that satisfy the fundamental axiom of bit-centered arithmetic,
then so does the function h : Rn → R defined by

h(x1, . . . , xn) = f(g1(x1, . . . , xn), g2(x1, . . . , xn), . . . , gm(x1, . . . , xn))

and with bit-centered implementation

h
C
(x1, . . . , xn) = f

C

(g1
C

(x1, . . . , xn), g2
C

(x1, . . . , xn), . . . , gm
C

(x1, . . . , xn)).

We defer the proof of this theorem to the appendix. As a result of this theorem, we now
have guarantees on the error of bit-centered arithmetic for any function that is a composition
of primitives that we can prove satisfy the fundamental axiom. For example, this applies to
matrix multiplication, which is just a composition of addition and multiplication.

6. HALP for General Loss Functions

Now that we have a way of computing bit centering for arbitrary functions, we can finally
state a universal version of HALP. Just like our HALP for linear regression (Algorithm 6),
the more general HALP uses bit centering to reduce the error from low-precision arithmetic.
We describe HALP explicitly in Algorithm 7.

In prose, HALP does the following, in the outer loop. First, just like regular SVRG, it
computes the full gradient at the outer iterate w̃ in high precision. Next, just as we did for
the linear regression version of HALP, it computes the bias that it is going to use for the
dynamic bias adjustment, using the same formula as the linear regression case. Next, it
does all the high-precision pre-computation it will need to do bit centering later for each
of the objective function components. This involves: (1) computing the offsets for each
intermediate value in the computation; (2) computing any values that depend on those
offsets and are needed for the later computation of the deltas; (3) converting those values to
the low-precision format; and (4) storing them somewhere they can be accessed later. Also,
at the end of the outer loop, we add a check to validate that the loss is decreasing at each
epoch: if it ever increases, we reset the outer iterate to the value at the previous iteration
(this results in a decrease in the loss since its value at the current iteratio must be greater
than its value at the previous one).

In each inner loop iteration, HALP samples an example i at random, just as standard
SVRG does. Next, it loads the pre-computed values it needs to compute ∇fi using bit
centering: these are exactly those values that were computed and stored earlier in the
outer loop. Using these values, it computes the delta for ∇fi(w̃ + δw,k,t) using bit centering.
Finally, it updates the delta of the model using this gradient it computed using bit centering.

As long as the operations we use to compute the gradient samples satisfy the fundamental
axiom of bit-centered arithmetic, the numerical error of the inner loop will become small as
g̃k becomes small, just as it did for the linear regression case. Just like in that simpler case,
here we can prove HALP converges at a linear rate to arbitrarily accurate solutions. But
first, we will need to state and justify some assumptions.

Assumption 8 Assume that there exists global constants alo, clo, and clo-bias such that the
bit-centered computation of the gradient samples, for any w̃k and any δw,k,t that might appear
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Algorithm 7 HALP: Bit-centered, dynamic-bias-adjusted SVRG for general loss functions

given: N low-precision training examples xi and labels yi, number of epochs K, epoch
length T , low-precision step size α, initial low-precision iterate w̃1, and bias factor ζ > 0.
for k = 1 to K do

. high-precision precomputation on host

g̃k ← ∇f
H

(flhi(w̃k)) =

(
N

©H

∑
i=1

∇fi
H

(w̃k)

)
�
H
N

compute bias: B ←
⌊

log2
H

(ζ · ‖g̃k‖H)

⌋
h̃k ← fllo-bias(B)(g̃k)
s̃k ← fllo-bias(B)(2�

H
‖g̃k‖H �

H
µ)

for i = 1 to N do
. precompute in high-precision and store in low-precision all numbers
necessary to compute ∇fi(w) using bit centering with offset of ow = w̃k
σk,i ← cache∇fi

C

(w̃k)

end for

δw,k,0 ← fllo-bias(B)(0)

. low-precision computation on accelerator
for t = 1 to T do

sample i uniformly from {1, . . . , N}
load σk,i
compute using bit centering: δv,k,t−1 ← δ∇fi

C

(δw,k,t, σk,i)

update model: δw,k,t ← δw,k,t−1 	
L
α�

L

(
δv,k,t ⊕

L
h̃k

)
if ‖δw,k,t‖L > s̃k then
δw,k,t ← fllo-bias(B)(0)

end if
end for

option I: set w̃k+1 ← w̃k ⊕
H
flhi-from(B)(δw,k,T )

option II: sample t uniformly from {0, . . . , T − 1},
then set w̃k+1 ← w̃k ⊕

H
flhi-from(B)(δw,k,t)

if f
H

(w̃k+1) ≤ f
H

(w̃k) then

roll back epoch: w̃k+1 ← w̃k
end if

end for
return w̃K+1

in the course of the algorithm, has a delta with error bounded by∥∥∥∥∇fi
C

((w̃k, δw,k,t))−∇fi(w̃k + δw,k,t)

∥∥∥∥
= alo · ‖δw,k,t‖ · εlo + clo · ‖δw,k,t‖ · ηlo + clo-bias · ηlo-bias(B).
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This assumption can be justified directly from the fundamental axiom of bit-centered
arithmetic. To see why, first notice that w̃k and wk,t that we could encounter during
computation must live in some compact set. This holds because the loss of the outer iterates
is non-increasing, so for every k it will hold that

w̃k ∈ {w|f(w) ≤ f(w̃1)}

which is compact because f is strongly convex. As a consequence, we also know that wk,t
must live in a compact set as well, since its distance from w̃k (i.e. the magnitude of δw,k,t)
is always bounded from above by s̃k. Since the w̃k and wk,t all must live in a compact set,
by the extreme value theorem there must exist upper bounds for the continuous bounding
functions Alo, Clo, and Clo-bias from the fundamental axiom, bounds which hold across all
examples i and all possible values of w̃k and wk,t; since these upper bounds exist, then alo,
clo, and clo-bias that satisfy this assumption must exist as well. (Note that we are ignoring
the high-precision part of the bounds from Ahi and Chi because we are assuming from
Assumption 2 that there is no high-precision error.)

Assumption 9 Assume that there exists global constants rdelta and rlo-bias such that every
number z that could possibly be computed in the inner loop of Algorithm 7 is bounded in
magnitude by

|z| ≤ rdelta · ‖δw,k,t‖+ rlo-bias · ηlo-bias(B)

We can justify this assumption via a similar appeal to the fundamental axion of bit-centered
arithmetic. Since w̃k and wk,t must live in a compact set, by the extreme value theorem there
must exist upper bounds for the bounding functions Rdelta and Rlo-bias from the fundamental
axiom, which hold across all numbers that could be computed in the inner loop and all
possible values of w̃k and wk,t. Using these upper bounds, we can derive rdelta and rlo-bias

that satisfy Assumption 9.

Using these assumptions, we can prove the following theorem, which guarantees linear-rate
convergence of HALP to solutions of arbitrarily low error.

Theorem 10 Suppose that we run HALP (Algorithm 7) under Assumptions 1 (strong
convexity and Lipschitz continuity), 2 (zero-error high-precision arithmetic), 8, and 9, using
option II for the epoch update. Suppose that our underflow threshold ηmachine-lo is small
enough that (

clo ·
2

µ
+ clo-bias ·

ζ

2
+ (4L+ 1)

√
d · ζ

)
· ηmachine-lo ≤ εmachine-lo,

and that our overflow threshold is large enough that

rdelta ·
4

ζµ
+ rlo-bias · ηmachine-lo ≤Mmachine-lo.
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For any constant 0 < γ < 1, if we set our step size and epoch lengths to be

α =
γ

4L(1 + γ)
, T ≥ 8κ(1 + γ)

γ2
,

then the iterates of HALP will satisfy

E [f(w̃k+1)− f(w∗)] ≤
(
γ +

48κ(8L+ alo)

γL
· (εmachine-lo +O(εmachine-lo

2))

)
E [f(w̃k)− f(w∗)] ,

and overflow cannot possibly occur.

This theorem shows that as long as the underflow threshold and overflow threshold
satisfy certain inequalities (which requires some number of exponent bits to do so), and as
long as the machine epsilon is sufficiently small, HALP can converge down to arbitrarily
accurate solutions, just like exact-arithmetic SVRG can. Note that the dependence on the
condition number that we observed earlier for linear-regression HALP is still present here.
In order for the algorithm to converge at a linear rate, we will need

48κ(8L+ alo)

γL
· εmachine-lo � 1,

which happens when

εmachine-lo = O

(
min

(
1

κ
,

L

κ · alo

))
.

So we certainly need the machine epsilon to be small relative to κ−1, which suggests that
we need more bits as the conditioning becomes worse. Specifically, since the machine epsilon
is typically about two raised to the negative of the number of mantissa bits, we will need
roughly

b = O(log(κ))

bits of precision to enable the linear convergence rate in Theorem 10. Note that we may
also need additional bits to handle the numerical imprecision that comes from computing
the gradient samples, which is represented by the alo term.

7. Experiments

The goal of our experiments is to confirm that HALP can achieve high-accuracy solutions
with the majority of the computation being done in low precision computation while some
high precision computation is performed infrequently to recenter the solution. In this section
we not only show that HALP can lead to high-accuracy solutions on a convex problem
in Section 7.1 (multi-class logistic regression), but also that it can lead to high-accuracy
solutions on non-convex neural network applications in Section 7.2 (deep convolutional
neural networks and a recurrent neural network).

Low-Precision Format Due to recent hardware trends (Jouppi et al., 2017; Micikevicius,
2017), we focus on 16-bit training as this is the popular floating point precision available
in recent (and projected future) hardware generations (Corporation, 2018). Unfortunately
there is not a consensus on the data type for 16-bit floating point numbers, so we built two
simulators to validate our claims: one in C++ that uses the bfloat16 floating point format
and one in PyTorch that uses float16 floating point format.
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(a) Log. reg. training loss.
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(b) LeNet. training loss.
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(c) LSTM training loss.
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(d) Log. reg. test accuracy.
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(e) LeNet. test accuracy.
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(f) LSTM test accuracy.

Figure 7: Training loss and test accuracy for logistic regression on MNIST, LeNet on
CIFAR10 and LSTM on Penn Treebank.

Setup To test HALP, we evaluate it against the performance of four baseline training
algorithms (32-bit SGD, 16-bit SGD, 32-bit SVRG, and 16-bit SVRG). Therefore, low-
precision (LP) is synonymous with 16-bit throughout the entirety of this section. For
hyperparameter selection, we performed grid search using constant learning rates throughout
training. For more details on the hyperparameters we swept, see Appendix A. We present
the training loss (averaged over each epoch) and the test accuracy as our evaluation metrics.
To ensure a fair comparison, all training algorithms on each task are trained under the same
search grid. Within the grid, for each training algorithm, we pick the configuration that
generates the best evaluation metric; the configurations for reporting training loss and test
accuracy are picked independently. All configurations are run for 100 epochs and with a
recentering, or computation of the full gradient for all SVRG-based algorithms, every epoch.
To assure statistically meaningful results, our reported metrics are averaged from three runs
using different random seeds. For more experimental details, see Appendix A.

7.1 Multi-Class Logistic Regression Results

In Figures 7(a) and 7(d) we show that HALP, using float16 numbers, strictly outperforms
(in terms of test accuracy and training loss) LP-SGD and LP-SVRG on logistic regression
on the MNIST (LeCun, 1998) digit classification task. HALP outperforms both LP-SGD
and LP-SVRG here due to its lower-magnitude quantization noise from bit centering.
HALP outperforms full-precision SGD here due to its lower-magnitude gradient noise. All
experiments in this section were run with a minibatch size of 100.
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7.2 Deep Learning Results

We also evaluate HALP on two non-convex applications for which the theory provides no
guarantees. Surprisingly, even on these applications we show that HALP can be useful as
training algorithm. We present HALP results on both a convolutional neural network (CNN)
and a recurrent neural network (LSTM).

CNN discussion. In Figure 7(b) and Figure 7(e), we show that HALP can outperform
low-precision algorithms (LP-SGD and LP-SVRG) and match full-precision algorithms (SGD
and SVRG) in terms of both training loss and test accuracy. To test HALP’s performance
on a CNN, we train a 5-layer LeNet (LeCun et al., 1998) model on the CIFAR10 image
classification dataset (Krizhevsky et al., 2014). Specifically, we use the reference model
configuration from Kuang (2018): 2 convolutional layers with 6 and 16 5x5 filters, followed
by 2 linear layers with 120 and 84 hidden units. We train the model using minibatch size
128 and with a `2 regularization of 0.0005.

LSTM discussion. In Figures 7(c) and 7(f) we show that HALP can outperform LP-
SVRG while approaching the performance of full-precision SVRG on a part of speech tagging
application. Unfortunately, SVRG-based algorithms suffer a degradation when compared to
all SGD-based algorithms on this application. As a result, HALP similarly performs worse
than both LP-SGD and SGD while matching the performance of full-precision SVRG. One
possible way to mitigate this effect would be to run the recentering step more often than
once every epoch. The part-of-speech tagging application we run is over the popular Penn
Treebank dataset Marcus et al. (1993). The model that we use is a simple architecture
consisting of an embedding layer, LSTM layer, and classifier at the end of the network.
The embedding layer is not pretrained, and is trained entirely during the duration of our
run. We trained with a batch size of 1 in this section. Note that the LP-SVRG loss line
shown in Figure 7(c) ends early because the loss values become infinity despite that this
hyperparameter setting achieved (earlier on) the lowest loss out of all tested configurations.

8. Conclusion

In this paper we presented HALP, a new SGD variant that is able to theoretically converge
at a linear rate while primarily using low-precision computation. HALP leverages SVRG
to reduce noise from gradient variance, and introduces bit centering to reduce noise from
quantization. We proved that HALP converges arbitrarily close to the global optimum on
strongly convex problems and validated our results extensively on convex (linear and logistic
regression) and non-convex (CNN and LSTM) applications.
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model hyperparam grid

Log. reg.
α {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0}
µ {0.0, 0.9}
`2 {1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 5e-2, 1e-1}

LeNet
α {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5}
µ {0.0, 0.9}
`2 {5e-4}

LSTM
α {0.001, 0.01, 0.05, 0.01, 1.0, 2.0, 4.0}
µ {0.0, 0.9}
`2 {0, 1e-5, 1e-4, 1e-3}

Table 3: The learning rate α, momentum µ, regularization strength `2 values for the grid
search in Section 7. Note we did not additionally search over regularizer strength for LeNet;
instead, we use the recommended value by Kuang (2018).

model hyperparam SGD (32) SVRG (32) LP-SGD (16) LP-SVRG (16) HALP (16)

Log. reg.
α 0.01 0.05 0.01 0.05 0.05
µ 0.9 0.9 0.9 0.9 0.9
`2 1e-5 1e-5 1e-5 1e-5 1e-5

LeNet
α 0.0005 0.001 0.001 0.005 0.001
µ 0.0 0.9 0.9 0.9 0.9
`2 5e-4 5e-4 5e-4 5e-4 5e-4

LSTM
α 2.0 2.0 2.0 0.1 0.05
µ 0 0.0 0 0.9 0.9
`2 1e-5 1e-5 1e-4 1e-4 1e-3

Table 4: The learning rate α, momentum µ, regularization strength `2 achieving the highest
test accuracy in Section 7.

Appendix A. Extended Evaluation

A.1 Detailed Experiment Setup for Section 7

In Section 7, we perform grid search on learning rate and momentum. From the grid search,
we pick the configuration achieving the lowest training loss (averaged within epoch) and
highest test accuracy respectively for each training algorithm. In Table 3, we present the
learning rate and momentum values we used for the grid search. In addition, we demonstrate
the configurations achieving lowest training loss in Table 5 and the ones achieving highest
test accuracy in Table 4.

Appendix B. Details of Results

In this appendix, we present some details that, for brevity, were not included in the main
body of the manuscript.
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model hyperparam. SGD (32) SVRG (32) LP-SGD (16) LP-SVRG (16) HALP (16)

Log. reg.
α 0.1 0.05 0.5 0.5 0.05
µ 0.0 0.9 0.0 0.0 0.9
`2 1e-5 1e-5 1e-5 1e-5 1e-5

LeNet
α 0.05 0.005 0.05 0.005 0.005
`2 5e-4 5e-4 5e-4 5e-4 5e-4
µ 0.0 0.9 0.0 0.9 0.9

LSTM
α 0.1 0.05 1.0 1e-3 0.1
µ 0.9 0.9 0 0.9 0.9
`2 0 0 1e-5 0 1e-4

Table 5: The learning rate α and momentum µ, regularization strength `2 achieving the
lowest training loss in Section 7.

Algorithm 8 SVRG: Stochastic Variance-Reduced Gradient
given: N loss gradients ∇fi, number of epochs K, epoch length T , step size α, and initial iterate
w̃1.
for k = 1 to K do
g̃k ← ∇f(w̃k) = 1

N

∑N
i=1∇fi(w̃k)

wk,0 ← w̃k
for t = 1 to T do

sample i uniformly from {1, . . . , N}
wk,t ← wk,t−1 − α (∇fi(wk,t−1)−∇fi(w̃k) + g̃k)

end for
option I: set w̃k+1 ← wk,T
option II: sample t uniformly from {0, . . . , T − 1}, then set w̃k+1 ← wk,t

end for
return w̃K+1

B.1 SVRG

For completeness, we present the basic SVRG algorithm for minimizing an objective,
Algorithm 8. Compared with standard stochastic gradient descent, SVRG is able to converge
at a linear rate because it periodically uses full gradients g̃k to reduce the variance of its
stochastic gradient estimators. Note that the two outer-loop update options come from the
paper that originally proposed SVRG, Johnson and Zhang (2013). In this and subsequent
work Harikandeh et al. (2015), it has been standard to use option II for the theoretical
analysis (as it simplifies the derivation) while using option I for all empirical experiments.
We will continue to do this for all the SVRG variants we introduce here.

B.2 Notation

When we use low-precision computation with a biased exponent, we are still effectively
computing with the same low-precision format: it will have the same number of bits and use
the same base computational operations, and only the actual number represented will be
different. To be consistent with our previous notation, we let fllo-bias(B)(x) denote the result
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of converting x into a biased low-precision format with extra exponent bias B. Note that
while this is a different format in terms of what the bits represent, many of the computations
in the biased low-precision format can be done with the same hardware and instructions
that can be used to compute in the original low-precision format. For example, it can be
readily seen that an add or subtract operation in the biased format (for two numbers with
the same extra bias B) involves exactly the same binary computation as in the original
format. Furthermore, the product of two biased floating point numbers, one with extra
bias B1 and the other with extra bias B2, can be done with the same binary computation
as in the original format, but results in a number with extra bias B1 + B2. As a special
case of this, the product of a biased floating point number (with extra bias B) and an
ordinary floating point number can be computed with an ordinary multiply and results in a
number with extra bias B. Similar results hold for division. Importantly, the bias values
that result from all these computations are fixed a priori once the bias of the inputs is set.
As a result, we can precompute all bias values in the outer loop and use them at runtime
only when necessary. The only computations for which the bias value must be explicitly
taken into account at runtime are: (1) conversions to and from the high-precision format; (2)
conversions between biased and standard low-precision formats; and (3) To help with clarity,
we will indicate these conversions explicitly in our algorithm statements with flhi-from(B)(·),
fllo-from(B)(·), and fllo-bias(B1)-from(B2)(·), respectively.

B.3 Details of Bit-Centered Operations

In this section, we provide additional details of the bit-centered operations described in the
main body of the manuscript.

Subtraction The analysis is the same as for addition. We define

x	
C
y

def
= ((ox 	

H
oy), (δx 	

L
δy)).

Explicitly, this decomposes into

o	
C

(ox, oy)
def
= ox 	

H
oy

cache	
C

(ox, oy)
def
= ∅

δ	
C

(δx, δy, cache)
def
= δx 	

L
δy.

This will have error∣∣∣∣x	
C
y − (x− y)

∣∣∣∣ ≤ |x− y| · εhi + |δx − δy| · (εlo + εhi) + ηlo-bias(B) + ηhi.

The magnitude of the delta that results from this operation will be bounded by∣∣∣∣δx	
C
y

∣∣∣∣ =

∣∣∣∣δx 	
L
δy

∣∣∣∣ ≤ |δx − δy| · εlo + ηlo-bias(B).
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Division Suppose that we want to do division using bit centering, to compute x�
C
y where

x = ox + δx and y = oy + δy. The natural way to do this is

x�
C
y

def
=

(
(ox �

H
oy),

(
δx 	

L
(fllo(ox �

H
oy)�

L
δy)

)
�
L

(
fllo(oy)⊕

L
fllo(δy)

))
.

Explicitly, this decomposes into

o�
C

(ox, oy)
def
= ox �

H
oy

cache�
C

(ox, oy)
def
= (fllo(ox �

H
oy), fllo(oy))

δ�
C

(δx, δy, (σx/y, σy))
def
=

(
δx 	

L
(σx/y �

L
δy)

)
�
L

(
σy ⊕

L
fllo(δy)

)
.

From this, we will have

x�
C
y = (ox �

H
oy) +

(
δx 	

L
(fllo(ox �

H
oy)�

L
δy)

)
�
L

(
fllo(oy)⊕

L
δy

)
= (ox/oy) · (1 + εhi) + ηhi

+
((
δx − ((((ox/oy) · (1 + εhi) + ηhi) · (1 + εlo) + ηlo) · δy)

· (1 + εlo) + ηlo-bias(B)

)
· (1 + εlo) + ηlo-bias(B)

)
/ ((oy · (1 + εlo) + ηlo + δy · (1 + εlo) + ηlo) · (1 + εlo) + ηlo) · (1 + εlo) + ηlo-bias(B)

= (ox/oy) · (1 + εhi) + ηhi

+
(
δx · (1 + 2εlo)− (ox/oy) · δy · (1 + 4εlo + εhi) + (ηlo + ηhi) · δy + 2ηlo-bias(B)

)
/ (oy · (1 + 2εlo) + δy · (1 + 2εlo) + 3ηlo) + ηlo-bias(B)

= (ox/oy) · (1 + εhi) + ηlo-bias(B) + ηhi

+
δx · (1 + 2εlo)− (ox/oy) · δy · (1 + 4εlo + εhi) + (ηlo + ηhi) · δy + 2ηlo-bias(B)

oy · (1 + 2εlo) + δy · (1 + 2εlo) + 3ηlo
.

Next, we need some way to deal with the factors of εlo in the denominator. We can do this
by noticing that, for small ε,

1

x+ ε
=

1

x

(
1− ε

x

)
+O(ε2).
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This means that we can reduce our expression above to

x�
C
y = (ox/oy) · (1 + εhi) + ηlo-bias(B) + ηhi

+
δx · (1 + 2εlo)− (ox/oy) · δy · (1 + 4εlo + εhi) + (ηlo + ηhi) · δy + 2ηlo-bias(B)

oy + δy

·
(

1 +
oy · 2εlo + δy · 2εlo + 3ηlo

oy + δy

)
= (ox/oy) · (1 + εhi) + ηlo-bias(B) + ηhi

+
δx − (ox/oy) · δy

oy + δy
·
(

1 +
oy · 2εlo + δy · 2εlo + 3ηlo

oy + δy

)
+
δx · 2εlo − (ox/oy) · δy · (4εlo + εhi) + (ηlo + ηhi) · δy + 2ηlo-bias(B)

oy + δy.

From here, notice that

δx − (ox/oy) · δy
oy + δy

=
δx · oy − ox · δy
(oy + δy) · oy

=
(ox + δx) · oy − ox · (oy + δy)

(oy + δy) · oy
=
ox + δx
oy + δy

− ox
oy
,

and so

x�
C
y = (ox/oy) · (1 + εhi) + ηlo-bias(B) + ηhi

+

(
x

y
− ox
oy

)
·
(

1 +
oy · 2εlo + δy · 2εlo + 3ηlo

oy + δy

)
+
δx · 2εlo − (ox/oy) · δy · (4εlo + εhi) + (ηlo + ηhi) · δy + 2ηlo-bias(B)

oy + δy

=
x

y
+
ox
oy
· εhi + ηlo-bias(B) + ηhi

+

(
δx − (ox/oy) · δy

oy + δy

)
·
(
oy · 2εlo + δy · 2εlo + 3ηlo

oy + δy

)
+
δx · 2εlo − (ox/oy) · δy · (4εlo + εhi) + (ηlo + ηhi) · δy + 2ηlo-bias(B)

oy + δy

=
x

y
+
ox
oy
· εhi + ηlo-bias(B) + ηhi

+

(
δx − (ox/oy) · δy

y

)
·
(
y · 2εlo + δy · 4εlo + 3ηlo

y

)
+
δx · 2εlo − (ox/oy) · δy · (4εlo + εhi) + (ηlo + ηhi) · δy + 2ηlo-bias(B)

y

=
x

y
+
ox
oy
· εhi + ηlo-bias(B) + ηhi

+

(
δx − (ox/oy) · δy

y2

)
· (δy · 4εlo + 3ηlo)

+
δx · 4εlo + (ox/oy) · δy · (6εlo + εhi) + (ηlo + ηhi) · δy + 2ηlo-bias(B)

y
.
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Supposing that εmachine-hi ≤ εmachine-lo and similarly ηmachine-hi ≤ ηmachine-lo, it follows that
the error will be bounded by∣∣∣∣x�

C
y − x/y

∣∣∣∣ ≤ ∣∣∣∣oxoy
∣∣∣∣ · εhi + ηlo-bias(B) + ηhi

+

(
|δx|+ |ox/oy| · |δy|

y2

)
· (|y| · 7εlo + |δy| · 4εlo + 3ηlo)

+
|δy| · 2ηlo + 2ηlo-bias(B)

|y|
.

Note that, as with our operations above, this expression becomes small (in the low-precision
part of the error) as δx and δy become small. The magnitude of the delta of the result of
this operator will be bounded by∣∣∣∣δx�

C
y

∣∣∣∣ =

∣∣∣∣(δx 	
L

(fllo(ox �
H
oy)�

L
δy)

)
�
L

(
fllo(oy)⊕

L
fllo(δy)

)∣∣∣∣
=
∣∣∣δx − (ox/oy) · δy

y
·
(

1 +
oy · 2εlo + δy · 2εlo + 3ηlo

y

)
+
δx · 2εlo − (ox/oy) · δy · (4εlo + εhi) + (ηlo + ηhi) · δy + 2ηlo-bias(B)

y
+ ηlo-bias(B)

∣∣∣.
Notice that this expression becomes small as the input deltas become small, just as was the
case for the previous operators we analyzed.

Appendix C. Proofs

In this appendix, we prove the main theorems presented in the paper. Before we prove the
main theorems presented in the paper, we will prove the following lemmas, which will be
useful later.

For completeness, we start by re-stating the proof of following lemma, which was presented
as equation (8) in Johnson and Zhang (2013).

Lemma 11 Under the standard condition of Lipschitz continuity, if i is sampled uniformly
at random from {1, . . . , N}, then for any w,

E
[
‖∇fi(w)−∇fi(w∗)‖2

]
≤ 2L (f(w)− f(w∗)) .

Proof of Lemma 11 For any i, define

gi(w) = fi(w)− fi(w∗)− (w − w∗)T∇fi(w∗).

Clearly, if i is sampled randomly as in the lemma statement, E [gi(w)] = f(w). But also, w∗

must be the minimizer of gi, so for any w

gi(w
∗) ≤ min

η
gi(w − η∇gi(w))

≤ min
η

(
gi(w)− η ‖∇gi(w)‖2 +

η2L

2
‖∇gi(w)‖2

)
= gi(w)− 1

2L
‖∇gi(w)‖2 .
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where the second inequality follows from the Lipschitz continuity property. Re-writing this
in terms of fi and averaging over all the i now proves the lemma statement.

Lemma 12 Suppose that we compute the inner loop of SVRG with some computation error.
That is, the update step is

wt = wt−1 − α (∇ft(wt−1)−∇ft(w̃) +∇f(w̃)) + ut

where ft is the random training example chosen at timestep t, and where ut is the error
term and satisfies ‖ut‖ ≤ ∆. Note that ut is not necessarily independent of ∇ft. Assume
that the step size is small enough that 2µ− αL2 > 0. Then, given some fixed wt−1 and w̃
(which are not random variables and are not part of the expected values taken in this Lemma
statement),

E
[
‖wt − w∗‖2

]
≤ ‖wt−1 − w∗‖2 − 2α(1− 2αL)(f(wt−1)− f(w∗)) + 4α2L(f(w̃)− f(w∗))

+ 2∆
(

(1 + α2L2) ‖wt−1 − w∗‖+
√

2αL ‖w̃ − w∗‖
)

+ ∆2.

Proof Define
∇ht(wt−1) = ∇ft(wt−1)−∇ft(w̃) +∇f(w̃).

Using this, we can rewrite the update step as

wt − w∗ = wt−1 − w∗ − α∇ht(wt−1) + ut.

Let’s start by just looking at the right side of this without the ut term, which is the same
term that we get in the proof of ordinary full-precision SVRG. Taking the expected value,
and applying the fact that E [ht] = f ,

E
[
‖wt−1 − w∗ − α∇ht(wt−1)‖2

]
= ‖wt−1 − w∗‖2 − 2αE

[
(wt−1 − w∗)T∇ht(wt−1)

]
+ α2E

[
‖∇ht(wt−1)‖2

]
= ‖wt−1 − w∗‖2 − 2α(wt−1 − w∗)T∇f(wt−1) + α2E

[
‖∇ht(wt−1)‖2

]
≤ ‖wt−1 − w∗‖2 − 2α(f(wt−1)− f(w∗)) + α2E

[
‖∇ht(wt−1)‖2

]
This second-order term can be further bounded by

E
[
‖∇ht(wt−1)‖2

]
= E

[
‖∇ft(wt−1)−∇ft(w̃) +∇f(w̃)‖2

]
= E

[
‖∇ft(wt−1)−∇ft(w∗)− (∇ft(w̃)−∇ft(w∗)−∇f(w̃))‖2

]
≤ E

[
2 ‖∇ft(wt−1)−∇ft(w∗)‖2 + 2 ‖∇ft(w̃)−∇ft(w∗)−∇f(w̃)‖2

]
= E

[
2 ‖∇ft(wt−1)−∇ft(w∗)‖2

]
+ E

[
2
∥∥∇ft(w̃)−∇ft(w∗)−Ej∼Unif(1,...,N) [∇fj(w̃)−∇fj(w∗)]

∥∥2
]

≤ E
[
2 ‖∇ft(wt−1)−∇ft(w∗)‖2 + 2 ‖∇ft(w̃)−∇ft(w∗)‖2

]
47



Aberger, De Sa, Leszczynski, Marzoev, Olukotun, Ré, and Zhang

where the first inequality holds because ‖x+ y‖2 ≤ 2 ‖x‖2 + 2 ‖y‖2 and the second holds
because the variance is always upper bounded by the second moment. We can now apply
Lemma 11 to this last expression, which produces

E
[
‖∇ht(wt−1)‖2

]
≤ 4L(f(wt−1)− f(w∗)) + 4L(f(w̃)− f(w∗)).

Substituting this back into our above bound, we get

E
[
‖wt−1 − w∗ − α∇ht(wt−1)‖2

]
≤ ‖wt−1 − w∗‖2 − 2α(f(wt−1)− f(w∗))

+ α2 (4L(f(wt−1)− f(w∗)) + 4L(f(w̃)− f(w∗)))

= ‖wt−1 − w∗‖2 − 2α(1− 2αL)(f(wt−1)− f(w∗))

+ 4α2L(f(w̃)− f(w∗)).

Another way to bound this same expression is the following. Using convexity of the function
f ,

E
[
‖wt−1 − w∗ − α∇ht(wt−1)‖2

]
= ‖wt−1 − w∗‖2 − 2αE

[
(wt−1 − w∗)T∇f(wt−1)

]
+ α2E

[
‖∇ht(wt−1)‖2

]
≤ E

[
‖wt−1 − w∗‖2

]
+ α2E

[
‖∇ht(wt−1)‖2

]
.

Further bounding the second-order term using part of our analysis above and Lipschitz
continuity of ft,

E
[
‖wt−1 − w∗ − α∇ht(wt−1)‖2

]
≤ ‖wt−1 − w∗‖2 + α2E

[
2 ‖∇ft(wt−1)−∇ft(w∗)‖2 + 2 ‖∇ft(w̃)−∇ft(w∗)‖2

]
≤ ‖wt−1 − w∗‖2 + 2α2L2

(
‖wt−1 − w∗‖2 + ‖w̃ − w∗‖2

)
≤ (1 + 2α2L2) ‖wt−1 − w∗‖2 + 2α2L2 ‖w̃ − w∗‖2 .

It follows that, by Jensen’s inequality,

E [‖wt−1 − w∗ − α∇ht(wt−1)‖] ≤ E

[√
‖wt−1 − w∗ − α∇ht(wt−1)‖2

]
≤
√

E
[
‖wt−1 − w∗ − α∇ht(wt−1)‖2

]
≤
√

(1 + 2α2L2) ‖wt−1 − w∗‖2 + 2α2L2 ‖w̃ − w∗‖2

≤
√

(1 + 2α2L2) ‖wt−1 − w∗‖2 +

√
2α2L2 ‖w̃ − w∗‖2

≤ (1 + α2L2) ‖wt−1 − w∗‖+
√

2αL ‖w̃ − w∗‖ .
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Returning to our original expression,

E
[
‖wt − w∗‖2

]
= E

[
‖wt−1 − w∗ − α∇ht(wt−1)‖2

]
+ 2E

[
uTt (wt−1 − w∗ − α∇ht(wt−1))

]
+ E

[
‖ut‖2

]
≤ E

[
‖wt−1 − w∗ − α∇ht(wt−1)‖2

]
+ 2∆E [‖wt−1 − w∗ − α∇ht(wt−1)‖] + ∆2

≤ ‖wt−1 − w∗‖2 − 2α(1− 2αL)(f(wt−1)− f(w∗)) + 4α2L(f(w̃)− f(w∗))

+ 2∆
(

(1 + α2L2) ‖wt−1 − w∗‖+
√

2αL ‖w̃ − w∗‖
)

+ ∆2.

This is what we wanted to show.

Now we are ready to prove Theorem 3. Our proof of this theorem follows the structure
of the proof of the original SVRG convergence result in Johnson and Zhang (2013).

Proof of Theorem 3 We start by looking at the inner loop update step for LP-SVRG

wk,t = wk,t−1 	
L
α�

L

((
xTi �

L
wk,t−1

)
�
L
fllo(xi)	

L

(
xTi �

L
w̃k

)
�
L
fllo(xi)⊕

L
h̃k

)
.

Define

vk,t−1 = wk,t−1 − α
(
xTi wk,t−1 · xi − xTi w̃k · xi + h̃k

)
,

where all the arithmetic in the above expression is exact. This vk,t−1 is what the original
SVRG algorithm would step to, if it were using exact arithmetic. First, we want to find a
bound on the error between vk,t−1 and wk,t−1: this is the error induced by using low-precision
arithmetic. We can start by noticing that, from our standard bound on the error of a dot
product, we will have that

xTi �
L
wk,t−1 = xTi wk,t−1 + |xi|T |wk,t−1| · d · εlo = xTi wk,t−1 + ‖xi‖ · ‖wk,t−1‖ · d · εlo.

Note that in the expressions above, as usual εlo refers to some number that is bounded
from above by the machine epsilon; multiple instances of εlo may denote different values.
Similarly, we will have

xi �
L
w̃k = xTi w̃k + ‖xi‖ · ‖w̃k‖ · d · εlo.

So, the jth entry of the gradient sample will be(
xTi �

L
wk,t−1

)
�
L
xi,j =

((
xTi �

L
wk,t−1

)
· xi,j

)
· (1 + εlo)

=
((
xTi wk,t−1 + ‖xi‖ · ‖wk,t−1‖ · d · εlo

)
· xi,j

)
· (1 + εlo)

= xTi wk,t−1 · xi,j + xTi wk,t−1 · xi,j · εlo + ‖xi‖ · ‖wk,t−1‖ · xi,j · d · εlo,

= xTi wk,t−1 · xi,j + ‖xi‖ · ‖wk,t−1‖ · |xi,j | · (d+ 1) · εlo.
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where as usual we ignore factors of O(ε2
lo). Similarly, it will hold that(

xTi �
L
w̃k

)
�
L
xi,j = xTi w̃k · xi,j + ‖xi‖ · ‖w̃k‖ · |xi,j | · (d+ 1) · εlo.

Subtracting these expressions, we get(
xTi �

L
wk,t−1

)
�
L
xi,j 	

L

(
xTi �

L
w̃k

)
�
L
xi,j

=

((
xTi �

L
wk,t−1

)
�
L
xi,j −

(
xTi �

L
w̃k

)
�
L
xi,j

)
· (1 + εlo)

=
(
xTi wk,t−1 · xi,j − xTi w̃k · xi,j

+ ‖xi‖ · ‖wk,t−1‖ · |xi,j | · (d+ 1) · εlo + ‖xi‖ · ‖w̃k‖ · |xi,j | · (d+ 1) · εlo

)
· (1 + εlo)

= xTi wk,t−1 · xi,j − xTi w̃k · xi,j
+
(
xTi wk,t−1 · xi,j − xTi w̃k · xi,j

)
· εlo

+ ‖xi‖ · ‖wk,t−1‖ · |xi,j | · (d+ 1) · εlo + ‖xi‖ · ‖w̃k‖ · |xi,j | · (d+ 1) · εlo

= xTi wk,t−1 · xi,j − xTi w̃k · xi,j
+ ‖xi‖ · ‖wk,t−1‖ · |xi,j | · (d+ 2) · εlo + ‖xi‖ · ‖w̃k‖ · |xi,j | · (d+ 2) · εlo

= xTi wk,t−1 · xi,j − xTi w̃k · xi,j
+ ‖xi‖ · (‖wk,t−1‖+ ‖w̃k‖) · |xi,j | · (d+ 2) · εlo.

If follows that by bounding the total error across all j,∥∥∥∥(xTi �
L
wk,t−1

)
�
L
xi 	

L

(
xTi �

L
w̃k

)
�
L
xi −

(
xTi wk,t−1 · xi − xTi w̃k · xi

)∥∥∥∥
= ‖‖xi‖ · (‖wk,t−1‖+ ‖w̃k‖) · |xi| · (d+ 2) · εlo‖
= ‖xi‖2 · (‖wk,t−1‖+ ‖w̃k‖) · (d+ 2) · εlo.

Next, since we know by assumption that the Lipschitz constant of ∇fi is L, for any w and v,∣∣xTi w − xTi v∣∣ · ‖xi‖ ≤ L ‖w − v‖ .
It is straightforward to show that this holds if and only if

‖xi‖2 ≤ L.

Therefore,∥∥∥∥(xTi �
L
wk,t−1

)
�
L
xi 	

L

(
xTi �

L
w̃k

)
�
L
xi −

(
xTi wk,t−1 · xi − xTi w̃k · xi

)∥∥∥∥
= L · (‖wk,t−1‖+ ‖w̃k‖) · (d+ 2) · εlo.

Now, to simplify this, let
φ = xTi wk,t−1 · xi − xTi w̃k · xi
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and

φ̂ =

(
xTi �

L
wk,t−1

)
�
L
xi 	

L

(
xTi �

L
w̃k

)
�
L
xi.

Then we can restate our above bound as∥∥∥φ̂− φ∥∥∥ = L · (‖wk,t−1‖+ ‖w̃k‖) · (d+ 2) · εlo.

Our inner loop update step for LP-SVRG is

wk,t−1 = wk,t−1 	
L
α�

L

(
φ̂⊕

L
h̃k

)
.

We know from the fundamental axiom of floating point arithmetic that for the jth component
of this expression,

wk,t−1,j 	
L
α�

L

(
φ̂j ⊕

L
h̃k,j

)
=
(
wk,t−1,j −

(
α ·
(
φ̂j + g̃k,j · (1 + εlo)

)
· (1 + εlo)

)
· (1 + εlo)

)
· (1 + εlo)

= wk,t−1 − α
(
φ̂j + g̃k,j

)
+
(
wk,t−1,j + 3α · φ̂j + 4α · g̃k,j

)
εlo,

= wk,t−1 − α (φj + g̃k,j)− α
(
φ̂j − φj

)
+ (wk,t−1,j + 3α · φj + 4α · g̃k,j) εlo.

where again we ignore factors in O(εlo
2). From this, we can bound the total norm of the

error∥∥∥∥(wk,t−1 	
L
α�

L

(
φ̂⊕

L
h̃k

))
− (wk,t−1 − α (φj + g̃k,j))

∥∥∥∥
≤ α

∥∥∥φ̂j − φj∥∥∥+ (‖wk,t−1‖+ 3α · ‖φ‖+ 4α · ‖g̃k‖) εlo

= αL · (‖wk,t−1‖+ ‖w̃k‖) · (d+ 2) · εlo + (‖wk,t−1‖+ 3α · ‖φ‖+ 4α · ‖g̃k‖) εlo.

Finally, we can bound

‖φ‖ =
∣∣(xTi wk,t−1)− (xTi w̃k)

∣∣ · ‖xi‖ ≤ L ‖wk,t−1 − w̃k‖ ,

and so we get∥∥∥∥(wk,t−1 	
L
α�

L

(
φ̂⊕

L
h̃k

))
− (wk,t−1 − α (φj + g̃k,j))

∥∥∥∥
= αL · (‖wk,t−1‖+ ‖w̃k‖) · (d+ 2) · εlo + (‖wk,t−1‖+ 3α · (L ‖wk,t−1 − w̃k‖) + 4α · ‖g̃k‖) εlo

= αL · (‖wk,t−1‖+ ‖w̃k‖) · (d+ 5) · εlo + (‖wk,t−1‖+ 4α · ‖g̃k‖) εlo.

Finally, we use the fact that

‖g̃k‖ = ‖∇f(w̃k)−∇f(w∗)‖ ≤ L · ‖w̃k − w∗‖
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to get ∥∥∥∥(wk,t−1 	
L
α�

L

(
φ̂⊕

L
h̃k

))
− (wk,t−1 − α (φj + g̃k,j))

∥∥∥∥
= αL · (‖wk,t−1‖+ ‖w̃k‖) · (d+ 5) · εlo + (‖wk,t−1‖+ 4αL · ‖w̃k − w∗‖) εlo

= αL · (‖wk,t−1 − w∗‖+ ‖w̃k − w∗‖+ 2 ‖w∗‖) · (d+ 5) · εlo

+ (‖wk,t−1 − w∗‖+ ‖w∗‖+ 4αL · ‖w̃k − w∗‖) εlo

≤
(

(αL(d+ 5) + 1) · ‖wk,t−1 − w∗‖+ αL(d+ 9) · ‖w̃k − w∗‖

+ (2αL(d+ 5) + 1) · ‖w∗‖
)
· εmachine-lo +O(εmachine-lo

2).

Now we’ve proved a bound on the distance between the actual step that is done in LP-SVRG
and the step that would have been taken with exact number arithmetic. Next, we simplify
this result a bit. Suppose (we will make this rigorous through our choice of α later) that
4αL ≤ 1 and that d > 7. Then,∥∥∥∥(wk,t−1 	

L
α�

L

(
φ̂⊕

L
h̃k

))
− (wk,t−1 − α (φj + g̃k,j))

∥∥∥∥
≤ 1

4

(
(4αL(d+ 5) + 4) · ‖wk,t−1 − w∗‖+ 4αL(d+ 9) · ‖w̃k − w∗‖

+ (8αL(d+ 5) + 4) · ‖w∗‖
)
· εmachine-lo +O(εmachine-lo

2)

≤ 1

4

(
(d+ 9) · ‖wk,t−1 − w∗‖+ (d+ 9) · ‖w̃k − w∗‖

+ (2d+ 14) · ‖w∗‖
)
· εmachine-lo +O(εmachine-lo

2)

≤ 1

4

(
(d+ 3d) · ‖wk,t−1 − w∗‖+ (d+ 3d) · ‖w̃k − w∗‖

+ (2d+ 2d) · ‖w∗‖
)
· εmachine-lo +O(εmachine-lo

2)

≤ (‖wk,t−1 − w∗‖+ ‖w̃k − w∗‖+ ‖w∗‖) · d · εmachine-lo +O(εmachine-lo
2).

Next, we show how this can be used to prove a bound on the convergence of LP-SVRG.
First, by the result of Lemma 12, we will have

E
[
‖wk,t − w∗‖2

]
≤ ‖wk,t−1 − w∗‖2 − 2α(1− 2αL)(f(wk,t−1)− f(w∗))

+ 4α2L(f(w̃k)− f(w∗))

+ 2∆
(

(1 + α2L2) ‖wk,t−1 − w∗‖+
√

2αL ‖w̃k − w∗‖
)

+ ∆2,

where

∆ ≤ (‖wk,t−1 − w∗‖+ ‖w̃k − w∗‖+ ‖w∗‖) · d · εmachine-lo +O(εmachine-lo
2).
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Subject to our assumption above that 4αL ≤ 1, and noticing that ∆ = O(εmachine-lo), we
can ignore the O(∆2) term and simplify this to

E
[
‖wk,t − w∗‖2

]
≤ ‖wk,t−1 − w∗‖2 − 2α(1− 2αL)(f(wk,t−1)− f(w∗))

+ 4α2L(f(w̃k)− f(w∗))

+ 3∆ (‖wk,t−1 − w∗‖+ ‖w̃k − w∗‖+ ‖w∗‖) +O(εmachine-lo
2)

≤ ‖wk,t−1 − w∗‖2 − 2α(1− 2αL)(f(wk,t−1)− f(w∗))

+ 4α2L(f(w̃k)− f(w∗))

+ 3 (‖wk,t−1 − w∗‖+ ‖w̃k − w∗‖+ ‖w∗‖)2 · d · εmachine-lo

+O(εmachine-lo
2)

≤ ‖wk,t−1 − w∗‖2 − 2α(1− 2αL)(f(wk,t−1)− f(w∗))

+ 4α2L(f(w̃k)− f(w∗))

+ 9
(
‖wk,t−1 − w∗‖2 + ‖w̃k − w∗‖2 + ‖w∗‖2

)
· d · εmachine-lo

+O(εmachine-lo
2).

As a consequence of the strong convexity property,

µ

2
‖w − w∗‖2 ≤ f(w)− f(w∗),

so

E
[
‖wk,t − w∗‖2

]
≤ ‖wk,t−1 − w∗‖2 − 2α(1− 2αL)(f(wk,t−1)− f(w∗))

+ 4α2L(f(w̃k)− f(w∗))

+ 9

(
2

µ
(f(wk,t−1)− f(w∗)) +

2

µ
(f(w̃k)− f(w∗)) + ‖w∗‖2

)
· d · εmachine-lo

+O(εmachine-lo
2)

≤ ‖wk,t−1 − w∗‖2 −
(
2α(1− 2αL)− 18µ−1 · d · εmachine-lo

)
(f(wk,t−1)− f(w∗))

+
(
4α2L+ 18µ−1 · d · εmachine-lo

)
(f(w̃k)− f(w∗))

+ 9 ‖w∗‖2 · d · εmachine-lo +O(εmachine-lo
2).

Note that the above expected values were all taken conditioned on the current value of
wk,t−1 and w̃k. Now, if we take the full expected value and telescope-sum this over the whole
epoch, we get

E
[
‖wk,T − w∗‖2

]
≤ E

[
‖wk,0 − w∗‖2

]
−
(
2α(1− 2αL)− 18µ−1 · d · εmachine-lo

) T∑
t=1

E [f(wk,t−1)− f(w∗)]

+
(
4α2L+ 18µ−1 · d · εmachine-lo

)
· T ·E [f(w̃k)− f(w∗)]

+ 9T ‖w∗‖2 · d · εmachine-lo +O(εmachine-lo
2).
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Using the fact that wk,0 = w̃k and the norm of anything is non-negative,

0 ≤ E
[
‖w̃k − w∗‖2

]
−
(
2α(1− 2αL)− 18µ−1 · d · εmachine-lo

) T∑
t=1

E [f(wk,t−1)− f(w∗)]

+
(
4α2L+ 18µ−1 · d · εmachine-lo

)
· T ·E [f(w̃k)− f(w∗)]

+ 9T ‖w∗‖2 · d · εmachine-lo +O(εmachine-lo
2).

As a consequence of the strong convexity property,

µ

2
‖w̃k − w∗‖2 ≤ f(w̃k)− f(w∗),

so,

0 ≤ 2

µ
E [f(w̃k)− f(w∗)]−

(
2α(1− 2αL)− 18µ−1 · d · εmachine-lo

) T∑
t=1

E [f(wk,t−1)− f(w∗)]

+
(
4α2L+ 18µ−1 · d · εmachine-lo

)
T ·E [f(w̃k)− f(w∗)]

+ 9T ‖w∗‖2 · d · εmachine-lo +O(εmachine-lo
2)

≤ −
(
2α(1− 2αL)− 18µ−1 · d · εmachine-lo

) T∑
t=1

E [f(wk,t−1)− f(w∗)]

+

(
2

µT
+ 4α2L+ 18µ−1 · d · εmachine-lo

)
· T ·E [f(w̃k)− f(w∗)]

+ 9T ‖w∗‖2 · d · εmachine-lo +O(εmachine-lo
2).

If we use option II to assign the next outer iterate, then

E [f(w̃k+1)− f(w∗)] =
1

T

T∑
t=1

E [f(wk,t−1)− f(w∗)] ,

and so

0 ≤ −
(
2α(1− 2αL)− 18µ−1 · d · εmachine-lo

)
· T ·E [f(w̃k+1)− f(w∗)]

+

(
2

µT
+ 4α2L+ 18µ−1 · d · εmachine-lo

)
· T ·E [f(w̃k)− f(w∗)]

+ 9T ‖w∗‖2 · d · εmachine-lo +O(εmachine-lo
2).

Now dividing to isolate terms on the left side,

E [f(w̃k+1)− f(w∗)] ≤
2
µT + 4α2L+ 18µ−1 · d · εmachine-lo

2α(1− 2αL)− 18µ−1 · d · εmachine-lo
E [f(w̃k)− f(w∗)]

+
9 ‖w∗‖2 · d · εmachine-lo

2α(1− 2αL)− 18µ−1 · d · εmachine-lo
+O(εmachine-lo

2).
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Note that in general, we can simplify a fraction with

a+ ε

b− ε
=

a/b

1− ε/b
+
ε

b
+O(ε2)

= (a/b)(1 + ε/b) +
ε

b
+O(ε2)

=
a

b
+
aε

b2
+
ε

b
+O(ε2)

=
a

b
+
a+ b

b2
· ε+O(ε2).

So,

E [f(w̃k+1)− f(w∗)] ≤

(
2
µT + 4α2L

2α(1− 2αL)
+

2
µT + 4α2L+ 2α(1− 2αL)

(2α(1− 2αL))2
· 18µ−1 · d · εmachine-lo

)
·E [f(w̃k)− f(w∗)]

+
9 ‖w∗‖2 · d · εmachine-lo

2α(1− 2αL)
+O(εmachine-lo

2).

Next, if we set the step size and epoch length in terms of γ ∈ (0, 1) as

α =
γ

4L(1 + γ)

and

T =
8κ(1 + γ)

γ2

as it is in the original SVRG analysis (note that this validates our above assumption that
4αL < 1), we get that

2α(1− 2αL) = 2 · γ

4L(1 + γ)
· 2 + γ

2(1 + γ)
=

γ(2 + γ)

4L(1 + γ)2

and
2

µT
+ 4α2L =

γ2

4L(1 + γ)
+

γ2

4L(1 + γ)2
=

γ2(2 + γ)

4L(1 + γ)2

and so

E [f(w̃k+1)− f(w∗)] ≤

 γ2(2+γ)
4L(1+γ)2

γ(2+γ)
4L(1+γ)2

+

γ2(2+γ)
4L(1+γ)2

+ γ(2+γ)
4L(1+γ)2(

γ(2+γ)
4L(1+γ)2

)2 · 18µ−1 · d · εmachine-lo


·E [f(w̃k)− f(w∗)]

+
9 ‖w∗‖2 · d · εmachine-lo

γ(2+γ)
4L(1+γ)2

+O(εmachine-lo
2)

≤
(
γ +

4L(1 + γ)3

γ(2 + γ)
· 18µ−1 · d · εmachine-lo

)
E [f(w̃k)− f(w∗)]

+
36L(1 + γ)2 · ‖w∗‖2 · d · εmachine-lo

γ(2 + γ)
+O(εmachine-lo

2).
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Using the fact that 0 < γ < 1, we can further bound this with

E [f(w̃k+1)− f(w∗)] ≤
(
γ +

4L(1 + 1)3

γ(2 + 0)
· 18µ−1 · d · εmachine-lo

)
E [f(w̃k)− f(w∗)]

+
36L(1 + 1)2 · ‖w∗‖2 · d · εmachine-lo

γ(2 + 0)
+O(εmachine-lo

2)

≤
(
γ +

288κ

γ
· d · εmachine-lo

)
E [f(w̃k)− f(w∗)]

+
72L · ‖w∗‖2 · d · εmachine-lo

γ
+O(εmachine-lo

2).

This is what we wanted to prove.

Proof of Theorem 4 We start by looking at the inner loop update step for BC-SVRG.

δw,k,t = δw,k,t−1 	
L
α�

L

((
xTi �

L
δw,k,t−1

)
�
L
xi ⊕

L
h̃k

)
.

From the same analysis of the dot product used in the proof of Theorem 3, it will hold that(
xTi �

L
δw,k,t−1

)
�
L
xi,j = xTi δw,k,t−1 · xi,j + ‖xi‖ · ‖δw,k,t−1‖ · |xi,j | · (d+ 1) · εlo.

When the h̃k term is added, we get(
xTi �

L
δw,k,t−1

)
�
L
xi,j ⊕

L
h̃k,j

=

((
xTi �

L
δw,k,t−1

)
�
L
xi,j + h̃k,j

)
· (1 + εlo)

=
(
xTi δw,k,t−1 · xi,j + ‖xi‖ · ‖δw,k,t−1‖ · |xi,j | · (d+ 1) · εlo + g̃k,j · (1 + εlo)

)
· (1 + εlo)

= xTi δw,k,t−1 · xi,j + g̃k,j + xTi δw,k,t−1 · xi,j · εlo

+ ‖xi‖ · ‖δw,k,t−1‖ · |xi,j | · (d+ 1) · εlo + 2g̃k,j · εlo

= xTi δw,k,t−1 · xi,j + g̃k,j + ‖xi‖ · ‖δw,k,t−1‖ · |xi,j | · (d+ 2) · εlo + 2g̃k,j · εlo

where as usual we ignore factors of O(εlo
2) by rolling them up into the other εlo terms. Now

multiplying this with α,

α�
L

((
xTi �

L
δw,k,t−1

)
�
L
xi,j ⊕

L
h̃k,j

)
= α ·

((
xTi �

L
δw,k,t−1

)
�
L
xi,j ⊕

L
h̃k,j

)
· (1 + εlo)

= α ·
(
xTi δw,k,t−1 · xi,j + g̃k,j + ‖xi‖ · ‖δw,k,t−1‖ · |xi,j | · (d+ 2) · εlo + 2g̃k,j · εlo

)
· (1 + εlo)

= α
(
xTi δw,k,t−1 · xi,j + g̃k,j

)
+ α · ‖xi‖ · ‖δw,k,t−1‖ · |xi,j | · (d+ 3) · εlo + 3α · g̃k,j · εlo.
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Finally, subtracting this from δw,k,t−1,

δw,k,t−1,j 	
L
α�

L

((
xTi �

L
δw,k,t−1

)
�
L
xi,j ⊕

L
h̃k,j

)
=

(
δw,k,t−1,j − α�

L

((
xTi �

L
δw,k,t−1

)
�
L
xi,j ⊕

L
h̃k,j

))
· (1 + εlo)

=
(
δw,k,t−1,j − α

(
xTi δw,k,t−1 · xi,j + g̃k,j

)
+ α · ‖xi‖ · ‖δw,k,t−1‖ · |xi,j | · (d+ 3) · εlo + 3α · g̃k,j · εlo

)
· (1 + εlo)

= δw,k,t−1,j − α
(
xTi δw,k,t−1 · xi,j + g̃k,j

)
+ δw,k,t−1,j · εlo + α · ‖xi‖ · ‖δw,k,t−1‖ · |xi,j | · (d+ 4) · εlo + 4α · g̃k,j · εlo.

Taking the norm, it follows that the total error from low-precision computation in the inner
loop update step is

∆ =

∥∥∥∥δw,k,t−1 	
L
α�

L

((
xTi �

L
δw,k,t−1

)
�
L
xi ⊕

L
h̃k

)
−
(
δw,k,t−1 − α

(
xTi δw,k,t−1 · xi + g̃k

))∥∥∥∥
= ‖δw,k,t−1‖ · εlo + α · ‖xi‖2 · ‖δw,k,t−1‖ · (d+ 4) · εlo + 4α · ‖g̃k,j‖ · εlo.

Next, leveraging the fact that by Lipschitz continuity, ‖xi‖2 ≤ L and ‖g̃k‖ ≤ L · ‖w̃k − w∗‖,

∆ = ((1 + αL(d+ 4)) ‖δw,k,t−1‖+ 4αL · ‖w̃k − w∗‖) · εlo.

Now, if we define
wk,t = w̃k + δw,k,t,

that is, wk,t is the total number represented using bit centering (the sum of the offset and
the delta), then we can rewrite this as

∆ = ((1 + αL(d+ 4)) ‖wk,t−1 − w̃k‖+ 4αL · ‖w̃k − w∗‖) · εlo

= ((1 + αL(d+ 4)) ‖wk,t−1 − w∗‖+ (1 + αL(d+ 4)) ‖w̃k − w∗‖+ 4αL · ‖w̃k − w∗‖) · εlo

= ((1 + αL(d+ 4)) ‖wk,t−1 − w∗‖+ (1 + αL(d+ 8)) ‖w̃k − w∗‖) · εlo.

Next, we simplify this a bit. Suppose (we will make this rigorous through our choice of α
later) that 4αL ≤ 1 and that d ≥ 4. Then,

∆ =
1

4
((4 + 4αL(d+ 4)) ‖wk,t−1 − w∗‖+ (4 + 4αL(d+ 8)) ‖w̃k − w∗‖) · εlo

=
1

4
((d+ 8) ‖wk,t−1 − w∗‖+ (d+ 12) ‖w̃k − w∗‖) · εlo

=
1

4
((d+ 3d) ‖wk,t−1 − w∗‖+ (d+ 3d) ‖w̃k − w∗‖) · εlo

= (‖wk,t−1 − w∗‖+ ‖w̃k − w∗‖) · d · εlo.

Finally, we bound this using the bound on εlo,

∆ = (‖wk,t−1 − w∗‖+ ‖w̃k − w∗‖) · d · (εmachine-lo +O(εmachine-lo
2)).
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Note that the big-O in the term of O(εmachine-lo
2) does not hide any terms that depend on

the iterates or statistical problem parameters (L and µ); this can be verified by looking at
the previous derivation. Now, we apply Lemma 12, which gives us

E
[
‖wk,t − w∗‖2

]
≤ ‖wk,t−1 − w∗‖2 − 2α(1− 2αL)(f(wk,t−1)− f(w∗)) + 4α2L(f(w̃k)− f(w∗))

+ 2∆
(

(1 + α2L2) ‖wk,t−1 − w∗‖+
√

2αL ‖w̃k − w∗‖
)

+ ∆2,

where ∆ is as defined above. Subject to our earlier assumption that 4αL ≤ 1, we can simplify
this to

E
[
‖wk,t − w∗‖2

]
≤ ‖wk,t−1 − w∗‖2 − 2α(1− 2αL)(f(wk,t−1)− f(w∗)) + 4α2L(f(w̃k)− f(w∗))

+ 3∆ (‖wk,t−1 − w∗‖+ ‖w̃k − w∗‖) + ∆2.

Next, we substitute our above bound on ∆, which gives us

E
[
‖wk,t − w∗‖2

]
≤ ‖wk,t−1 − w∗‖2 − 2α(1− 2αL)(f(wk,t−1)− f(w∗)) + 4α2L(f(w̃k)− f(w∗))

+ 3 (‖wk,t−1 − w∗‖+ ‖w̃k − w∗‖)2 · d · (εmachine-lo +O(εmachine-lo
2))

+ (‖wk,t−1 − w∗‖+ ‖w̃k − w∗‖)2 · d2 · (εmachine-lo +O(εmachine-lo
2))2

≤ ‖wk,t−1 − w∗‖2 − 2α(1− 2αL)(f(wk,t−1)− f(w∗)) + 4α2L(f(w̃k)− f(w∗))

+ 3 (‖wk,t−1 − w∗‖+ ‖w̃k − w∗‖)2 · d · (εmachine-lo +O(εmachine-lo
2))

≤ ‖wk,t−1 − w∗‖2 − 2α(1− 2αL)(f(wk,t−1)− f(w∗)) + 4α2L(f(w̃k)− f(w∗))

+ 6
(
‖wk,t−1 − w∗‖2 + ‖w̃k − w∗‖2

)
d · (εmachine-lo +O(εmachine-lo

2)).

For simplicity, for the next stretch of the proof we define

ε = εmachine-lo +O(εmachine-lo
2).

As a consequence of the strong convexity property,

µ

2
‖w − w∗‖2 ≤ f(w)− f(w∗).

So, we can bound this further with

E
[
‖wk,t − w∗‖2

]
≤ ‖wk,t−1 − w∗‖2 − 2α(1− 2αL)(f(wk,t−1)− f(w∗)) + 4α2L(f(w̃k)− f(w∗))

+
12

µ
((f(wk,t−1)− f(w∗)) + (f(w̃k)− f(w∗))) d · ε

≤ ‖wk,t−1 − w∗‖2 −
(
2α(1− 2αL)− 12µ−1d · ε

)
(f(wk,t−1)− f(w∗))

+
(
4α2L+ 12µ−1d · ε

)
(f(w̃k)− f(w∗)).
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The expectations above were all taken with respect to δw,k,t−1 and w̃k. Now taking the full
expectation and summing over an epoch, we get

E
[
‖wk,T − w∗‖2

]
≤ E

[
‖wk,0 − w∗‖2

]
−

T∑
t=1

(
2α(1− 2αL)− 12µ−1d · ε

)
E [f(wk,t−1)− f(w∗)]

+
T∑
t=1

(
4α2L+ 12µ−1d · ε

)
E [f(w̃k)− f(w∗)]

≤ E
[
‖wk,0 − w∗‖2

]
−
(
2α(1− 2αL)− 12µ−1d · ε

) T∑
t=1

E [f(wk,t−1)− f(w∗)]

+
(
4α2L+ 12µ−1d · ε

)
· T ·E [f(w̃k)− f(w∗)] .

As usual, now if we use Option II to assign the next outer iterate, we will have

T ·E [f(w̃k+1)− f(w∗)] =
T∑
t=1

E [f(wk,t−1)− f(w∗)] .

Applying this, the fact that the expected value of anything is always nonnegative, and the
fact that wk,0 = w̃k gives us

0 ≤ E
[
‖w̃k − w∗‖2

]
−
(
2α(1− 2αL)− 12µ−1d · ε

)
· T ·E [f(w̃k+1)− f(w∗)]

+
(
4α2L+ 12µ−1d · ε

)
· T ·E [f(w̃k)− f(w∗)] .

Applying strong convexity again produces

0 ≤ 2

µ
E [f(w̃k)− f(w∗)]−

(
2α(1− 2αL)− 12µ−1d · ε

)
· T ·E [f(w̃k+1)− f(w∗)]

+
(
4α2L+ 12µ−1d · ε

)
· T ·E [f(w̃k)− f(w∗)]

= −
(
2α(1− 2αL)− 12µ−1d · ε

)
· T ·E [f(w̃k+1)− f(w∗)]

+

(
2

µT
+ 4α2L+ 12µ−1d · ε

)
· T ·E [f(w̃k)− f(w∗)] .

Dividing to isolate the E [f(w̃k+1)− f(w∗)] term,

E [f(w̃k+1)− f(w∗)] ≤
2
µT + 4α2L+ 12µ−1d · ε

2α(1− 2αL)− 12µ−1d · ε
·E [f(w̃k)− f(w∗)]

=

(
2
µT + 4α2L

2α(1− 2αL)
+

2
µT + 4α2L+ 2α(1− 2αL)

(2α(1− 2αL))2
· 12µ−1d · (ε+O(ε2))

)
·E [f(w̃k)− f(w∗)] ,

59



Aberger, De Sa, Leszczynski, Marzoev, Olukotun, Ré, and Zhang

where in the last line we are doing a first-order expansion in terms of ε. Now, we return
back to our notation using εmachine-lo,

E [f(w̃k+1)− f(w∗)]

≤

(
2
µT + 4α2L

2α(1− 2αL)
+

2
µT + 4α2L+ 2α(1− 2αL)

(2α(1− 2αL))2
· 12µ−1d · (εmachine-lo +O(εmachine-lo

2))

)
·E [f(w̃k)− f(w∗)] ,

Next, if (as in the analysis of LP-SVRG) we set the step size and epoch length in terms of
γ ∈ (0, 1) as

α =
γ

4L(1 + γ)

and

T =
8κ(1 + γ)

γ2

as it is in the original SVRG analysis (note that this validates our above assumption that
4αL < 1), we get that

2α(1− 2αL) = 2 · γ

4L(1 + γ)
· 2 + γ

2(1 + γ)
=

γ(2 + γ)

4L(1 + γ)2

and
2

µT
+ 4α2L =

γ2

4L(1 + γ)
+

γ2

4L(1 + γ)2
=

γ2(2 + γ)

4L(1 + γ)2
.

So,

E [f(w̃k+1)− f(w∗)] ≤

 γ2(2+γ)
4L(1+γ)2

γ(2+γ)
4L(1+γ)2

+

γ2(2+γ)
4L(1+γ)2

+ γ(2+γ)
4L(1+γ)2(

γ(2+γ)
4L(1+γ)2

)2 · 12µ−1d · (εmachine-lo +O(εmachine-lo
2))


·E [f(w̃k)− f(w∗)]

≤
(
γ +

4L(1 + γ)3

γ(2 + γ)
· 12µ−1 · d · (εmachine-lo +O(εmachine-lo

2))

)
E [f(w̃k)− f(w∗)] .

Using the fact that 0 < γ < 1, we can further bound this with

E [f(w̃k+1)− f(w∗)] ≤
(
γ +

4L(1 + 1)3

γ(2 + 0)
· 12µ−1 · d · (εmachine-lo +O(εmachine-lo

2))

)
E [f(w̃k)− f(w∗)]

≤
(
γ +

192L · d
γµ

· (εmachine-lo +O(εmachine-lo
2))

)
E [f(w̃k)− f(w∗)] .

This is what we wanted to prove.

Lemma 13 In a situation where a dot product could underflow (but can not overflow), the
result of a n-dimensional dot product done in floating point arithmetic satisfies

xT � y = xT y + |x|T |y| · n · ε+ 2n · η.
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Proof We will prove this by induction. First, note that, by the fundamental axiom of
floating point arithmetic with underflow,

xi � yi = xi · yi · (1 + ε) + η.

It follows directly that the lemma is true for n = 1. Now, supposing (by way of induction)
the lemma is true for n− 1, let s denote the dot product of all but the last entries of the
two vectors (xn and yn). Then,

xT � y = s⊕ xn � yn.

Applying the fundamental axiom again, we get

xT � y = (s+ (xn � yn)) · (1 + ε) + η

=
(

(xT y − xnyn) +
(
|x|T |y| − |xnyn|

)
· (n− 1) · ε+ 2(n− 1) · η

+ xn · yn · (1 + ε) + η
)
· (1 + ε) + η

=
(
xT y + |x|T |y| · (n− 1) · ε+ (2n− 1) · η

)
· (1 + ε) + η

= xT y + |x|T |y| · n · ε+ 2n · η.

This proves the lemma.

Proof of Theorem 5 We start by looking at the inner loop update step for HALP, which
is the same as the one for BC-SVRG.

δw,k,t = δw,k,t−1 	
L
α�

L

((
xTi �

L
δw,k,t−1

)
�
L
xi ⊕

L
h̃k

)
.

Unlike in the analysis of BC-SVRG, here we are also considering overflow and underflow, so
the proof is a bit more involved. By Lemma 13 and Cauchy-Schwarz,

xTi �
L
δw,k,t−1 = xTi δw,k,t−1 + ‖xi‖ · ‖δw,k,t−1‖ · d · εlo + 2 · d · ηlo-bias(B).

Next, multiplying by the jth entry of xi,(
xTi �

L
δw,k,t−1

)
�
L
xi,j

=

(
xTi �

L
δw,k,t−1

)
· xi,j · (1 + εlo) + ηlo-bias(B)

=
(
xTi δw,k,t−1 + ‖xi‖ · ‖δw,k,t−1‖ · d · εlo + 2 · d · ηlo-bias(B)

)
· xi,j · (1 + εlo) + ηlo-bias(B)

= xTi δw,k,t−1 · xi,j + ‖xi‖ · ‖δw,k,t−1‖ · xi,j · d · εlo + 2xi,j · d · ηlo-bias(B)

+ xTi δw,k,t−1 · xi,j · εlo + ηlo-bias(B)

= xTi δw,k,t−1 · xi,j + ‖xi‖ · ‖δw,k,t−1‖ · xi,j · (d+ 1) · εlo + (1 + 2xi,j · d) · ηlo-bias(B).
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When the h̃k term is added, we get(
xTi �

L
δw,k,t−1

)
�
L
xi,j ⊕

L
h̃k,j

=

((
xTi �

L
δw,k,t−1

)
�
L
xi,j + h̃k,j

)
· (1 + εlo) + ηlo-bias(B)

=
(
xTi δw,k,t−1 · xi,j + ‖xi‖ · ‖δw,k,t−1‖ · |xi,j | · (d+ 1) · εlo + (1 + 2xi,j · d) · ηlo-bias(B)

+ g̃k,j · (1 + εlo) + ηlo-bias(B)

)
· (1 + εlo) + ηlo-bias(B)

= xTi δw,k,t−1 · xi,j + g̃k,j + xTi δw,k,t−1 · xi,j · εlo

+ ‖xi‖ · ‖δw,k,t−1‖ · |xi,j | · (d+ 1) · εlo + 2g̃k,j · εlo

+ (1 + 2xi,j · d) · ηlo-bias(B) + ηlo-bias(B) + ηlo-bias(B)

= xTi δw,k,t−1 · xi,j + g̃k,j + ‖xi‖ · ‖δw,k,t−1‖ · |xi,j | · (d+ 2) · εlo + 2g̃k,j · εlo

+ (3 + 2xi,j · d) · ηlo-bias(B)

where as usual we ignore factors of O(εlo
2) and similar by rolling them up into the other εlo

and ηlo-bias(B) terms. Now multiplying this with α,

α�
L

((
xTi �

L
δw,k,t−1

)
�
L
xi,j ⊕

L
h̃k,j

)
= α ·

((
xTi �

L
δw,k,t−1

)
�
L
xi,j ⊕

L
h̃k,j

)
· (1 + εlo) + ηlo-bias(B)

= α ·
(
xTi δw,k,t−1 · xi,j + g̃k,j + ‖xi‖ · ‖δw,k,t−1‖ · |xi,j | · (d+ 2) · εlo + 2g̃k,j · εlo

+ (3 + 2xi,j · d) · ηlo-bias(B)

)
· (1 + εlo) + ηlo-bias(B)

= α
(
xTi δw,k,t−1 · xi,j + g̃k,j

)
+ α · ‖xi‖ · ‖δw,k,t−1‖ · |xi,j | · (d+ 3) · εlo + 3α · g̃k,j · εlo

+ (1 + 3α+ 2αxi,j · d) · ηlo-bias(B)

Finally, subtracting this from δw,k,t−1,

δw,k,t−1,j 	
L
α�

L

((
xTi �

L
δw,k,t−1

)
�
L
xi,j ⊕

L
h̃k,j

)
=

(
δw,k,t−1,j − α�

L

((
xTi �

L
δw,k,t−1

)
�
L
xi,j ⊕

L
h̃k,j

))
· (1 + εlo) + ηlo-bias(B)

=
(
δw,k,t−1,j − α

(
xTi δw,k,t−1 · xi,j + g̃k,j

)
+ α · ‖xi‖ · ‖δw,k,t−1‖ · |xi,j | · (d+ 3) · εlo + 3α · g̃k,j · εlo

+ (1 + 3α+ 2αxi,j · d) · ηlo-bias(B)

)
· (1 + εlo) + ηlo-bias(B)

= δw,k,t−1,j − α
(
xTi δw,k,t−1 · xi,j + g̃k,j

)
+ δw,k,t−1,j · εlo + α · ‖xi‖ · ‖δw,k,t−1‖ · |xi,j | · (d+ 4) · εlo + 4α · g̃k,j · εlo

+ (2 + 3α+ 2αxi,j · d) · ηlo-bias(B).
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Taking the norm, it follows that the total error from low-precision computation in the inner
loop update step is

∆ =

∥∥∥∥δw,k,t−1 	
L
α�

L

((
xTi �

L
δw,k,t−1

)
�
L
xi ⊕

L
h̃k

)
−
(
δw,k,t−1 − α

(
xTi δw,k,t−1 · xi + g̃k

))∥∥∥∥
= ‖δw,k,t−1‖ · εlo + α · ‖xi‖2 · ‖δw,k,t−1‖ · (d+ 4) · εlo + 4α · ‖g̃k‖ · εlo

+ (2
√
d+ 3α

√
d+ 2α ‖xi‖ · d) · ηlo-bias(B).

Now, we know from the construction of the HALP algorithm that

ηmachine-lo-bias(B) = 2B · ηmachine-lo

= 2blog2(ζ·‖g̃k‖)c · ηmachine-lo

≤ 2log2(ζ·‖g̃k‖)−1 · ηmachine-lo

=
1

2
· ζ · ‖g̃k‖ · ηmachine-lo.

Substituting this in above produces

∆ = ‖δw,k,t−1‖ · εlo + α · ‖xi‖2 · ‖δw,k,t−1‖ · (d+ 4) · εlo + 4α · ‖g̃k‖ · εlo

+
1

2
(2
√
d+ 3α

√
d+ 2α ‖xi‖ · d) · ζ · ‖g̃k‖ · ηlo.

Next, leveraging the fact that by Lipschitz continuity, ‖xi‖2 ≤ L and ‖g̃k‖ ≤ L · ‖w̃k − w∗‖,

∆ = ((1 + αL(d+ 4)) ‖δw,k,t−1‖+ 4αL · ‖w̃k − w∗‖) · εlo

+
1

2
(2
√
d+ 3α

√
d+ 2α

√
L · d) · ζ · L · ‖w̃k − w∗‖ · ηlo.

Now, if we define

wk,t = w̃k + δw,k,t,

that is, wk,t is the total number represented using bit centering (the sum of the offset and
the delta), then we can rewrite this as

∆ = ((1 + αL(d+ 4)) ‖wk,t−1 − w̃k‖+ 4αL · ‖w̃k − w∗‖) · εlo

+
1

2
(2
√
d+ 3α

√
d+ 2α

√
L · d) · ζ · L · ‖w̃k − w∗‖ · ηlo

= ((1 + αL(d+ 4)) ‖wk,t−1 − w∗‖+ (1 + αL(d+ 4)) ‖w̃k − w∗‖+ 4αL · ‖w̃k − w∗‖) · εlo

+
1

2
(2
√
d+ 3α

√
d+ 2α

√
L · d) · ζ · L · ‖w̃k − w∗‖ · ηlo

= ((1 + αL(d+ 4)) ‖wk,t−1 − w∗‖+ (1 + αL(d+ 8)) ‖w̃k − w∗‖) · εlo

+
1

2
(2
√
d+ 3α

√
d+ 2α

√
L · d) · ζ · L · ‖w̃k − w∗‖ · ηlo.
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Next, we simplify this a bit. Suppose (we will make this rigorous through our choice of α
later) that 4αL ≤ 1 and that d ≥ 16. Then,

∆ =
1

4
((4 + 4αL(d+ 4)) ‖wk,t−1 − w∗‖+ (4 + 4αL(d+ 8)) ‖w̃k − w∗‖) · εlo

+
1

8
(8L
√
d+ 12αL

√
d+ 8αL

√
L · d) · ζ · ‖w̃k − w∗‖ · ηlo

=
1

4
((d+ 8) ‖wk,t−1 − w∗‖+ (d+ 12) ‖w̃k − w∗‖) · εlo

+
1

8
(8L
√
d+ 3

√
d+ 2

√
L · d) · ζ · ‖w̃k − w∗‖ · ηlo.

We can further bound this last term with

1

8
(8L
√
d+ 3

√
d+ 2

√
L · d) ≤ d

8

(
8L√
d

+
3√
d

+
√
L

)
≤ d

8

(
8L

4
+

3

4
+
L+ 1

2

)
=
d

8

(
5L

2
+

5

4

)
≤ d

2
(L+ 1).

Substituting this back in above, and leveraging our assumption that

(L+ 1)ζ · ηmachine-lo ≤ εmachine-lo,

we get

∆ =
1

4
((d+ 8) ‖wk,t−1 − w∗‖+ (d+ 12) ‖w̃k − w∗‖) · εlo +

d

2
(L+ 1) · ζ · ‖w̃k − w∗‖ · ηlo

=
1

4
((d+ 8) ‖wk,t−1 − w∗‖+ (d+ 12) ‖w̃k − w∗‖) · εlo +

d

2
· ‖w̃k − w∗‖ · εlo

=
1

4
((d+ 8) ‖wk,t−1 − w∗‖+ (3d+ 12) ‖w̃k − w∗‖) · εlo

≤ 1

4
((d+ 3d) ‖wk,t−1 − w∗‖+ (3d+ d) ‖w̃k − w∗‖) · εlo

= (‖wk,t−1 − w∗‖+ ‖w̃k − w∗‖) · d · εlo.

Finally, we bound this using the bound on εlo,

∆ = (‖wk,t−1 − w∗‖+ ‖w̃k − w∗‖) · d · (εmachine-lo +O(εmachine-lo
2)).

Now, when we perform the update in HALP, let uk,t denote the value of the iterate before
possibly re-setting the value of δ to zero in the if statement. This is just the value for the
model that we get after the inner loop update step of SVRG, so we can apply Lemma 12,
which gives us

E
[
‖uk,t − w∗‖2

]
≤ ‖wk,t−1 − w∗‖2 − 2α(1− 2αL)(f(wk,t−1)− f(w∗)) + 4α2L(f(w̃k)− f(w∗))

+ 2∆
(

(1 + α2L2) ‖wk,t−1 − w∗‖+
√

2αL ‖w̃k − w∗‖
)

+ ∆2,
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where ∆ is as defined above. Let wk,t denote the value after the if statement. From our
analysis in Section 4.3, we know that the resetting of δ, if it happens, only brings the value
of wk,t closer to the optimum. As a consequence,

‖wk,t − w∗‖2 ≤ ‖uk,t − w∗‖2 ;

usually these terms will be equal since on almost all iterations the body of that if block is
not run and δ is not reset to zero. Plugging this into our formula above, we get

E
[
‖wk,t − w∗‖2

]
≤ ‖wk,t−1 − w∗‖2 − 2α(1− 2αL)(f(wk,t−1)− f(w∗)) + 4α2L(f(w̃k)− f(w∗))

+ 2∆
(

(1 + α2L2) ‖wk,t−1 − w∗‖+
√

2αL ‖w̃k − w∗‖
)

+ ∆2.

This is the exact same expression that we got in the proof of Theorem 4. As a consequence,
if we apply the exact same logic as we did in that proof, we can reach the same conclusion,
which is

E [f(w̃k+1)− f(w∗)] ≤
(
γ +

192κd

γ
· (εmachine-lo +O(εmachine-lo

2))

)
E [f(w̃k)− f(w∗)] .

This is the first part of what we wanted to prove.
The second part is to show that no overflow occurs. To do this, we consider the largest

possible value that could result in the inner loop of HALP, ignoring floating point error for
now. Because of our if-guard on the magnitude of the iterates, all the numbers used to store
δw,k,t−1 are bounded in magnitude by

2µ−1 · ‖g̃k‖ .

Within the computation of the dot product

xTi �
L
δw,k,t−1

all the numbers computed will be bounded in magnitude by

|xi|T · |δw,k,t−1| ≤ ‖xi‖ · ‖δw,k,t−1‖ ≤ 2
√
Lµ−1 · ‖g̃k‖ .

Similarly, the result of computing the scalar-vector product(
xTi �

L
δw,k,t−1

)
�
L
xi

will have numbers all bounded in magnitude by

‖xi‖2 · ‖δw,k,t−1‖ ≤ 2Lµ−1 · ‖g̃k‖ .

The result of adding this to h̃k (
xTi �

L
δw,k,t−1

)
�
L
xi ⊕

L
h̃k
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will have numbers all bounded in magnitude by

2Lµ−1 · ‖g̃k‖+ ‖g̃k‖ = (2κ+ 1) · ‖g̃k‖ .

Finally, the result of multiplying this by α will be bounded by, given that 4αL ≤ 1,

2αLµ−1 · ‖g̃k‖+ ‖g̃k‖ =
2κ+ 1

4L
· ‖g̃k‖ .

If there is overflow in the addition with δ, it will not matter, because we will reset δ to zero
anyway. So all our numbers are bounded in magnitude by

max

(
2µ−1, 2

√
Lµ−1, 2κ, 2κ+ 1,

2κ+ 1

4L

)
· ‖g̃k‖ .

We can see immediately that 2
√
Lµ−1 and 2κ are redundant in this max. Additionally, since

µ−1 = κ/L, we can further simplify this upper bound to

max

(
2κ+ 1,

2κ+ 1

L

)
· ‖g̃k‖ = max

(
1, L−1

)
· (2κ+ 1) · ‖g̃k‖ .

So we will be guaranteed to not overflow if

max
(
1, L−1

)
· (2κ+ 1) · ‖g̃k‖ ≤Mmachine-lo-bias(B).

We know from the construction of the HALP algorithm that

Mmachine-lo-bias(B) = 2B ·Mmachine-lo

= 2blog2(ζ·‖g̃k‖)c ·Mmachine-lo

≤ 2log2(ζ·‖g̃k‖)−1 ·Mmachine-lo

=
1

2
· ζ · ‖g̃k‖ ·Mmachine-lo.

Therefore we will be guaranteed to not overflow if

4κ+ 2

ζ
·max

(
1, L−1

)
≤Mmachine-lo.

Now, all these computations are actually being performed in floating-point, not exact
arithmetic. So, they will see some relative error as a result. When we take this relative error
into account, we get

4κ+ 2

ζ
·max

(
1, L−1

)
· (1 +O(εmachine-lo)) ≤Mmachine-lo,

which is the desired result. This proves the theorem.

Proof of Theorem 10 We start by analyzing Assumption 8. This assumption says that∣∣∣∣∇fi
C

((w̃k, δw,k,t))−∇fi(w̃k + δw,k,t)

∣∣∣∣
= alo · ‖δw,k,t‖ · εlo + clo · ‖δw,k,t‖ · ηlo + clo-bias · ηlo-bias(B).
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That is, the error in computing the delta is bounded by this expression. In terms of the
computation in the HALP algorithm, we can write this as

‖δv,k,t − (∇fi(wk,t)−∇fi(w̃k))‖ = alo · ‖δw,k,t‖ · εlo + clo · ‖δw,k,t‖ · ηlo + clo-bias · ηlo-bias(B).

Just as was the case for the analysis of HALP for linear regression, we have that the machine
epsilon for the biased low-precision format is bounded by

ηmachine-lo-bias(B) = 2B · ηmachine-lo

= 2blog2(ζ·‖g̃k‖)c · ηmachine-lo

≤ 2log2(ζ·‖g̃k‖)−1 · ηmachine-lo

=
1

2
· ζ · ‖g̃k‖ · ηmachine-lo,

so

‖δv,k,t − (∇fi(wk,t)−∇fi(w̃k))‖ = alo · ‖δw,k,t‖ ·εlo +clo · ‖δw,k,t‖ ·ηlo +clo-bias ·
1

2
·ζ · ‖g̃k‖ ·ηlo.

Since we know that

‖δw,k,t‖ ≤ s̃k =
2

µ
· ‖g̃k‖ ,

it follows that we can bound the error with

‖δv,k,t − (∇fi(wk,t)−∇fi(w̃k))‖ = alo · ‖δw,k,t‖ · εlo +

(
clo ·

2

µ
+ clo-bias ·

ζ

2

)
· ‖g̃k‖ · ηlo.

To simplify this, define

c = clo ·
2

µ
+ clo-bias ·

ζ

2

and

u = δv,k,t − (∇fi(wk,t)−∇fi(w̃k))

Then,

δv,k,t = ∇fi(wk,t)−∇fi(w̃k) + u

and

‖u‖ ≤ alo · ‖δw,k,t‖ · εlo + c · ‖g̃k‖ · ηlo

Next, we look at the inner update step of HALP. This update step is

δw,k,t = δw,k,t−1 	
L
α�

L

(
δv,k,t ⊕

L
h̃k

)
.
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Analyzing its error in the jth coordinate, we get

δw,k,t,j = δw,k,t−1,j 	
L
α�

L

(
δv,k,t,j ⊕

L
h̃k,j

)
=
(
δw,k,t−1,j −

(
α ·
((

(∇fi(wk,t)−∇fi(w̃k) + u)j

+ g̃k,j · (1 + εlo) + ηlo-bias(B)

)
· (1 + εlo)

+ ηlo-bias(B)

)
· (1 + εlo) + ηlo-bias(B)

))
· (1 + εlo) + ηlo-bias(B)

= δw,k,t−1,j · (1 + εlo)

−
(
α ·
(

(∇fi(wk,t)−∇fi(w̃k))j · (1 + 3εlo) + uj

)
+ α · g̃k,j · (1 + 4εlo) + 2α · ηlo-bias(B)

)
+ 2ηlo-bias(B)

= δw,k,t−1,j − α · (∇fi(wk,t)−∇fi(w̃k) + g̃k)j + δw,k,t−1,j · εlo

+
(
α ·
(

(∇fi(wk,t)−∇fi(w̃k))j · 3εlo + uj

)
+ α · g̃k,j · 4εlo + 2α · ηlo-bias(B)

)
+ 2ηlo-bias(B).

So, the error of computing the inner update step will be

∆ = ‖δw,k,t − (δw,k,t−1 − α · (∇fi(wk,t)−∇fi(w̃k) + g̃k))‖
≤ ‖δw,k,t−1‖ · εlo + α · ‖∇fi(wk,t)−∇fi(w̃k)‖ · 3εlo + α · ‖u‖

+ α · ‖g̃k‖ · 4εlo + 2α ·
√
dηlo-bias(B) + 2

√
dηlo-bias(B)

≤ ‖δw,k,t−1‖ · εlo + α · ‖∇fi(wk,t)−∇fi(w̃k)‖ · 3εlo + α · (alo · ‖δw,k,t−1‖ · εlo + c · ‖g̃k‖ · ηlo)

+ α · ‖g̃k‖ · 4εlo + 2α ·
√
dηlo-bias(B) + 2

√
dηlo-bias(B).

Since ∇fi is Lipschitz continuous,

‖∇fi(wk,t)−∇fi(w̃k)‖ ≤ L · ‖wk,t − w̃k‖ = L · ‖δw,k,t‖ .

So, applying this and our earlier bound on ηlo-bias(B),

∆ = ‖δw,k,t−1‖ · εlo + αL · ‖δw,k,t−1‖ · 3εlo + α · (alo · ‖δw,k,t−1‖ · εlo + c · ‖g̃k‖ · ηlo)

+ α · ‖g̃k‖ · 4εlo + α ·
√
d · ζ · ‖g̃k‖ · ηlo +

√
d · ζ · ‖g̃k‖ · ηlo

= (1 + 3αL+ αalo) · ‖δw,k,t−1‖ · εlo + 4α · ‖g̃k‖ · εlo + (αc+ (1 + α)
√
d · ζ) ‖g̃k‖ · ηlo.

Next, leveraging the fact that by Lipschitz contiuity, ‖g̃k‖ ≤ L · ‖w̃k − w∗‖,

∆ ≤ (1 + 3αL+ αalo) · ‖δw,k,t−1‖ · εlo + 4αL · ‖w̃k − w∗‖ · εlo

+ (αLc+ (L+ αL)
√
d · ζ) ‖w̃k − w∗‖ · ηlo.

We can simplify this by using the assumption that 4αL ≤ 1, which we will validate by our
choice of α later. Using this, we get

∆ ≤
(

2 +
alo

4L

)
· ‖δw,k,t−1‖ · εlo + ‖w̃k − w∗‖ · εlo

+
1

4
(c+ (4L+ 1)

√
d · ζ) ‖w̃k − w∗‖ · ηlo.
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Leveraging our assumption that

(c+ (4L+ 1)
√
d · ζ) · ηmachine-lo ≤ εmachine-lo,

and recalling that δw,k,t−1 = wk,t−1 − w̃, we get

∆ ≤
(

2 +
alo

4L

)
· ‖δw,k,t−1‖ · εlo + 2 ‖w̃k − w∗‖ · εlo

≤
(

2 +
alo

4L

)
· (‖wk,t−1 − w̃‖+ ‖w̃k − w∗‖) · εlo

≤
(

2 +
alo

4L

)
· (‖wk,t−1 − w̃‖+ ‖w̃k − w∗‖) · εmachine-lo.

Finally, we are ready to apply Lemma 12, which gives us

E
[
‖wk,t − w∗‖2

]
≤ ‖wk,t−1 − w∗‖2 − 2α(1− 2αL)(f(wk,t−1)− f(w∗)) + 4α2L(f(w̃k)− f(w∗))

+ 2∆
(

(1 + α2L2) ‖wk,t−1 − w∗‖+
√

2αL ‖w̃k − w∗‖
)

+ ∆2,

where ∆ is as defined above. Note that this will hold even if we take the if-statement to reset
the value of δw,k,t to 0, by the same logic used in the analysis of HALP for linear regression.
Subject to our assumption that 4αL ≤ 1, we can simplify this to

E
[
‖wk,t − w∗‖2

]
≤ ‖wk,t−1 − w∗‖2 − 2α(1− 2αL)(f(wk,t−1)− f(w∗)) + 4α2L(f(w̃k)− f(w∗))

+ 3∆ (‖wk,t−1 − w∗‖+ ‖w̃k − w∗‖) + ∆2.

Next, we substitute our above bound on ∆, which produces

E
[
‖wk,t − w∗‖2

]
≤ ‖wk,t−1 − w∗‖2 − 2α(1− 2αL)(f(wk,t−1)− f(w∗)) + 4α2L(f(w̃k)− f(w∗))

+ 3
(

2 +
alo

4L

)
· (‖wk,t−1 − w∗‖+ ‖w̃k − w∗‖)2 · εmachine-lo

+
((

2 +
alo

4L

)
· (‖wk,t−1 − w̃‖+ ‖w̃k − w∗‖) · εmachine-lo

)2

≤ ‖wk,t−1 − w∗‖2 − 2α(1− 2αL)(f(wk,t−1)− f(w∗)) + 4α2L(f(w̃k)− f(w∗))

+ 6
(

2 +
alo

4L

)
·
(
‖wk,t−1 − w∗‖2 + ‖w̃k − w∗‖2

)
·
(
εmachine-lo +O(εmachine-lo

2)
)
.

Notice that this is the exact same expression we obtain in the proof of convergence of
BC-SVRG (Theorem 4), except with

2 +
alo

4L

in the place of d in that expression. By the exact same argument we used in that proof, we
will get

E [f(w̃k+1)− f(w∗)] ≤
(
γ +

192κ

γ
·
(

2 +
alo

4L

)
· (εmachine-lo +O(εmachine-lo

2))

)
E [f(w̃k)− f(w∗)] .

Note that this still holds even if we take the if-statement to reset the value of w̃k+1 to be
equal to w̃k, since this operation decreases the value of f(w̃k+1)− f(w∗). This is what we
wanted to prove.
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All that remains to be done is to show that there is no overflow. To do this, consider
Assumption 9: all the numbers in the inner loop will satisfy

|z| ≤ rdelta · ‖δw,k,t‖+ rlo-bias · ηlo-bias(B).

By our above bound on ηlo-bias(B), we have that

|z| ≤ rdelta · ‖δw,k,t‖+ rlo-bias ·
1

2
· ζ · ‖g̃k‖ · ηmachine-lo.

Because we do not let δw,k,t get too large, it will always hold that

‖δw,k,t‖ ≤ s̃ =
2

µ
· ‖g̃k‖ ,

so

|z| ≤ rdelta ·
2

µ
· ‖g̃k‖+ rlo-bias ·

1

2
· ζ · ‖g̃k‖ · ηmachine-lo.

The overflow threshold for our biased low-precision representation is

Mmachine-lo-bias(B) = 2B ·Mmachine-lo ≤
1

2
· ζ · ‖g̃k‖ ·Mmachine-lo.

So we will be guaranteed to have no overflow if

rdelta ·
2

µ
· ‖g̃k‖+ rlo-bias ·

1

2
· ζ · ‖g̃k‖ · ηmachine-lo ≤

1

2
· ζ · ‖g̃k‖ ·Mmachine-lo.

This will happen when

rdelta ·
4

ζµ
+ rlo-bias · ηmachine-lo ≤Mmachine-lo.

This completes the theorem.

Proof of Theorem 7 To simplify our notation, let

f = f(g1(x1, . . . , xn), g2(x1, . . . , xn), . . . , gm(x1, . . . , xn)),

f̃ = of + δf = f
C

(g1
C

(x1, . . . , xn), g2
C

(x1, . . . , xn), . . . , gm
C

(x1, . . . , xn))

gi = gi(x1, . . . , xn),

and

g̃i = og,i + δg,i = gi
C

(x1, . . . , xn).

Then ∣∣∣h
C
(x1, . . . , xn)− h(x1, . . . , xn)

∣∣∣ =
∣∣∣f̃ − f ∣∣∣ .
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By the fundamental axiom on gi, we will have

|g̃i − gi| ≤ Ahi,g,i · εmachine-hi + Chi,g,i · ηmachine-hi +Alo,g,i ·

(
m∑
i=1

|δx,i|

)
· εmachine-lo

+ Clo-bias,g,i ·

(
m∑
i=1

|δx,i|

)
· ηmachine-lo-bias(B) + Clo,g,i · ηmachine-lo

≤ Ahi,g,i · εmachine-hi + Chi,g,i · ηmachine-hi +Alo,g,i ·

(
m∑
i=1

|xi − ox,i|

)
· εmachine-lo

+ Clo-bias,g,i ·

(
m∑
i=1

|xi − ox,i|

)
· ηmachine-lo-bias(B) + Clo,g,i · ηmachine-lo.

Define a new function Di (a function of the same parameters as Ahi,g,i), as

Di = Ahi,g,i · εmachine-hi + Chi,g,i · ηmachine-hi +Alo,g,i ·

(
m∑
i=1

|xi − ox,i|

)
· εmachine-lo

+ Clo-bias,g,i ·

(
m∑
i=1

|xi − ox,i|

)
· ηmachine-lo-bias(B) + Clo,g,i · ηmachine-lo.

It follows that, if for some αi ∈ [−1, 1],

g̃i ≤ gi + αiDi.

Next, by the fundamental axiom on f , we will have∣∣∣f̃ − f ∣∣∣ ≤ Ahi,f (g̃1, og,1, . . . , g̃m, og,m, . . .) · εmachine-hi

+ Chi,f (g̃1, og,1, . . . , g̃m, og,m, . . .) · ηmachine-hi

+Alo,f (g̃1, og,1, . . . , g̃m, og,m, . . .) ·

(
m∑
i=1

|δg,i|

)
· εmachine-lo

+ Clo-bias,f (g̃1, og,1, . . . , g̃m, og,m, . . .) ·

(
m∑
i=1

|δg,i|

)
· ηmachine-lo-bias(B)

+ Clo,f (g̃1, og,1, . . . , g̃m, og,m, . . .) · ηmachine-lo.

From our analysis above, there exists αi ∈ [−1, 1] such that∣∣∣f̃ − f ∣∣∣ ≤ Ahi,f (g1 + α1D1, og,1, . . . , gm + αmDm, og,m, . . .) · εmachine-hi

+ Chi,f (g1 + α1D1, og,1, . . . , gm + αmDm, og,m, . . .) · ηmachine-hi

+Alo,f (g1 + α1D1, og,1, . . . , gm + αmDm, og,m, . . .) ·

(
m∑
i=1

|δg,i|

)
· εmachine-lo

+ Clo-bias,f (g1 + α1D1, og,1, . . . , gm + αmDm, og,m, . . .) ·

(
m∑
i=1

|δg,i|

)
· ηmachine-lo-bias(B)

+ Clo,f (g1 + α1D1, og,1, . . . , gm + αmDm, og,m, . . .) · ηmachine-lo.
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It follows that∣∣∣f̃ − f ∣∣∣ ≤ ( min
α∈[−1,1]m

Ahi,f (g1 + α1D1, og,1, . . .)

)
· εmachine-hi

+

(
min

α∈[−1,1]m
Chi,f (g1 + α1D1, og,1, . . .)

)
· ηmachine-hi

+

(
min

α∈[−1,1]m
Alo,f (g1 + α1D1, og,1, . . .)

)
·

(
m∑
i=1

|δg,i|

)
· εmachine-lo

+

(
min

α∈[−1,1]m
Clo-bias,f (g1 + α1D1, og,1, . . .)

)
·

(
m∑
i=1

|δg,i|

)
· ηmachine-lo-bias(B)

+

(
min

α∈[−1,1]m
Clo,f (g1 + α1D1, og,1, . . .)

)
· ηmachine-lo.

If we define Ahi,ĥ to be

Ahi,ĥ = min
α∈[−1,1]m

Ahi,f (g1 + α1D1, og,1, . . .),

and similarly for the other functions, then we get∣∣∣f̃ − f ∣∣∣ ≤ Ahi,ĥ · εmachine-hi

+ Chi,ĥ · ηmachine-hi

+Alo,ĥ ·

(
m∑
i=1

|δg,i|

)
· εmachine-lo

+ Clo-bias,ĥ ·

(
m∑
i=1

|δg,i|

)
· ηmachine-lo-bias(B)

+ Clo,ĥ · ηmachine-lo.

Note that Ahi,h must be continuous since it is the maximum of a continuous function over a
bounded domain, and it will be a function of the same parameters as Ahi,g,i. Next, from the
fundamental axiom on gi, we will also have

|δg,i| ≤ Rdelta,g,i ·

(
m∑
i=1

|δx,i|

)
+Rlo-bias,g,i · ηlo-bias(B).

Combining this with our previous expression, it is straightfoward to see that h satisfies the
fundamental axiom of bit centered arithmetic.
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