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Abstract

For any positive integer k, there exist neural networks with Θ(k3) layers, Θ(1) nodes per layer, and
Θ(1) distinct parameters which can not be approximated by networks with O(k) layers unless they are
exponentially large — they must possess Ω(2k) nodes. This result is proved here for a class of nodes
termed semi-algebraic gates which includes the common choices of ReLU, maximum, indicator, and
piecewise polynomial functions, therefore establishing benefits of depth against not just standard
networks with ReLU gates, but also convolutional networks with ReLU and maximization gates,

and boosted decision trees (in this last case with a stronger separation: Ω(2k3

) total tree nodes are
required).

1 Setting and main results

A neural network is a model of real-valued computation defined by a connected directed graph as
follows. Nodes await real numbers on their incoming edges, thereafter computing a function of these
reals and transmitting it along their outgoing edges. Root nodes apply their computation to a vector
provided as input to the network, whereas internal nodes apply their computation to the output of other
nodes. Different nodes may compute different functions, two common choices being the maximization
gate v 7→ maxi vi (where v is the vector of values on incoming edges), and the standard ReLU gate
v 7→ σr(〈a, v〉+b) where σr(z) := max{0, z} is called the ReLU (rectified linear unit), and the parameters
a and b may vary from node to node. Graphs in the present work are acyclic, and there is exactly one
node with no outgoing edges whose computation is the output of the network.

Neural networks distinguish themselves from many other function classes used in machine learning by
possessing multiple layers, meaning the output is the result of composing together an arbitrary number of
(potentially complicated) nonlinear operations; by contrast, the functions computed by boosted decision
stumps and SVMs can be written as neural networks with a constant number of layers.

The purpose of the present work is to show that standard types of networks always gain in represen-
tation power with the addition of layers. Concretely: it is shown that for every positive integer k, there
exist neural networks with Θ(k3) layers, Θ(1) nodes per layer, and Θ(1) distinct parameters which can
not be approximated by networks with O(k) layers and o(2k) nodes.

1.1 Main result

Before stating the main result, a few choices and pieces of notation deserve explanation. First, the target
many-layered function uses standard ReLU gates; this is by no means necessary, and a more general
statement can be found in Theorem 3.13. Secondly, the notion of approximation is the L1 distance:
given two functions f and g, their pointwise disagreement |f(x)− g(x)| is averaged over the cube [0, 1]d.
Here as well, the same proofs allow flexibility (cf. Theorem 3.13). Lastly, the shallower networks used for
approximation use semi-algebraic gates, which generalize the earlier maximization and standard ReLU
gates, and allow for analysis of not just standard networks with ReLU gates, but convolutional networks
with ReLU and maximization gates (Krizhevsky et al., 2012), as well as boosted decision trees; the full
definition of semi-algebraic gates appears in Section 2.
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Theorem 1.1. Let any integer k ≥ 1 and any dimension d ≥ 1 be given. There exists f : Rd → R
computed by a neural network with standard ReLU gates in 2k3 + 6 layers, 3k3 + 9 total nodes, and 4 +d
distinct parameters so that

inf
g∈C

∫
[0,1]d

|f(x)− g(x)|dx ≥ 1

64
,

where C is the union of the following two sets of functions.

• Functions computed by networks of (t, α, β)-semi-algebraic gates in ≤ k layers and ≤ 2k/(tαβ)
nodes. (E.g., as with standard ReLU networks or with convolutional neural networks with standard
ReLU and maximization gates; cf. Section 2.)

• Functions computed by linear combinations of ≤ t decision trees each with ≤ 2k
3

/t nodes. (E.g.,
the function class used by boosted decision trees; cf. Section 2.)

Analogs to Theorem 1.1 for boolean circuits — which have boolean inputs routed through {and, or,not}
gates — have been studied extensively by the circuit complexity community, where they are called depth
hierarchy theorems. The seminal result, due to H̊astad (1986), establishes the inapproximability of the
parity function by shallow circuits (unless their size is exponential). Standard neural networks appear
to have received less study; closest to the present work is an investigation by Eldan and Shamir (2015)
analyzing the case k = 2 when the dimension d is large, showing an exponential separation between
2- and 3-layer networks, a regime not handled by Theorem 1.1. Further bibliographic notes and open
problems may be found in Section 5.

The proof of Theorem 1.1 (and of the more general Theorem 3.13) occupies Section 3. The key
idea is that just a few function compositions (layers) suffice to construct a highly oscillatory function,
whereas function addition (adding nodes but keeping depth fixed) gives a function with few oscillations.
Thereafter, an elementary counting argument suffices to show that low-oscillation functions can not
approximate high-oscillation functions.

1.2 Companion results

Theorem 1.1 only provides the existence of one network (for each k) which can not be approximated by
a network with many fewer layers. It is natural to wonder if there are many such special functions. The
following bound indicates their population is in fact quite modest.

Specifically, the construction behind Theorem 1.1, as elaborated in Theorem 3.13, can be seen as
exhibiting O(2k

3

) points, and a fixed labeling of these points, upon which a shallow network hardly
improves upon random guessing. The forthcoming Theorem 1.2 similarly shows that even on the more
simpler task of fitting O(k9) points, the earlier class of networks is useless on most random labellings.

In order to state the result, a few more definitions are in order. Firstly, for this result, the notion of
neural network is more restrictive. Let a neural net graph G denote not only the graph structure (nodes
and edges), but also an assignment of gate functions to nodes, of edges to the inputs of gates, and an
assignment of free parameters w ∈ Rp to the parameters of the gates. Let N (G) denote the class of
functions obtained by varying the free parameters; this definition is fairly standard, and is discussed in
more detail in Section 2. As a final piece of notation, given a function f : Rd → R, let f̃ : Rd → {0, 1}
denote the corresponding classifier f̃(x) := 1[f(x) ≥ 1/2].

Theorem 1.2. Let any neural net graph G be given with ≤ p parameters in ≤ l layers and ≤ m total
(t, α, β)-semi-algebraic nodes. Then for any δ > 0 and any n ≥ 8pl2 ln(8emtαβp(l+1))+4 ln(1/δ) points
(xi)

n
i=1, with probability ≥ 1− δ over uniform random labels (yi)

n
i=1,

inf
f∈N (G)

1

n

n∑
i=1

1[f̃(xi) 6= yi] ≥
1

4
.

This proof is a direct corollary of the VC dimension of semi-algebraic networks, which in turn can be
proved by a small modification of the VC dimension proof for piecewise polynomial networks (Anthony

2



and Bartlett, 1999, Theorem 8.8). Moreover, the core methodology for VC dimension bounds of neural
networks is due to Warren, whose goal was an analog of Theorem 1.2 for polynomials (Warren, 1968,
Theorem 7).

Lemma 1.3 (Simplification of Lemma 4.2). Let any neural net graph G be given with ≤ p parameters
in ≤ l layers and ≤ m total nodes, each of which is (t, α, β)-semi-algebraic. Then

VC(N (G)) ≤ 6p(l + 1)
(

ln(2p(l + 1)) + ln(8emtα) + l ln(β)
)
.

The proof of Theorem 1.2 and Lemma 1.3 may be found in Section 4. The argument for the VC di-
mension is very close to the argument for Theorem 1.1 that a network with few layers has few oscillations;
see Section 4 for further discussion of this relationship.

2 Semi-algebraic gates and assorted network notation

The definition of a semi-algebraic gate is unfortunately complicated; it is designed to capture a few
standard nodes in a single abstraction without degrading the bounds. Note that the name semi-algebraic
set is standard (Bochnak et al., 1998, Definition 2.1.4), and refers to a set defined by unions and
intersections of polynomial inequalities (and thus the name is somewhat abused here).

Definition 2.1. A function f : Rk → R is (t, α, β)-sa ((t, α, β)-semi-algebraic) if there exist t polyno-
mials (qi)

t
i=1 of degree ≤ α, and m triples (Uj , Lj , pj)

m
j=1 where Uj and Lj are subsets of [t] (where

[t] := {1, . . . , t}) and pj is a polynomial of degree ≤ β, such that

f(v) =

m∑
j=1

pj(v)

∏
i∈Lj

1[qi(v) < 0]

∏
i∈Uj

1[qi(v) ≥ 0]

 .

♦

A notable trait of the definition is that the number of terms m does not need to enter the name as
it does not affect any of the complexity estimates herein (e.g., Theorem 1.1 or Theorem 1.2).

Distinguished special cases of semi-algebraic gates are as follows in Lemma 2.3. The standard piece-
wise polynomial gates generalize the ReLU and have received a fair bit of attention in the theoretical
community (Anthony and Bartlett, 1999, Chapter 8); here a function σ : R → R is (t, α)-poly if R
can be partitioned into ≤ t intervals so that σ is a polynomial of degree ≤ α within each piece. The
maximization and minimization gates have become popular due to their use in convolutional networks
(Krizhevsky et al., 2012), which will be discussed more in Section 2.1. Lastly, decision trees and boosted
decision are practically successful classes usually viewed as competitors to neural networks (Caruana
and Niculescu-Mizil, 2006), and have the following structure.

Definition 2.2. A k-dt (decision tree with k nodes) is defined recursively as follows. If k = 1, it is
a constant function. If k > 1, it first evaluates x 7→ 1[〈a, x〉 − b ≥ 0], and thereafter conditionally
evaluates either a left l-dt or a right r-dt where l+ r < k. A (t, k)-bdt (boosted decision tree) evaluates
x 7→

∑t
i=1 cigi(x) where each ci ∈ R and each gi is a k-dt. ♦

Lemma 2.3 (Example semi-algebraic gates). 1. If σ : R → R is (t, β)-poly and q : Rd → R is
a polynomial of degree α, then the standard piecewise polynomial gate σ ◦ q is (t, β, αβ)-sa. In
particular, the standard ReLU gate v 7→ σr(〈a, v〉+ b) is (1, 1, 1)-sa.

2. Given polynomials (pi)
r
i=1 of degree ≤ α, the standard (r, α)-min and -max gates φmin(v) :=

mini∈[r] pi(v) and φmax(v) := maxi∈[r] qi(v) are (r(r − 1), α, α)-sa.

3. Every k-dt is (k, 1, 0)-sa, and every (t, k)-bdt is (tk, 1, 0).

The proof of Lemma 2.3 is mostly a matter of unwrapping definitions, and is deferred to Appendix A.
Perhaps the only interesting encoding is for the maximization gate (and similarly the minimization gate),
which uses maxi vi =

∑
i vi(

∏
j<i 1[vi > vj ])(

∏
j>i 1[vi ≥ vj ]).
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2.1 Notation for neural networks

A semi-algebraic gate is simply a function from some domain to R, but its role in a neural network is
more complicated as the domain of the function must be partitioned into arguments of three types: the
input x ∈ Rd to the network, the parameter vector w ∈ Rp, and a vector of real numbers coming from
parent nodes.

As a convention, the input x ∈ Rd is only accessed by the root nodes (otherwise “layer” has no mean-
ing). For convenience, let layer 0 denote the input itself: d nodes where node i is the map x 7→ xi. The pa-
rameter vector w ∈ Rp will be made available to all nodes in layers above 0, though they might only use a
subset of it. Specifically, an internal node computes a function f : Rp×Rd → R using parents (f1, . . . , fk)
and a semi-algebraic gate φ : Rp × Rk → R, meaning f(w, x) := φ(w1, . . . , wp, f1(w, x), . . . , fk(w, x)).
Another common practice is to have nodes apply a univariate activation function to an affine mapping
of their parents (as with piecewise polynomial gates in Lemma 2.3), where the weights in the affine
combination are the parameters to the network, and additionally correspond to edges in the graph. It
is permitted for the same parameter to appear multiple times in a network, which explains how the
number of parameters in Theorem 1.1 can be less than the number of edges and nodes. The entire
network computes some function FG : Rp × Rd → R, which is equivalent to the function computed by
the single node with no outgoing edges.

As stated previously, G will denote not just the graph (nodes and edges) underlying a network, but
also an assignment of gates to nodes, and how parameters and parent outputs are plugged into the
gates (i.e., in the preceding paragraph, how to write f via φ). N (G) is the set of functions obtained
by varying w ∈ Rp, and thus N (G) := {FG(w, ·) : w ∈ Rp} where FG is the function defined as
above, corresponding to computation performed by G. The results related to VC dimension, meaning
Theorem 1.2 and Lemma 1.3, will use the class N (G).

Some of the results, for instance Theorem 1.1 and its generalization Theorem 3.13, will let not only
the parameters but also network graph G vary. Let Nd((mi, ti, αi, βi)

l
i=1) denote a network where layer

i has ≤ mi nodes where each is (ti, αi, βi)-sa and the input has dimension d. As a simplification, let
Nd(m, l, t, α, β) denote networks of (t, α, β)-sa gates in ≤ l layers (not including layer 0) each with
≤ m nodes. There are various empirical prescriptions on how to vary the number of nodes per layer;
for instance, convolutional networks typically have an increase between layer 0 and layer 1, followed by
exponential decrease for a few layers, and finally a few layers with the same number of nodes (Fukushima,
1980, LeCun et al., 1998, Krizhevsky et al., 2012).

3 Benefits of depth

The purpose of this section is to prove Theorem 1.1 and its generalization Theorem 3.13 in the following
three steps.

1. Functions with few oscillations poorly approximate functions with many oscillations.

2. Functions computed by networks with few layers must have few oscillations.

3. Functions computed by networks with many layers can have many oscillations.

3.1 Approximation via oscillation counting

The idea behind this first step is depicted at right. Given functions f : R → R and g : R → R (the
multivariate case will come soon), let If and Ig denote partitions of R into intervals so that the classifiers

f̃(x) = 1[f(x) ≥ 1/2] and g̃ are constant within each interval. To formally count oscillations, define the
crossing number Cr(f) of f as Cr(f) = |If | (thus Cr(σr) = 2). If Cr(f) is much larger than Cr(g), then
most piecewise constant regions of g̃ will exhibit many oscillations of f , and thus g poorly approximates
f .
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Lemma 3.1. Let f : R→ R and g : R→ R be given, and take If to denote the partition of R given by

the pieces of f̃ (meaning |If | = Cr(f)). Then

1

Cr(f)

∑
U∈If

1[∀x ∈ U � f̃(x) 6= g̃(x)] ≥ 1

2

(
1− 2

(
Cr(g)

Cr(f)

))
.

f g

Figure 1: f crosses more than g.

The arguably strange form of the left hand side of the
bound in Lemma 3.1 is to accommodate different notions of
distance. For the L1 distance with the Lebesgue measure
as in Theorem 1.1, it does not suffice for f to cross 1/2: it
must be regular, meaning it must cross by an appreciable dis-
tance, and the crossings must be evenly spaced. (It is worth
highlighting that the ReLU easily gives rise to a regular f .)
However, to merely show that f and g give very different
classifiers f̃ and g̃ over an arbitrary measure (as in part of Theorem 3.13), no additional regularity is
needed.

Proof of Lemma 3.1. Let If and Ig respectively denote the sets of intervals corresponding to f̃ and g̃,
and set sf := Cr(f) = |If | and sg := Cr(g) = |Ig|.

For every J ∈ Ig, set XJ := {U ∈ If : U ⊆ XJ}. Fixing any J ∈ Ig, since g̃ is constant on J whereas

f̃ alternates, the number of elements in XJ where g̃ disagrees everywhere with f̃ is |XJ |/2 when |XJ | is
even and at least (|XJ | − 1)/2 when |XJ | is odd, thus at least (|XJ | − 1)/2 in general. As such,

1

sf

∑
U∈If

1[∀x ∈ U � f̃(x) 6= g̃(x)] ≥ 1

sf

∑
J∈Ig

∑
U∈XJ

1[∀x ∈ U � f̃(x) 6= g̃(x)] ≥ 1

sf

∑
J∈Ig

|XJ | − 1

2
. (3.2)

To control this expression, note that every XJ is disjoint, however X := ∪J∈IjXj can be smaller than
If : in particular, it misses intervals U ∈ If whose interior intersects with the boundary of an interval
in Ig. Since there are at most sg − 1 such boundaries,

sf = |If | ≤ sg − 1 + |X| ≤ sg +
∑
J∈Ig

|XJ |,

which rearranges to gives
∑
J∈Ig |XJ | ≥ sf − sg. Combining this with eq. (3.2),

1

sf

∑
U∈If

1[∀x ∈ U � f̃(x) 6= g̃(x)] ≥ 1

2sf
(sf − sg − sg) =

1

2

(
1− 2sg

sf

)
.

3.2 Few layers, few oscillations

As in the preceding section, oscillations of a function f will be counted via the crossing number Cr(f).
Since Cr(·) only handles univariate functions, the multivariate case is handled by first choosing an affine
map h : R→ Rd (meaning h(z) = az + b) and considering Cr(f ◦ h).

Before giving the central upper bounds and sketching their proofs, notice by analogy to polynomials
how compositions and additions vary in their impact upon oscillations. By adding together two poly-
nomials, the resulting polynomial has at most twice as many terms and does not exceed the maximum
degree of either polynomial. On the other hand, composing polynomials, the result has the product of
the degrees and can have more than the product of the terms. As both of these can impact the number
of roots or crossings (e.g., by the Bezout Theorem or Descartes’ Rule of Signs), composition wins the
race to higher oscillations.

Lemma 3.3. Let h : R→ Rd be affine.
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1. Suppose f ∈ Nd((mi, ti, αi, βi)
l
i=1) with mini min{αi, βi} ≥ 1. Setting α := maxi αi, β := maxi βi,

t := maxi ti, m :=
∑
imi, then Cr(f ◦ h) ≤ 2(tmα/l)lβl

2

.

2. Let k-dt f : Rd → R and (t, k)-bdt g : Rd → R be given. Then Cr(f ◦ h) ≤ k and Cr(g ◦ h) ≤ tk.

Lemma 3.3 shows the key tradeoff: the number of layers is in the exponent, while the number of
nodes is in the base.

Rather than directly controlling Cr(f ◦ h), the proofs will first show f ◦ h is (t, α)-poly, which
immediately bounds Cr(f ◦ h) as follows.

Lemma 3.4. If f : R→ R is (t, α)-poly, then Cr(f) ≤ t(1 + α).

Proof. The polynomial in each piece has at most α roots, which thus divides each piece into ≤ 1 + α
further pieces within which f̃ is constant.

A second technical lemma is needed to reason about combinations of partitions defined by (t, α, β)-sa
and (t, α)-poly functions.

Lemma 3.5. Let k partitions (Ai)
k
i=1 of R each into at most t intervals be given, and set A := ∪iAi.

Then there exists a partition B of R of size at most kt so that every interval expressible as a union of
intersections of elements of A is a union of elements of B.

Figure 2: Three partitions.

The proof is somewhat painful owing to the fact that there is no
convention on the structure of the intervals in the partitions, namely
which ends are closed and which are open, and is thus deferred to
Appendix A. The principle of the proof is elementary, and is depicted
at right: given a collection of partitions, an intersection of constituent
intervals must share endpoints with intervals in in the intersection,
thus the total number of intervals bounds the total number of possible
intersections. Arguably, this failure to increase complexity in the face
of arbitrary intersections is why semi-algebraic gates do not care about
the number of terms in their definition.

Recall that (t, α, β)-sa means there is a set of t polynomials of degree
at most α which form the regions defining the function by intersecting simpler regions x 7→ 1[q(x) ≥ 0]
and x 7→ 1[q(x) < 0]. As such, in order to analyze semi-algebraic gates composed with piecewise
polynomial gates, consider first the behavior of these predicate polynomials.

Lemma 3.6. Suppose f : Rk → R is polynomial with degree ≤ α and (gi)
k
i=1 are each (t, γ)-poly. Then

h(x) := f(g1(x), . . . , gk(x)) is (tk, αγ)-poly, and the partition defining h is a refinement of the partitions
for each gi (in particular, each gi is a fixed polynomial (of degree ≤ γ) within the ≤ tk pieces defining
h).

Proof. By Lemma 3.5, there exists a partition of R into ≤ tk intervals which refines the partitions
defining each gi. Since f is a polynomial with degree ≤ α, then within each of these intervals, its
composition with (g1, . . . , gk) gives a polynomial of degree ≤ αγ.

This gives the following complexity bound for composing (s, α, β)-sa and (t, γ)-poly gates.

Lemma 3.7. Suppose f : Rk → R is (s, α, β)-sa and (g1, . . . , gk) are (t, γ)-poly. Then h(x) :=
f(g1(x), . . . , gk(x)) is (stkmax{1, αγ}, βγ)-poly.

Proof. By definition, f is polynomial in regions defined by intersections of the predicates Ui(x) =
1[qi(x) ≥ 0] and Li(x) = 1[qi(x) < 0]. By Lemma 3.6, qi(g1, . . . , gk) is (tk, αγ)-poly, thus Ui and Li
together define a partition of R which has Cr(x 7→ qi(g1(x), . . . , gk(x))) pieces, which by Lemma 3.4 has
cardinality at most tkmax{1, αγ} and refines the partitions for each gi. By Lemma 3.5, these partitions
across all predicate polynomials (qi)

s
i=1 can be refined into a single partition of size ≤ stkmax{1, αγ},

and which thus also refines the partitions defined by (g1, . . . , gk). Thanks to these refinements, h over
any element U of this final partition is a fixed polynomial pU (g1, . . . , gk) of degree ≤ βγ, meaning h is
(stkmax{1, αγ}, βγ)-poly.
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The proof of Lemma 3.3 now follows by Lemma 3.7. In particular, for semi-algebraic networks, the
proof is an induction over layers, establishing node j is (tj , αj)-poly (for appropriate (tj , αj)).

3.3 Many layers, many oscillations

The idea behind this construction is as follows. Consider any continuous function f : [0, 1]→ [0, 1] which
is a generalization of a triangle wave with a single peak: f(0) = f(1) = 0, and there is some a ∈ (0, 1)
with f(a) = 1, and additionally f strictly increases along [0, a] and strictly decreases along [a, 1].

Now consider the effect of the composition f ◦ f = f2. Along [0, a], this is a stretched copy of f ,
since f(f(a)) = f(1) = 0 = f(0) = f(f(0)) and moreover f is a bijection between [0, a] and [0, 1] (when
restricted to [0, a]). The same reasoning applies to f2 along [a, 1], meaning f2 is a function with two
peaks. Iterating this argument implies fk is a function with 2k−1 peaks; the following definition and
lemmas formalize this reasoning.

Definition 3.8. f is (t, [a, b])-triangle when it is continuous along [a, b], and [a, b] may be divided into
2t intervals [ai, ai+1] with a1 = a and a2t+1 = b, f(ai) = f(ai+2) whenever 1 ≤ i ≤ 2t − 1, f(a1) = 0,
f(a2) = 1, f is strictly increasing along odd-numbered intervals (those starting from ai with i odd), and
strictly decreasing along even-numbered intervals. ♦

Lemma 3.9. If f is (s, [0, 1])-triangle and g is (t, [0, 1])-triangle, then f ◦ g is (2st, [0, 1])-triangle.

Proof. Since g([0, 1]) = [0, 1] and f and g are continuous along [0, 1], then f ◦ g is continuous along
[0, 1]. In the remaining analysis, let (a1, . . . , a2s+1) and (c1, . . . , c2t+1) respectively denote the interval
boundaries for f and g.

Now consider any interval [cj , cj+1] where j is odd, meaning the restriction gj : [cj , cj+1]→ [0, 1] of g
to [cj , cj+1] is strictly increasing. It will be shown that f ◦ gj is (s, [cj , cj+1])-triangle, and an analogous
proof holds for the strictly decreasing restriction gj+1 : [cj+1, cj+2]→ [0, 1], whereby it follows that f ◦ g
is (2st, [0, 1]) by considering all choices of j.

To this end, note for any i ∈ {1, . . . , 2s+ 1} that g−1j (ai) exists and is unique, thus set a′i := g−1j (ai).

By this choice, for odd i it holds that f(gj(a
′
i)) = f(gj(g

−1
j (ai))) = f(ai) = f(a1) = 0 and f ◦ gj is

strictly increasing along [a′i, a
′
i+1] (since gj is strictly increasing everywhere and f is strictly increasing

along [gj(a
′
i), gj(a

′
i+1)] = [ai, ai+1]), and similarly even i has f(gj(a

′
i)) = f(a2) = 1 and f ◦ gj is strictly

decreasing along [a′i, a
′
i+1].

Corollary 3.10. If f ∈ N1(m, l, t, α, β) is (t, [0, 1])-triangle with p distinct parameters, then fk ∈
N1(m, kl, t, α, β) is (2k−1tk, [0, 1])-triangle with p distinct parameters and Cr(fk) = 2k + 1.

Proof. It suffices to perform k − 1 applications of Lemma 3.9.

Next, note the following examples of triangle functions.

Lemma 3.11. The following functions are (1, [0, 1])-triangle.

1. f(z) := σr(2σr(z)− 4σr(z − 1/2)) ∈ N1(2, 1, 1, 1, 1).

2. g(z) := min{σr(2z), σr(2− 2z)} ∈ N1(2, 1, 2, 1, 1).

3. h(z) := 4z(1− z) ∈ N1(1, 1, 0, 2, 0). Cf. Schmitt (2000).

Lastly, consider the first example f(z) = σr(2σr(z) − 4(σr(z − 1/2))) = min{σr(2z), σr(2 − 2z)},
whose graph linearly interpolates (in R2) between (0, 0), (1/2, 1), and (1, 0). Consequently, f ◦ f along
[0, 1/2] linear interpolates between (0, 0), (1/4, 1), and (1/2, 1), and f ◦f is analogous on [1/2, 1], meaning
it has produced two copies of f and then shrunken them horizontally by a factor of 2. This process
repeats, meaning fk has 2k−1 copies of f , and grants the regularity needed to use the Lebesgue measure
in Theorem 1.1.
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Lemma 3.12. Set f(x) := σr(2σr(x) − 4σr(x − 1/2)) ∈ N1(2, 1, 1, 1, 1) (cf. Lemma 3.11). Let real
x ∈ [0, 1] and positive integer k be given, and choose the unique nonnegative integer ik ∈ {0, . . . , 2k−1}
and real xk ∈ [0, 1) so that x = (ik + xk)21−k. Then

fk(x) =

{
2xk when 0 ≤ xk ≤ 1/2,

2(1− xk) when 1/2 < xk < 1.

3.4 Proof of Theorem 1.1

The proof of Theorem 1.1 now follows: Lemma 3.12 shows that a many-layered ReLU network can give
rise to a highly oscillatory and regular function fk, Lemma 3.3 shows that few-layered networks and
(boosted) decision trees give rise to functions with few oscillations, and lastly Lemma 3.1 shows how to
combine these into an inapproximability result.

In this last piece, the proof averages over the possible offsets y ∈ Rd−1 and considers univariate prob-
lems after composing networks with the affine map hy(z) := (z, y). In this way, the result carries some
resemblance to the random projection technique used in depth hierarchy theorems for boolean functions
(H̊astad, 1986, Rossman et al., 2015), as well as earlier techniques on complexities of multivariate sets
(Vitushkin, 1955, 1959), albeit in an extremely primitive form (considering variations along only one
dimension).

Proof of Theorem 1.1. Set h(z) := σr(2σr(z) − 4σr(z − 1/2)) (cf. Lemma 3.11), and define f0(z) :=

hk
3+2(z) and f : Rd → R as f(x) = f0(x1). Let If denote the pieces of f̃0, meaning |If | = Cr(f0), and

Corollary 3.10 grants Cr(f0) = 2k
3+3+1. Moreover, by Lemma 3.12, for any U ∈ If , f0−1/2 is a triangle

with height 1/2 and base either 2−k−1 (when 0 ∈ U or 1 ∈ U) or 2−k, whereby
∫
U
|f0(x) − 1/2|dx ≥

2−k−1/4 ≥ |If |/16 (which has thus made use of the special regularity of h).
Now for any y ∈ Rd−1 define the map py : R→ Rd as py(z) := (z, y). If g is a semi-algebraic network

with ≤ k layers and m ≤ 2k/(tαβ) total nodes, then Lemma 3.3 grants Cr(g ◦ py) ≤ 2(tmα)kβk
2 ≤

2(tmαβ)k
2 ≤ 2k

3+1. Otherwise, g is (t, 2k
3

/t)-bdt, whereby Lemma 3.3 gives Cr(g◦py) ≤ t2k3/t ≤ 2k
3+1

once again.
By Lemma 3.1, for any y ∈ Rd−1, Cr(f ◦ py) = Cr(f0), and∫

[0,1]

|f(py(z))− g(py(z))|dz =
∑
U∈If

∫
U

|(f ◦ py)(z)− (g ◦ py)(z)|dz

≥
∑
U∈If

∫
U

|(f ◦ py)(z)− 1/2|1[∀z ∈ U � ˜(f ◦ py)(z) 6= ˜(g ◦ py)(z)|]dz

≥ 1

16|If |
∑
U∈If

1[∀z ∈ U � ˜(f ◦ py)(z) 6= ˜(g ◦ py)(z)|]dz

≥ 1

32

(
1− 2Cr(g ◦ py)

Cr(f ◦ py)

)
≥ 1

32

(
1− 2(2k

3+1)

2k3+3

)
≥ 1

64
.

To finish, ∫
[0,1]d

|f(x)− g(x)|dx =

∫
[0,1]d−1

∫
[0,1]

|(f ◦ py)(z)− (g ◦ py)(z)|dzdy ≥ 1

64
.

Using nearly the same proof, but giving up on continuous uniform measure, it is possible to handle
other distances and more flexible target functions.
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Theorem 3.13. Let integer k ≥ 1 and function f : R → R be given where f is (1, [0, 1])-triangle, and
define h : Rd → R as h(x) := fk(x1). For every y ∈ Rd−1, define the affine function py(z) := (z, y).
Then there exist Borel probability measures µ and ν over [0, 1]d where µ is discrete uniform on 2k + 1
points and µ is continuous and positive on exactly [0, 1]d so that every g : Rd → R with Cr(g ◦py) ≤ 2k−2

for every y ∈ Rd−1 satisfies∫
|h− g|dµ ≥ 1

32
,

∫
|h̃− g̃|dµ ≥ 1

8
,

∫
|h− g|dν ≥ 1

8
,

∫
|h̃− g̃|dν ≥ 1

4
.

As a closing curiosity, when instantiated for polynomials (using f(z) = 4z(1− z) from Lemma 3.11),
Theorem 3.13 implies the following.

Corollary 3.14. For any integer k ≥ 1, there exists a polynomial h : Rd → R with degree 2k and a
corresponding continuous measure µ which is positive everywhere over [0, 1]d so that every polynomial
g : Rd → R of degree ≤ 2k−3 satisfies

∫
|h− g|dµ ≥ 1/32.

4 Limitations of depth

Theorem 3.13 can be taken to say: there exists a labeling of Θ(2k
3

) points which is realizable by a
network of depth and size Θ(k3), but can not be approximated by networks with depth k and size o(2k).
On the other hand, this section will sketch the proof of Theorem 1.2, which implies that these Θ(k3)
depth networks realize relatively few different labellings. The proof is a quick consequence of the VC
dimension of semi-algebraic networks (cf. Lemma 1.3) and the following fact, where Sh(·) is used to
denote the growth function (Anthony and Bartlett, 1999, Chapter 3).

Lemma 4.1. Let any function class F and any distinct points (xi)
n
i=1 be given. Then with probability

at least 1− δ over a uniform random draw of labels (yi)
n
i=1 (with yi ∈ {−1,+1}),

inf
f∈F

1

n

n∑
i=1

1[f̃(xi) 6= yi] ≥
1

2

(
1−

√
ln(Sh(F ;n)) + ln(1/δ)

2n

)
.

The proof of the preceding result is similar to proofs of the Gilbert-Varshamov packing bound via
Hoeffding’s inequality (Duchi, 2016, Lemma 13.5). Note that a similar result was used by Warren to
prove rates of approximation of continuous functions by polynomials, but without invoking Hoeffding’s
inequality (Warren, 1968, Theorem 7).

The remaining task is to control the VC dimension of semi-algebraic networks. To this end, note
the following generalization of Lemma 1.3, which further provides that semi-algebraic networks compute
functions which are polynomial when restricted to certain polynomial regions.

Lemma 4.2. Let neural network graph G be given with ≤ p parameters, ≤ l layers, and ≤ m total
nodes, and suppose every gate is (t, α, β)-sa. Then

VC(N (G)) ≤ 6p(l + 1)
(

ln(2p(l + 1)) + ln(8emtα) + l ln(β)
)
.

Additionally, given any n ≥ p data points, there exists a partition S of Rp where each S ∈ S is an
intersection of predicates 1[q�0] with � ∈ {<,≥} and q has degree ≤ αβl−1, such that FG(xi, ·) restricted
to each S ∈ S is a fixed polynomial of degree ≤ βl for every example xi, and

|S| ≤
(
8enmtαβl

)pl
, Sh(N (G);n) ≤

(
8enmtαβl

)p(l+1)
.

The proof follows the same basic structure of the VC bound for networks with piecewise polynomial
activation functions (Anthony and Bartlett, 1999, Theorem 8.8). The slightly modified proof here is also
very similar to the proof of Lemma 3.3, performing an induction up through the layers of the network,
arguing that each node computes a polynomial after restricting attention to some range of parameters.
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The proof of Lemma 4.2 manages to be multivariate (unlike Lemma 3.3), though this requires arguments
due to Warren (1968) which are significantly more complicated than those of Lemma 3.3 (without leading
to a strengthening of Theorem 1.1).

One minor departure from the VC dimension proof of piecewise polynomial networks (cf. (Anthony
and Bartlett, 1999, Theorem 8.8)) is the following lemma, which is used to track the number of regions
with the more complicated semi-algebraic networks. Despite this generalization, the VC dimension
bound is basically the same as for piecewise polynomial networks.

Lemma 4.3. Let a set of polynomials Q be given where each Q 3 q : Rp → R has degree ≤ α. Define
an initial family S0 of subsets of Rp as S0 :=

{
{a ∈ Rp : q(a) � 0} : q ∈ Q, � ∈ {<,≥}

}
. Then the

collection S of all nonempty intersections of elements of S0 satisfies |S| ≤ 2
(

4e|Q|α
p

)p
.

5 Bibliographic notes and open problems

Arguably the first approximation theorem of a big class by a smaller one is the Weierstrass Approxima-
tion Theorem, which states that polynomials uniformly approximate continuous functions over compact
sets (Weierstrass, 1885). Refining this, Kolmogorov (1936) gave a bound on how well subspaces of
functions can approximate continuous functions, and Vitushkin (1955, 1959) showed a similar bound for
approximation by polynomials in terms of the polynomial degrees, dimension, and modulus of continuity
of the target function. Warren (1968) then gave an alternate proof and generalization of this result, in
the process effectively proving the VC dimension of polynomials (developing tools still used to prove
the VC dimension of neural networks (Anthony and Bartlett, 1999, Chapters 7-8)), and producing an
analog to Theorem 1.2 for polynomials.

The preceding results, however, focused on separating large classes (e.g., continuous functions of
bounded modulus) from small classes (polynomials of bounded degree). Aiming to refine this, depth
hierarchy theorems in circuit complexity separated circuits of a certain depth from circuits of a slightly
smaller depth. As mentioned in Section 1, the seminal result here is due to H̊astad (1986). For ar-
chitectures closer to neural networks, sum-product networks (summation and product nodes) have been
analyzed by Bengio and Delalleau (2011) and more recently Martens and Medabalimi (2015), and net-
works of linear threshold functions in 2 and 3 layers by Kane and Williams (2015); note that both
polynomial gates (as in sum-product networks) and linear threshold gates are semi-algebraic gates.
Most closely to the present work1, Eldan and Shamir (2015) analyze 2- and 3-layer networks with gen-
eral activation functions composed with affine mappings, showing separations which are exponential in
the input dimension. Due to this result and also recent advances in circuit complexity (Rossman et al.,
2015), it is natural to suppose Theorem 1.1 can be strengthened to separating k and k+1 layer networks
when dimension d is large; however, none of the earlier works give a tight sense of the behavior as d ↓ 1.

The triangle wave target functions considered here (e.g., cf. Lemma 3.11) have appeared in various
forms throughout the literature. General properties of piecewise affine highly oscillating functions were
investigated by Szymanski and McCane and Montúfar et al. (2014). Also, Schmitt (2000) investigated
the map z 7→ 4z(1− z) (as in Lemma 3.11) to show that sigmoidal networks can not approximate high
degree polynomials via an analysis similar to the one here, however looseness in the VC bounds for
sigmoidal networks prevented exponential separations and depth hierarchies.

A tantalizing direction for future work is to characterize not just one difficult function (e.g., triangle
functions as in Lemma 3.11), but many, or even all functions which are not well-approximated by smaller
depths. Arguably, this direction could have value in machine learning, as discovery of such underlying
structure could lead to algorithms to recover it. As a trivial example of the sort of structure which
could arise, notice that composing the ReLU triangle function with any symmetric single will produce
repetitions of it.

Proposition 5.1. Set f(z) := σr(2σr(z)−4σr(z−1/2)) (cf. Lemma 3.11), and let any g : [0, 1]→ [0, 1]
be given with g(z) = g(1 − z). Then h := g ◦ fk satisfies h(x) = h(x + i2k) = g(x2k) for every real

1Excluding (Telgarsky, 2015), which is a vastly simplified account of the present work.
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x ∈ [0, 2−k] and integer i ∈ {0, . . . , 2−k − 1}; in other words, h is 2k repetitions of g with graph scaled
horizontally and uniformly to fit within [0, 1]2.
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A Deferred proofs

This appendix collects various proofs omitted from the main text.

A.1 Deferred proofs from Section 2

The following mechanical proof shows that standard piecewise polynomial gates, maximization/minimization
gates, and decision trees are all semi-algebraic gates.

Proof of Lemma 2.3. 1. To start, since σ : R→ R is piecewise polynomial, σ ◦ q can be written

σ(q(z)) := p1(q(z))1[q(z) �1 b1] +

t−1∑
i=2

pi(q(z))1[−q(z) ∗i−1 −bi−1]1[q(z) �i bi]

+ pt(q(z))1[−q(z) ∗t −bt]

where for each i ∈ [t], pi has degree ≤ β, �i ∈ {<,≤}, ∗i = “ < ” when �i = “ ≤ ” and otherwise
∗i = “ ≤ ”, and bi ∈ R. As such, setting qi(z) := q(z)−b1 whenever �i = “ < ” and qi(z) := bi−q(z)
otherwise, it follows that σ ◦ q is (t, β, αβ)-sa.

2. Since mini∈[r] xi = −maxi∈[r]−xi, it suffices to handle the maximum case, which has the form

φmax(v) =

d∑
i=1

pi(v)

∏
j<i

1[pi(v) > pj(v)]

∏
j>i

1[pi(v) ≥ pj(v)]

 .

Constructing polynomials qi,j = pj − pi when j < i and qi,j = pi − pj when j > i, it follows that
φmax is (r(r − 1), α, α)-sa.

3. First consider a k-dt f , wherein the proof follows by induction on tree size. In the base case k = 1,
f is constant. Otherwise, there exist functions fl and fr which are respectively l- and r-dt with

12



l + r < k, and additionally an affine function qf so that

f(x) = fl(x)1[qf (x) < 0] + fr(x)1[qf (x) ≥ 0]

=

ml∑
j=1

p
(l)
j (v)1[qf (x) < 0]

 ∏
i∈L(l)

j

1[q
(l)
i (v) < 0]


 ∏
i∈U(l)

j

1[q
(l)
i (v) ≥ 0]


+

mr∑
j=1

p
(r)
j (v)1[qf (x) ≥ 0]

 ∏
i∈L(r)

j

1[q
(r)
i (v) < 0]


 ∏
i∈U(r)

j

1[q
(r)
i (v) ≥ 0]

 .

where the last step expanded the semi-algebraic forms of fl and fr. As such, by combining the sets
of predicate polynomials for fl and fr together with {qf} (where the former two have cardinalities
≤ l and ≤ r by the inductive hypothesis), and unioning together the triples for fl and fr but
extending the triples to include 1[qf < 0] for triples in fl and 1[qf ≥ 0] for triples in fr, it follows
by construction that f is (k, 1, 0)-semi-algebraic.

Now consider a (t, k)-bdt g. By the preceding expansion, each individual tree fi is (k, 1, 0)-sa, thus
their sum is (tk, 1, 0) by unioning together the sets of polynomials, triples, and adding together
the expansions.

A.2 Deferred proofs from Section 3

The first proof shows that a collection of partitions may be refined into a single partition whose size is at
most the total number of intervals across all partitions. As discussed in the text, while the proof has a
simple idea (one need only consider boundaries of intervals across all partitions), it is somewhat painful
since there is not consistent rule for whether specific endpoints endpoints of intervals are open or closed.

Proof of Lemma 3.5. If k = 1, then the result follows with B = A = A1 (since all intersections are
empty), thus suppose k ≥ 2. Let {a1, . . . , aq} denote the set of distinct boundaries of intervals of A,
and iteratively construct the partition B as follows, where the construction will maintain that Bj is a
partition whose boundary points are {a1, . . . aj}. For the base case, set B0 := {R}. Thereafter, for every
i ∈ [q], consider boundary point ai; since the boundary points are distinct, there must exist a single
interval U ∈ Bi−1 with ai ∈ U . Bi will be formed from Bi−1 by refining U in one of the following two
ways.

• Consider the case that each partition Al which contains the boundary point ai has exactly two
intervals meeting at ai and moreover the closedness properties are the same, meaning either ai is
contained in the interval which ends at ai, or it is contained in the interval which starts at ai. In
this case, partition U into two intervals so that the treatment of the boundary is the same as those
Al’s with a boundary at ai.

• Otherwise, it is either the case that some Al have ai contained in the interval ending at ai whereas
others have it contained in the interval starting at ai, or simply some Al have three intervals
meeting at ai: namely, the singleton interval [al, al] as well as two intervals not containing al. In
this case, partition U into three intervals: one ending at ai (but not containing it), the singleton
interval [ai, ai], and an interval starting at ai (but not containing it).

(These cases may also be described in a unified way: consider all intervals of A which have ai as an
endpoint, extend such intervals of positive length to have infinite length while keeping endpoint ai and
the side it falls on, and then refine U by intersecting it with all of these intervals, which as above results
in either 2 or 3 intervals.)

Note that the construction never introduces more intervals at a boundary point than exist in A, thus
|B| ≤ |A| = kt.
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It remains to be shown that a union of intersections of elements of A is a union of elements of B. Note
that it suffices to show that intersections of elements of A are unions of elements of B, since thereafter
these encodings can be used to express unions of intersections of A as unions of B. As such, consider
any intersection U of elements of A; there is nothing to show if U is empty, thus suppose it is nonempty.
In this case, it must also be an interval (e.g., since intersections of convex sets are convex), and its
endpoints must coincide with endpoints of A. Moreover, if the left endpoint of U is open, then U must
be formed from an intersection which includes an interval with the same open left endpoint, thus there
exists such an interval in A, and by the above construction of B, there also exists an interval with such
an open left endpoint in B; the same argument similarly handles the case of closed left endpoints, as
well as open and closed right endpoints, namely giving elements in B which match these traits. Let ar
and as denote these endpoints. By the above construction of B, intervals with endpoints {aj , aj+1} for
j ∈ {r, . . . , s − 1} will be included in B, and since B is a partition, the union of these elements will be
exactly U . Since U was an arbitrary intersection of elements of A, the proof is complete.

Next, the tools of Section 3.2 (culminating in the composition rule for semi-algebraic gates (Lemma 3.7))
are used to show crossing number bounds on semi-algebraic networks and boosted decision trees.

Proof of Lemma 3.3. 1. This proof first shows f ◦ h is (tiαi
∏
j≤i−1 tjαjβ

i−j+1
j kj ,

∏
j≤i βj)-poly, and

then relaxes this expression and applies Lemma 3.4 to obtain the desired bound.

First consider the case d = 1 and h is the identity map, thus f ◦ h = f . For convenience, set

Ai :=
∏
j≤i

αj , Bi :=
∏
j≤i

βj , Ci :=
∏
j≤i

βi−j+1
j =

∏
j≤i

Bj , Mi :=
∏
j≤i

mj , Ti :=
∏
j≤i

tj .

The proof proceeds by induction on the layers of f , showing that each node in layer i is (TiAiCi−1Mi−1, Bi)-
poly.

For convenience, first consider layer i = 0 of the inputs themselves: here, node i outputs the ith

coordinate of the input, and is thus affine and (1, 1)-poly. Next consider layer i > 0, where the
inductive hypothesis grants that each node in layer i−1 is (Ti−1Ai−1Ci−2Mi−2, Bi−1)-poly. Conse-
quently, since any node in layer i is (ti, αi, βi)-sa, Lemma 3.7 grants it is also (tiTi−1Ai−1Ci−2Mi−2mi−1αiBi−1, βiBi−1)-
poly as desired.

Next, consider the general case d ≥ 1 and h : R→ Rd is an affine map. Since every coordinate of
h is affine (and thus (1, 1)-poly), composing h with every polynomial in the semi-algebraic gates of
layer 1 gives a function g ∈ N1((mi, ti, αi, βi)

l
i=1) which is equal to f◦h everywhere and whose gates

are of the same semi-algebraic complexity. As such, the result follows by applying the preceding
analysis to g.

Lastly, the simplified terms give f ◦ h is ((tα)lβl(l−1)/2
∏
j≤l−1mj , β

l(l+1)/2)-poly. Since ln(·) is
strictly increasing and concave and ml = 1,

ln

 ∏
j≤l−1

mj

 = ln

∏
j≤l

mj

 =
∑
j≤l

ln(mj) ≤ l ln(m/l) = ln((m/l)l).

It follows that f◦h is ((tmα/l)lβl(l−1)/2, βl(l+1)/2)-poly, whereby the crossing number bound follows
by Lemma 3.4.

2. Given any k-dt f , the affine function evaluated at each predicate may be composed with h to yield
another affine function, thus f ◦ h : R → R is still a k-dt, and thus (k, 1, 0)-sa by Lemma 2.3. As
such, by Lemma 3.7 (with g1(z) = z as the identity map), f ◦h is (k, 0)-poly. (Invoking Lemma 3.7
without massaging in h introduces a factor d.) Similarly, for a (t, k)-bdt g, g ◦h : R→ R is another
(t, k)-bdt after pushing h into the predicates of the constituent trees, thus Lemma 2.3 grants g ◦ h
is (tk, 1, 0)-sa, and Lemma 3.7 grants it is (tk, 0)-poly. The desired crossing number bounds follow
by applying Lemma 3.4.
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Next, elementary computations verify that the three functions listed in Lemma 3.11 are indeed
(1, [0, 1])-triangle.

Proof of Lemma 3.11. 1-2. By inspection, f(0) = f(1) = 0 and f(1/2) = 1. Moreover, for x ∈ [0, 1/2],
f(x) = 2x meaning f is increasing, and x ∈ [1/2, 1] means f(x) = 2(1−x), meaning f is decreasing.
Lastly, the properties of g follow since f = g.

3. By inspection, h(0) = h(1) = 0 and h(1/2) = 1. Moreover h is a quadratic, thus can cross 0 at most
twice, and moreover 1/2 is the unique critical point (since g′ has degree 1), thus g is increasing on
[0, 1/2] and decreasing on [1/2, 1].

In the case of the ReLU (1, [0, 1])-triangle function f given in Lemma 3.11, the exact form of fk

may be established as follows. (Recall that this refined form allows for the use of Lebesgue measure in
Theorem 1.1, and also the repetition statement in Proposition 5.1.)

Proof of Lemma 3.12. The proof proceeds by induction on the number of compositions l. For the base
case l = 1,

f1(x) = f(x) =


2x when x ∈ [0, 1/2],

2(1− x) when x ∈ (1/2, 1],

0 otherwise.

For the inductive step, first note for any x ∈ [0, 1/2], by symmetry of f l around 1/2 (i.e., f l(x) = f l(1−x)
by the inductive hypothesis), and by the above explicit form of f1,

f l+1(x) = f l(f(x)) = f l(2x) = f l(1− 2x) = f l(f(1/2− x)) = f l(f(x+ 1/2)) = f l+1(x+ 1/2),

meaning the case x ∈ (1/2, 1] is implied by the case x ∈ [0, 1/2]. Since the unique nonnegative integer
il+1 and real xl+1 ∈ [0, 1) satisfy 2x = 2(il+1 + xl+1)2−l−1 = (il+1 + xl+1)2−l, the inductive hypothesis
grants

(f l ◦ f)(x) = f l(2x) =

{
2xl+1 when 0 ≤ xl+1 ≤ 1/2,

2(1− xl+1) when 1/2 < xl+1 < 1,

which completes the proof.

To close the deferred proofs of Section 3, note the slightly more general form of Theorem 1.1 (and
the incidental Corollary 3.14 about polynomials) which does not imply Theorem 1.1 since the con-
structed measure is not the Lebesgue measure even for the ReLU-based (1, [0, 1])-triangle function from
Lemma 3.11.

Proof of Theorem 3.13. First note some general properties of fk. By Corollary 3.10, fk is (2k−1, [0, 1])-
triangle, which means there exist s := 2k + 1 points (zi)

s
i=1 so that fk(zi) = 1[i is odd], and moreover

fk is continuous and equal to 1/2 at exactly 2k points (by the strict increasing/decreasing part of the
triangle wave definition), which is a finite set of points and thus has Lebesgue measure zero. Taking
py : R → Rd to be the map py(z) = (z, y) where y ∈ Rd−1, then (h ◦ py)(z) = h((z, y)) = fk(z), thus

letting I denote the 2k pieces within which f̃k is constant, it follows that h̃ ◦ py is constant within the
same set of pieces and thus Cr(h ◦ py) = s.

Now consider the discrete case, where ν denotes the uniform measure over the s points (xi)
s
i=1 defined

as xi := p0(zi) ∈ Rd. Further consider the two types of distance.
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• Since zi < zi+1 and f̃k(zi) 6= f̃k(zi+1), then taking (Ui)
s
i=1 to denote the intervals of I sorted by

their left endpoint, zi ∈ Ui for i ∈ [s]. By Lemma 3.1,∫
|h̃− g̃|dν =

1

s

s∑
i=1

|h̃(xi)− g̃(xi)| =
1

s

s∑
i=1

|f̃k(zi)− g̃ ◦ p0(zi)|

≥ 1

s

s∑
i=1

1[∀z ∈ Ui � f̃k(z) 6= g̃ ◦ p0(z)]

≥ 1

2

(
1− 2

(
2k−2

s

))
≥ 1

4
.

• Since fk(zi) ∈ {0, 1}, then f̃k(zi) 6= g̃(xi) implies |fk(zi) − g(xi)| ≥ 1/2, thus
∫
[0,1]d

|h − g|dν ≥∫
[0,1]d

|h̃− g̃|dν/2 ≥ 1/8.

Construct the continuous measure µ as follows, starting with the construction of a univariate measure
µ0. Since fk is continuous, there exists a δ ∈ (0,mini∈[s−1] |zi − zi+1|/2) so that |fk(z)− fk(zi)| ≤ 1/4
for any i ∈ [s] and z with |z − zi| ≤ δ. As such, let µ0 denote the probability measure which places half
of its mass uniformly on these s balls of radius δ (which must be disjoint since fk alternates between
0 and 1 along (zi)

s
i=1), and half of its mass uniformly on the remaining subset of [0, 1]. Finally, extend

this to a probability measure µ on [0, 1]d uniformly, meaning µ is the product of µ0 and the measure µ1

which is uniform over [0, 1]d−1. Now consider the two types of distances.

• By Lemma 3.1,∫
|h̃− g̃|dµ(x) =

∫∫
|f̃k(py(z))− g̃(py(z))|dµ0(z)dµ1(y)

=

∫ ∑
U∈I

∫
1[z ∈ U ∧ f̃k(z)) 6= g̃(py(z))]dµ0(z)dµ1(y)

≥
∫

1

2s

∑
U∈I

1[∀z ∈ U � f̃k(z)) 6= g̃ ◦ py(z)]dµ1(y)

≥ 1

4

(
1− 2

(
2k−2

s

))
≥ 1

8
.

• For any y ∈ Rd−1 and Ui ∈ I (with corresponding zi ∈ Ui), if f̃k(z) 6= g̃ ◦ py(z) for every z ∈ Ui,
then∫
Ui

|fk(z)− g(py(z))|dµ0(z) ≥
∫
|z−zi|≤δ

|fk(z)− 1/2|dµ0(z) ≥ 1

4
µ0({z ∈ Ui : |z − zi| ≤ δ}) ≥

1

8s
.

By Lemma 3.1,∫
|h− g|dµ(x) =

∫∫
|h(py(z))− g(py(z))|dµ0(z)dµ1(y)

≥
∫ ∑

U∈I
1[∀z ∈ U � f̃k(z) 6= g̃(py(z))]

∫
U

|fk(z)− g(py(z))|dµ0(z)dµ1(y)

≥
∫

1

8s

∑
U∈I

1[∀z ∈ U � f̃k(z) 6= g̃ ◦ py(z)]dµ1(y)

≥ 1

16

(
1− 2

(
2k−2

s

))
≥ 1

32
.
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Proof of Corollary 3.14. Set f(z) = 4z(1 − z), which by Lemma 3.11 is (1, [0, 1])-triangle, thus fk is
(2k−1, [0, 1])-triangle with Cr(fk) = 2k + 1 by Corollary 3.10, and fk has degree 2k directly; thus set
h(x) = fk(x1). Next, for any polynomial g : Rd → R of degree ≤ 2k−3, g ◦ py : R → R is still a
polynomial of degree ≤ 2k−3 for every y ∈ Rd−1 (where py(z) = (z, y) as in Theorem 3.13), and so
Lemma 3.4 grants Cr(g ◦ py) ≤ 1 + 2k−3 ≤ 2k−2. The result follows by Theorem 3.13.

A.3 Deferred proofs from Section 4

First, the proof of a certain VC lower bound which mimics the Gilbert-Varshamov bound; the proof is
little more than a consequence of Hoeffding’s inequality.

Proof of Lemma 4.1. For convenience, set m := Sh(F ;n), and let (a1, . . . , am) denote these dichotomies
(meaning aj ∈ {0, 1}n), and with foresight set ε :=

√
ln(m/δ)/(2n). Let (Yi)

n
i=1 denote fair Bernoulli

random labellings for each point, and note by symmetry of the fair coin that for any fixed dichotomy aj ,

Pr

[
1

n

n∑
i=1

|(aj)i − Yi| < 1/2− ε

]
= Pr

[
1

n

n∑
i=1

Yi < 1/2− ε

]
.

Consequently, by a union bound over all dichotomies and lastly by Hoeffding’s inequality,

Pr

[
∃f ∈ F �

1

n

n∑
i=1

|f̃(xi)− Yi| < 1/2− ε

]
≤

m∑
j=1

Pr

[
1

n

n∑
i=1

|(vj)i − Yi| < 1/2− ε

]

= mPr

[
1

n

n∑
i=1

Yi < 1/2− ε

]
≤ m exp(−2nε2) ≤ δ,

where the last step used the choice of ε.

The remaining deferred proofs do not exactly follow the order of Section 4, but instead the order
of dependencies in the proofs. In particular, to control the VC dimension, first it is useful to prove
Lemma 4.3, which is used to control the growth of numbers of regions as semi-algebraic gates are
combined.

Proof of Lemma 4.3. Fix some ordering (q1, q2, . . . , q|Q|) of the elements of Q, and for each i ∈ [|Q|]
define two functions li(a) := 1[qi(a) < 0] and ui(a) := 1[qi(a) ≥ 0], as well as two sets Li := {a ∈ Rp :
li(a) = 1} and Ui := {a ∈ Rp : ui(a) = 1}. Note that

S :=
{

(∩i∈ALi) ∩ (∩i∈B) : A ⊆ [|Q|], B ⊆ [|Q|]
}
\ {∅}.

Additionally consider the set of sign patterns

V :=
{(
l1(a), ui(a), . . . , l|Q|(a), u|Q|(a)

)
: a ∈ Rp

}
.

Distinct elements of S correspond to distinct sign patterns in V : namely, for any C ∈ S, using the
ordering of Q to encode A and B as binary vectors of length |Q|, the corresponding interleaved binary
vector of length 2|Q| is distinct for distinct choices of (A,B). (For each i that appears in neither A nor
B, there two possible encodings in V : having both coordinates corresponding to i set to 1, and having

them set to 0. On the other hand, a more succinct encoding based just on (li)
|Q|
i=1 fails to capture those

sets arising from intersections of proper subsets of Q.) As such, making use of growth function bounds
for sets of polynomials (Anthony and Bartlett, 1999, Theorem 8.3),

|S| ≤ |V | ≤ 2

(
4eα|Q|
p

)p
.
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Thanks to Lemma 4.3, the proof of the VC dimension bound Lemma 4.2 follows by induction over
layers, effectively keeping track of a piecewise (regionwise?) polynomial function as with the proof of
Lemma 3.3 (but now in the multivariate case).

Proof of Lemma 4.2. First note that this proof follows the scheme of a VC dimension proof for networks
with piecewise polynomial activation functions (Anthony and Bartlett, 1999, Theorem 8.8), but with
Lemma 4.3 allowing for the more complicated semi-algebraic gates, and some additional bookkeeping
for the (semi-algebraic) shapes of the regions of the partition S.

Let examples (xj)
n
j=1 be given with n ≥ p, let mi denote the number of nodes in layer i (whereby

m1 + · · ·+ml = m), and let f := FG : Rp × Rd → R denote the function evaluating the neural network
(as in Section 2.1), where the two arguments are the parameters w ∈ Rp and the input example x ∈ Rd.
The goal is to upper bound the number of dichotomies

K := Sh(N (G);n) = |{(sgn(f(w, x1)), . . . , sgn(f(w, xn))) : w ∈ Rp}| .

The proof will proceed by producing a sequence of partitions (Si)l0=1 of Rp and two corresponding
sequences of polynomials (Pi)li=0 and (Qi)li=0 so that for each i, Pi has polynomials of degree at most
βi, Qi has polynomials of degree at most αβi−1, and over any parameters S ∈ Si, there is an assignment
of elements of Pi to nodes of layer i so that for each example xj , every node in layer i evaluates the
corresponding fixed polynomial in Pi; lastly, the elements of Si are intersections of sets of the form
{w ∈ Rp : q(w) � 0} where q ∈ Qi and � ∈ {<,≥}, and the partition Si+1 refines Si for each i (meaning
for each U ∈ Si+1 there exists S ⊇ U with S ∈ Si). Setting the final partition S := Sl, this in turn
will give an upper bound on K, since the final output within each element of S is a fixed polynomial
of degree at most βl, whereby the VC dimension of polynomials (Anthony and Bartlett, 1999, Theorem
8.3) grants

K ≤
∑
S∈S
|{(sgn(f(w, x1)), . . . , sgn(f(w, xn))) : w ∈ S}| ≤ 2|S|

(
2enβl

p

)p
. (A.1)

To start, consider layer 0 of the input coordinates themselves, a collection of d affine maps. Con-
sequently, it suffices to set S0 := {Rp}, Q0 := ∅, and P0 to be the nd possible coordinate maps corre-
sponding to all d coordinates of all n examples.

For the inductive step, consider some layer i+ 1. Restricted to any S ∈ Si, the nodes of the previous
layer i compute fixed polynomials of degree βi. Each node in layer i + 1 is (t, α, β)-sa, meaning there
are t predicates, defined by polynomials of degree ≤ α, which define regions wherein this node is a fixed
polynomial. Let QS denote this set of predicates, where |QS | ≤ tnmi+1 by considering the n possible
input examples and the t possible predicates encountered in each of the mi+1 nodes in layer i+1, and set
Qi+1 := Qi

⋃
(∪S∈SiQS) . By the definition of semi-algebraic gate, each node in layer i+ 1 computes a

fixed polynomial when restricted to a region defined by an intersection of predicates which moreover are
defined by Qi+1. As such, defining Si+1 as the refinement of Si+1 which partitions each S ∈ Si according
to the intersections of predicates encountered in each node, then Lemma 4.3 on each QS grants

|Si+1| ≤
∑
S∈Si

|{all nonempty intersections of QS}| ≤ 2|Si|
(

4enmi+1tαβ
i

p

)p
, (A.2)

which completes the inductive construction.
The upper bound on K may now be estimated. First, |S| may be upper bounded by applying

eq. (A.2) recursively:

|S| ≤ |S0|
l∏
i=1

(
8enmitαβ

i−1

p

)p
≤
(
8enmtαβl−1

)pl
.
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Continuing from Equation (A.1),

K ≤ 2|S|
(

2emβl

p

)p
≤
(
8enmtαβl

)p(l+1)
.

To compute VC(N (G)), it suffices to find N such that Sh(N (G);N) < 2N , which in turn is implied
by p(l + 1) ln(N) + p(l + 1) ln(8emtαβl) < N ln(2). Since ln(N) = ln(N/(2p(l + 1)) + ln(2p(l + 1)) ≤
N/(2p(l + 1))− 1 + ln(2p(l + 1)) and ln(2)− 1/2 > 1/6, it suffices to show

6p(l + 1)
(
ln(2p(l + 1)) + ln(8emtαβl)

)
≤ N.

As such, the left hand side of this expression is an upper bound on VC(N (G)).

The proofs of Lemma 1.3 and Theorem 1.2 from Section 1 are now direct from Lemma 4.2 and
Lemma 4.1.

Proof of Lemma 1.3. This statement is the same as Lemma 4.2 with some details removed.

Proof of Theorem 1.2. By the bound on Sh(N (G);n) from Lemma 4.2,

n =
n

2
+
n

2
≥ 2 ln(1/δ) + 4pl2 ln(8emtαβp(l + 1)) +

n

2

≥ 2 ln(1/δ) + 2p(l + 1) ln(8emtαβl) + 2p(l + 1)

(
ln(p(l + 1))) +

n

2p(l + 1)
− 1

)
≥ 2 ln(1/δ) + 2p(l + 1) ln(8emtαβl) + 2p(l + 1) ln(n)

≥ 2 ln(1/δ) + 2 ln(Sh(N (G);n)).

The result follows by plugging this into Lemma 4.1.

A.4 Deferred proofs from Section 5

Proof of Proposition 5.1. Immediate from Lemma 3.12.
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