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Abstract
Cloud computing has become indispensable in today’s com-
puter landscape. The flexibility it offers for customers as
well as for providers has become a crucial factor for large
parts of the computer industry. Virtualization is the key tech-
nology that allows for sharing of hardware resources among
different customers. The controlling software component,
called hypervisor, provides a virtualized view of the com-
puter resources and ensures separation of different guest
virtual machines. However, this important cornerstone of
cloud computing is not necessarily trustworthy. To mitigate
this threat AMD introduced Secure Encrypted Virtualiza-
tion, short SEV. SEV is a processor extension that encrypts
guest memory in order to prevent a potentially malicious hy-
pervisor from accessing guest data.

In this paper we analyse whether the proposed features
can resist a malicious hypervisor and discuss the trade-offs
imposed by additional protection mechanisms. To do so, we
developed a model of SEV’s security capabilities based on
the available documentation as actual silicon implementa-
tions are not yet on the market.

We found that the currently proposed version of SEV is
not up to the task owing to three design shortcomings. First,
as with standard AMD-V, under SEV, the virtual machine
control block is not encrypted and handled directly by the
hypervisor, allowing him to bypass VM memory encryption
by executing conveniently chosen gadgets. Secondly, the
general purpose registers are not encrypted upon vmexit,
leaking potentially sensitive data. Finally, the control of the
nested pagetables allows a malicious hypervisor to closely
control the execution of a VM and attack it with memory
replay attacks.

Keywords Secure Encrypted Virtualization, AMD SEV,
Cloud Computing
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1. Introduction
Cloud computing has been one of the most prevalent trends
in the computer industry in the last decade. It offers clear ad-
vantages for both customers and providers. Customers can
easily deploy multiple servers and dynamically allocate re-
sources according to their immediate needs. Providers can
e.g. over-commit their hardware and thus increase the over-
all utilization of their systems. The key technology that made
this possible is virtualization, it allows multiple operating
systems to share hardware resources. The hypervisor is re-
sponsible for providing temporal and spatial separation of
the virtual machines (VMs). However, besides these advan-
tages virtualization also introduced new risks.

Customers who want to utilize the infrastructure of a
cloud provider must fully trust the cloud provider. Especially
the hypervisor is a critical component provided by the cloud
hoster as it has full control over the guest VMs. A mali-
cious or compromised hypervisor is able to read and write
the complete guest memory. This affects the integrity and
confidentiality of the customers secrets and the integrity of
the customers services. Security issues such as [9–12, 15]
show that each of the most commonly used hypervisors were
affected by bugs in the past, that led to a full breach of the
hypervisor through a hosted guest VM. As a single cloud
instance often hosts multiple guest VMs from different cus-
tomers such security issues allow a malicious guest VM to
steal confidential data from other customers.

Intel’s Software Guard Extensions (SGX) [14] and AMD’s
Secure Encrypted Virtualization (SEV) [18] are industries
answer to these threats. They extend the features of the pro-
cessor to reduce the impact of a malicious, higher privileged
software in regards to the confidentiality and integrity of
lower privileged software. SGX enables the customer to cre-
ate a secure enclave where special code can be executed in
a trusted environment that cannot be tampered with by the
hypervisor or the operating system. SGX achieves this by
requiring the customer to identify the security sensitive parts
of a program and to alter them such that these parts are ex-
ecuted in an SGX enclave. SEV on the other hand allows a
customer to encrypt the VM’s memory so that the hypervi-
sor is not able to inspect its data.
As can be seen from the AMD SEV whitepaper:
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”SEV technology is built around a threat model where an
attacker is assumed to have access to not only execute user
level privileged code on the target machine, but can poten-
tially execute malware at the higher privileged hypervisor
level as well. The attacker may also have physical access
to the machine including to the DRAM chips themselves. In
all these cases, SEV provides additional assurances to help
protect the guest virtual machine code and data from the
attacker”
The advantage of a solution such as AMD’s SEV is that it
can be easily adopted by customers because no changes to
their existing application software is needed.

While Intel’s SGX has been examined by the research
community, [8, 25, 27], AMD’s SEV has not been subject
to scientific research so far. It is thus unclear what level of
protection against a malicious hypervisor SEV can provide.
In this paper we have a first look on the upcoming AMD
SEV technology based on publicly available documentation.
We identify possible design issues that can be leveraged by a
malicious hypervisor to compromise the guest VM. To that
end, we implement in total three proof-of-concept attacks
on a currently available system. For the construction of the
attacks, we bear in mind not only the restrictions an AMD
SEV-enabled system imposes, but also evaluate how the
current SEV design could be hardened without sacrificing
further guest transparency or impacting cloud maintenance
operation. However we show that even a attacker restricted
to basic resource management capabilities, is still able to
gain access to the protected guest system.
Our contributions are:

- We show how a malicious hypervisor can force the guest
to perform arbitrary read and write operations on pro-
tected memory.

- We describe how to completely disable any SEV memory
protection configured by the tenant.

- We implement a replay attack that uses captured login
data to gain access to the target system by solely exploit-
ing resource management features of a hypervisor.

We would like to emphasize that we did not break AMD
SEV itself but rather evaluated the design issues present
in the documentation in respect to their usefulness for a
malicious or compromised hypervisor.

The rest of the paper is structured as follows: In Section 2
we give an overview on x86 virtualization and AMD SEV.
We discuss our attack model in Section 3 and evaluate the
security of the protection mechanisms proposed by SEV in
Section 4. In Section 5 we present our attack. We discuss
possible mitigations to our attack in Section 6. In Section 7
we evaluate alternative approaches to shield execution en-
vironments from higher privileged adversaries and present
related attacks under similar threat models. Finally, we con-
clude our work in Section 8.

2. Background
In this section we first give a brief introduction to x86 vir-
tualization, then we discuss the design of AMD’s SEV tech-
nology. This information by no means represents a complete
overview of these topics. The specification for AMD SVM
and AMD SEV are however publicly available. Thus, we re-
fer the interested reader to [2, 4].

2.1 x86 Virtualization Technologies
In 2005, both Intel (VT-x) [24] and AMD (SVM) [1] in-
troduced hardware extensions to their x86 processors that
added a higher privileged mode to the existing ring 0 to ring
3 privilege levels. As we are evaluating AMD’s SEV tech-
nology, we focus on the AMD SVM virtualization exten-
sions. This new mode, called host mode, comprises another
set of the privilege rings 0 to 3 and is higher privileged than
the non-host mode, called guest mode. The host mode is in-
tended to host the hypervisor whereas the guest VM usually
executes in the non-host mode. To make use of these exten-
sions, a hypervisor, running in the host mode, uses a special
instruction, vmrun, to switch the CPU to the guest mode.
This instruction takes the address of a control structure as a
single argument in the register rAX. This control structure,
called vmcb, contains the guest state, entry controls (pend-
ing virtual interrupts) and exit controls. For example, when
a guest issues a hlt instruction, the hypervisor might want
to schedule another guest to maximize the utilization of the
system. Prior to the initial start of the guest the hypervisor
configures the vmcb and initializes the general purpose regis-
ters as they are not part of the vmcb. Upon issuing the vmrun
instruction, the CPU copies the values of the vmcb fields into
the respective hardware registers and starts execution of the
guest at the entry point defined in the vmcb. An event that is
flagged in the vmcb as such will lead to a vmexit with the
exit reason set in the vmcb. The hypervisor then handles the
exit accordingly, e.g. in case of the already mentioned hlt,
it will schedule another guest.

While the original design of AMD SVM from 2005 al-
lowed a hypervisor to run multiple guests on a single CPU
without altering the guest OS, it lacked support to efficiently
virtualize memory. In 2008, AMD released a technology
called “nested-paging” [3] that enables a hypervisor to vir-
tualize memory in an efficient way. The traditional paging
hierarchy was extended with another layer, the nested layer.
Instead of just translating from virtual to physical addresses,
now the translation involves two steps. The guest pagetable,
maintained by the guest operating system, translates from
guest virtual to guest physical addresses, whereas the host
pagetable translates from guest physical addresses to physi-
cal addresses. This second translation step is fully under con-
trol of the hypervisor.
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2.2 Virtual devices
While CPU and memory virtualization is provided by the
hardware virtualization extensions, handling device virtual-
ization is the obligation of the hypervisor.

On x86, devices are accessed by either IO ports, memory-
mapped registers or by a combination of both. Accessing IO
port based devices requires the use of special instructions
(e.g. IN or OUT) whereas memory-mapped devices can be
accessed using normal instructions (e.g. mov). If the device
itself requires the CPU to handle an event, it raises an in-
terrupt which diverts the control flow of the CPU to a spe-
cific interrupt handling routine. To improve the overall per-
formance, data can also be transferred without involvement
of the CPU. The device reads or writes directly to or from
main memory, allowing the CPU to perform other tasks in
parallel. The technology is commonly referred to as DMA
(Direct Memory Access).

Three common approaches to handle devices in a virtual-
ized environment are:

• Passthrough
• Emulation
• Para-virtualization

Passthrough This is the simplest form of handling de-
vices. One VM has exclusive access to a hardware device.
If the device provides only a memory-mapped interface the
corresponding memory pages are mapped into the guest ad-
dress space via the nested pagetable. In case of IO ports the
vmcb allows to configure which IO ports are accessible di-
rectly by a guest. If a commodity device without special vir-
tualization extensions is passed through, only a single guest
can use this device. Even the hypervisor cannot use this de-
vice anymore. Accesses to any other port results in a trap
into the hypervisor.

Emulation The hypervisor can present a virtual device to
the guest. It sets up the nested pagetable with a hole in the
address space where the guest expects the memory-mapped
device. When the guest now accesses these memory ranges
to interact with the device, this will lead to a trap into the
hypervisor. To actually perform memory access on behalf of
the guest the hypervisor must know the value that should be
written. The vmcb will contain the fault address, i.e. the lo-
cation where the data should be written, but not the value
itself. The value is usually stored in a general purpose reg-
ister1. The hypervisor must parse the instruction that caused
the fault to identify the register holding the value. As the
instruction pointer locating this instruction, holds a guest-
virtual address, the hypervisor must first traverse the guest
pagetable to get the guest-physical address of the instruc-
tion before it can parse the instruction. As traversing the

1 There are instructions like rep ins movs that take the target and source
address as pointers in registers, but those are not commonly used when
accessing memory-mapped devices

pagetable imposes a serious bottleneck for device emulation,
AMD added decode assists that provide the register location
of the value in case of a nested page fault.

Para-virtualization The performance for accessing virtual
devices can be enhanced using para-virtualization. Here the
hypervisor does not emulate an existing device but provides
an interface of an artificial device to the guest that has no
corresponding hardware device. This has the advantage that
the hypervisor and the guest can agree on an interface that
encompasses the peculiarities of the hypervisor and guest
communication. For example instead of trapping writes to
certain memory areas, the guest can use special instructions
that cause a trap into hypervisor. This mechanism is called
hypercall. In contrast to memory accesses these hypercalls
do not cause a pagetable walk by the memory management
unit. This can increase the performance of these virtual de-
vices, but requires modifications to the guest operating sys-
tem.

Device emulation is crucial for providing basic VM func-
tionality, like network connectivity, for the guest owner.
Given that heavy modification of the deployed VM’s code
base goes against customer interest and device passthrough
does not scale to larger cloud infrastructures, this draws a
lower bound on the limitations imposed on hypervisor con-
trol over guest VMs. While it is already indicated by AMD
that future versions of SEV will encrypt guest registers [20],
control over vmexits induced by the access of memory-
mapped devices is still necessary to provide emulated de-
vices for the guest.

2.3 Linux KVM
In the previous paragraph we explained AMD’s virtualiza-
tion extensions, we now lay out how this technology is used
by the KVM hypervisor which is integrated in the Linux ker-
nel [19].

Virtualizing CPU and memory is not sufficient because
guest operating systems also need devices like, e.g., video
output, network or block devices. As a guest should not di-
rectly interfere with the hardware devices itself, they must be
either multiplexed or emulated (see Section 2.2). While the
KVM hypervisor is responsible for controlling the execution
of guest VMs, QEMU is leveraged to handle the device vir-
tualization. Figure 1a depicts the initial startup of a guest
VM in a KVM/QEMU setup.

First, QEMU reserves memory for the VM (Figure 1a 1©).
Then it copies the guest binaries into this reserved memory
(Figure 1a 2©). By using the /dev/kvm device node the
KVM module of the Linux kernel is instructed to start a new
VM (Figure 1a 3©). KVM then sets up a vmcb data struc-
ture incorporating the information from QEMU and issues
the vmrun instruction to start the VM (Figure 1a 4©). The
processor now enters the guest mode, depicted in grey, and
starts execution at the entry point defined in the vmcb.
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Figure 1: QEMU/KVM architecture

The runtime behaviour is shown in Figure 1b. Upon any
event that was configured in the vmcb to cause a vmexit,
the CPU leaves guest mode and enters host mode again
with a specific error code set in the vmcb (Figure 1b 1©).
The KVM module can then either handle the exit itself,
or, in case of, e.g., an memory-mapped IO operation to an
emulated device, can return to QEMU which then handles
the request (Figure 1b 2©). The emulated device can access
guest memory directly to mimic DMA memory transfers
(Figure 1b 3©). After the request was served, QEMU calls
KVM again (Figure 1b 4©), which resumes execution of the
VM in guest mode (Figure 1b 5©).

2.4 AMD SEV
As indicated in Figure 1, the hypervisor has full access to
guest memory while the CPU is in host mode. This demands
that a cloud customer must not only trust the employees of
the cloud provider but also the integrity of the hypervisor.
Bugs such as [9–12, 15] can be used by a malicious tenant to
attack the hypervisor itself and thereby gain access to assets
of other tenants residing on the same physical machine.

The key idea of SEV is that guest memory is encrypted
and the corresponding key is only accessed by the memory
controller that handles the encryption and decryption trans-
parently, thereby protecting against both a malicious hyper-
visor and physical attacks. This key will never be exposed
to the hypervisor. Additionally AMD added a coprocessor
to SEV-enabled CPUs (the AMD Secure Processor [18], in-
dicated as SEC in Figure 2a). This coprocessor handles key
management and is responsible for the initial encryption of
the guest.

Figure 2 shows how the classical KVM architecture looks
like on an SEV-enabled system. Like detailed in the previ-
ous Section, QEMU communicates with the KVM module
to prepare the VM for launch (Figure 2a 1© to 3©). To en-
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Figure 2: SEV-enabled QEMU/KVM architecture

able SEV for the newly allocated VM, it’s memory must first
be encrypted. The host kernel calls the coprocessor to do
the initial encryption of the VM memory using a threefold
command sequence, LAUNCH START, LAUNCH UPDATE and
LAUNCH FINISH (Figure 2a 4©, 5© and 6©). Using this com-
mand sequence the hypervisor ensures that the firmware gen-
erates an encryption key unique to the VM (LAUNCH START),
encrypts the memory and records a launch receipt of the VM
used for remote attestation (LAUNCH UPDATE). After the en-
cryption of guest memory is completed the firmware pro-
vides the recipe to the hypervisor to be passed on to the
customer (LAUNCH FINISH). This recipe includes measure-
ments of the guest image and platform authentication data,
which allow the customer to verify that the VM memory was
encrypted and initialized properly. If a customer judges the
recipe or the contained measurements to be faulty, he can
choose to withhold the provisioning of secrets to the VM.

Each VM uses its unique cryptographic key that is loaded
by the secure processor when the respective VM is sched-
uled. Once a guest enables paging, it can mark individual
data pages as either shared or private by setting a physical
address bit (the C-bit) in its own pagetable. Memory pages
marked as private are encrypted using AES with the guest
specific key and pages marked as shared are either not en-
crypted or encrypted with the hypervisor key and can thus be
used to exchange data with the hypervisor. Instruction pages
are always encrypted using the individual guest key. The C-
bit of the guest pagetables has precedence over the C-bit of
the hypervisor controlled second level pagetables to secure
the page protection configured by the guest VM. In addi-
tion to the memory protection mechanism, AMD offers ten-
ants to enforce guest policies. Policy configuration includes
amongst others the option to disable debug capabilities of
the hypervisor towards the guest VM.
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Figure 2b shows the system configuration during runtime.
The secure coprocessor (SEC) is not shown, as it is used
mainly during VM startup. The steps composing the run-
time behaviour under SEV (Figure 2b 1©, 2©, 4© and 5©) do
not differ from the non-SEV configuration. This is due to the
fact, that cryptographic operations are handled transparently
by the memory controller, while key management is handled
by the secure processor without involvement of the hypervi-
sor or the VM. However to facilitate DMA memory transfers
(Figure 2b 3©) similar to a classical setup, the guest is tasked
to configure shared memory regions, that are exempt from
encryption.

3. Attack Model
In this section we describe our attack model, which is based
on the AMD SEV security properties (detailed in Section 4).

We assume that a customer successfully deployed his
VM on an AMD SEV-enabled system. During startup we
also assume that the hypervisor is un-compromised and be
compliant with the AMD SEV specification [2]. This means
the customer was able to attest the correct setup of his VM
using the receipt provided by the hypervisor. From this point
on the VM is protected by AMD SEV. Neither the hypervisor
nor someone with physical access to the cloud infrastructure,
is able to read the designated private memory regions of the
protected guest.

Then, during runtime, an attacker was able to compro-
mise the hypervisor, thereby gaining root access to the host
system. The described scenario is likely, as incidents of the
past show [9, 11, 12, 15]. We also assume that the attacker
has knowledge of the target system with regards to the ver-
sions of the kernel and userland processes. As the guest im-
ages are often provided by the cloud provider itself, this is
also likely. We assume that the encryption scheme in use
produces the same encrypted data if the input, key and host
physical address are identical, similar to other symmetric lin-
ear memory encryption schemes. Further we require, that no
integrity check is performed on protected data, as stated in
the SEV whitepaper [18]. In addition to that we initially as-
sume access to nested pagetables, vmcb and guest register
state, which we later restrict to only nested pagetable access
for the replay attack.

4. AMD SEV Security Considerations
While guest memory is protected from direct hypervisor ac-
cess by encryption, other security-critical components are
not protected at all. By examining the AMD SEV documen-
tation [2, 18] and publicly available comments from AMD
employees [20], we found that:

1. The general purpose registers are not encrypted upon a
vmexit [20].

2. The vmcb is subject to manipulation by the hypervi-
sor [20].

3. There is no memory authentication scheme in use [2].

General Purpose Registers Whenever the CPU switches
from guest mode to host mode, the general purpose registers
of the guest leak to the hypervisor. As the guest itself cannot
control when the CPU transfers to host mode, these registers
can contain potentially confidential data. If such an exit
occurs e.g. while the guest is generating a RSA key pair,
the key components might be exposed to the hypervisor.

VMCB As mentioned in Section 2.1, the vmcb is used to
control the execution and state of the guest. The vmcb is
therefore crucial to guest integrity and exposes the content
of privileged guest registers. Among these registers is the
instruction pointer of the guest which allows the hypervisor
to govern guest control flow.

Memory Authentication The memory is encrypted, but
it is otherwise not protected from access. This enables the
hypervisor to inject faults into the guest or to capture and
replay private guest memory.

Later sections will lay out how these design issues can be
leveraged by a malicious hypervisor to a) gain shell access
to a guest b) read protected guest memory and c) fully revert
any memory protection configured by the tenant. AMD al-
ready announced that future versions of SEV might encrypt
both the vmcb and the general purpose registers [20]. This
would mitigate attack vectors b) and c) by preventing the
hypervisor from manipulating both guest general purpose
registers and the vmcb. Still, as we will show in later sec-
tions there is no easy way to prevent a) without sacrificing
guest transparency or impacting classic cloud functionality,
like device emulation and maintenance operations.

5. Attacks against Encrypted Virtualization
We now present three attacks against VMs under a compro-
mised hypervisor.

The first two attacks presented in Section 5.1 are directed
against the proposed design of SEV, which allows the hy-
pervisor to extract and control guest state through the un-
encrypted guest control block and registers. Amongst other
security concerns for the tenant, this flaw can be used to de-
crypt guest memory including the internal address mapping,
as we will show in our first attack in Section 5.1.1. Build-
ing upon this capacity we describe in Section 5.1.2 how the
memory protection configured by the tenant can be deac-
tivated, without notifying the guest. After deactivation of
memory protection further exploitation, like arbitrary code
execution, is trivial to execute as the hypervisor now has full
access to guest memory.

The third attack already takes the announcements from
AMD [20] into account, that in future versions access to the
guest control block and registers is restricted for the hyper-
visor. We however show in Section 5.2 that restricting the
access is not sufficient to protect the guest from a malicious
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mov edi , dword p t r [ rbx ]
h l t

Listing 1: Read Instruction Sequence

hypervisor. If the hypervisor is in control over guest memory
allocations through nested paging, it can use this capability
to launch a replay attack. We prove our claim by launch-
ing an attack against an OpenSSH server running in the pro-
tected guest VM to gain access at potentially high privilege
levels.

5.1 Attacks based on exposed Guest State
In this section we present two attacks against an encrypted
guest, facilitating hypervisor access to the guest control
block and registers. First we describe a method to exploit
guest control flow in order to read and write arbitrary mem-
ory areas of a running guest in decrypted form. Based on this
primitive, we construct an advanced attack to disable guest
memory protection as documented in [2] altogether.

5.1.1 Accessing Protected Memory
We now describe how a malicious hypervisor can coerce a
guest into leaking arbitrary memory content. The methods
for reading and writing protected guest memory are sym-
metric, therefore we restrict this section to the description of
the memory read primitive.

During guest execution the memory of the active VM is
transparently decrypted by the memory controller. Memory
content which, in this state, is transferred into unencrypted
areas like the vmcb, registers or shared memory, will be ex-
posed to the hypervisor whenever guest execution is inter-
rupted. Our attack induces an interruption of the guest exe-
cution, right after protected data has been transferred from
an attacker controlled memory location into an unencrypted
register. To divert guest control flow we set the guest instruc-
tion pointer before guest re-entry to the guest virtual address
of a suitable instruction sequence. Shortly after the read in-
struction we force a vmexit to read the decrypted data from
the register.

The instruction sequence is required to end with a trap-
pable instruction and to contain an indirect memory read.
Listing 1 shows the sequence of instructions, we used to
launch the attack. We extracted this sequence statically from
the guest kernel binary, for which we used a modified tool for
ropchain generation, called ROPGadget [17]. The code snip-
pet reads four bytes from guest memory into the register eDI,
before a vmexit is induced by the instruction hlt. The ma-
licious hypervisor can then conveniently take the decrypted
word from the gerneral purpose register. Listing 2 shows the
respective exit handler, which the hypervisor could use to
hanlde this particular hlt trap condition. To decrypt an ar-
bitrary section of guest memory, the exit handler re-sets the
guest instruction pointer to the guest virtual address of the

i n t n e w h a n d l e h l t ( s t r u c t vcpu∗ vcpu ) {
u64 r i p , e d i ;
r i p = r i p r e a d ( vcpu ) ;
i f ( r i p == DECRYPT HLT INS && d e c r y p t i n g ) {

e d i = r e g i s t e r r e a d ( vcpu , VCPU EDI ) ;
/ / p r o c e s s d e c r y p t e d da ta i n EDI . . .
r e g i s t e r w r i t e ( vcpu , VCPU RBX,

c u r r e n t a d d r ) ;
c u r r e n t a d d r += 0x4 ;
i f ( c u r r e n t a d d r < l a s t a d d r )

r i p w r i t e ( DECRYPT HLT INS ) ;
re turn 0 ;

} e l s e {
/ / ha nd l e normal h l t e x i t . . .
}

}

Listing 2: HLT Exit Handler

instruction sequence and the guest register rBX to the guest
virtual address of the protected memory to be read.

The diversion of guest control flow can be initiated at any
point during host execution. To resume normal guest execu-
tion after the attack, the guest registers which are clobbered
by the decryption are saved in the host environment and later
restored after the final memory element has been read.

Locating the Instruction Sequence The recent introduc-
tion of kernel address space layout randomization (KASLR)
complicates our attack. Now the instruction sequence can-
not simply be obtained from the guest kernel binary. Instead
we only obtain the offset of the sequence within the kernel
text section via static analysis. The offset is then added to
the dynamic load address of the kernel text section, which
is randomly initialized during the boot process of the VM.
To compute the load address of the kernel text section, we
compare control registers exposed through the guest control
block, pointing to kernel functions inside the guest’s virtual
address space. Specifically we subtract the virtual address
of the system call entry function entry SYSCALL 64 of the
running guest from the system call entry address of the non
randomized kernel image.

5.1.2 Disabling Memory Protection
In this section we describe how encryption can be disabled
for individual guest memory pages or even for the complete
guest memory space. The attack is based on manipulation of
guest internal pagetable entries.

First we will describe how we access those entries, even
though they are assumed to be located in private guest mem-
ory and thereby to be encrypted. To access pagetable en-
tries within the protected guest, we first read the physi-
cal pagetable address of the currently active process from
the cr3 register value stored in the vmcb. We then use the
method described in the previous section to read page table
entries from protected guest memory. As the read primitive
can only operate on guest virtual addresses, we access the
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Figure 3: Pagetable Modification

pagetable data via the direct physical memory map (referred
to as physmap). The physmap is a contiguous mapping of the
physical RAM into the virtual address space of the kernel.
The virtual base address of the physmap is stored in the ker-
nel variable page offset base which is located at a con-
stant offset from the dynamic load address of the kernel’s
text section. We use the read primitive with the adjusted off-
set of the page offset base variable to read its value from
guest memory. To access the pagetable entries, we add the
physical pagetable base address to the virtual base address
of the physmap. Using the write primitive we are now able
to overwrite and add pagetable entries arbitrarily, using the
adjusted guest virtual address of the pagetable base as the
target location.

In-place decryption of protected memory is not integrated
in the proposed SEV design. Clearing the C-bit from a guest
pagetable entry will only disable the transparent de-or en-
cryption on subsequent memory read or write accesses. Thus
the attacker is required to allocate new unprotected (shared)
pages of memory and to copy the protected (private) data
into the newly allocated areas.

Figure 3 gives an overview of how an attacker can deacti-
vate the protection of guest pages under an arbitrary guest
pagetable entry, without notifying the guest. The process
can be split up in two phases, first, duplication and then,
replacement. In the duplication phase the protected data is
transferred into newly allocated memory as seen in Fig-
ure 3a. During the replacement phase the guest pagetable en-
try is modified to deactivate the protection, while the nested
pagetable entry is redirected to the new data, as shown in
Figure 3b.

Now to actually decrypt an amount of guest pages, the
according amount of pages has to be reserved in host mem-
ory. Then using the read primitive, the guest pagetables are
browsed for an unallocated slot matching the original en-
try level. Similarly an empty slot in the second level pageta-

bles is located. New pagetable entries are created from the
host physical, guest physical and guest virtual addresses.
The write primitive has to be used to add the entry con-
necting the guest virtual to the guest physical address in the
guest pagetables. Using the read primitive again, the pro-
tected guest memory is read and directly written into the
newly allocated area by the host. Finally the pagetable en-
try of the original protected mapping is modified to clear the
C-bit, while the nested pagetable entry is redirected to point
to the newly written data.

5.2 Attack based on Nested Page Table Control
We will now evaluate how the proposed design of SEV can
be enhanced to prevent the previous two attacks. Based on
these revised security properties we construct a third attack,
which relies only on control over nested page table struc-
tures and interrupt injection. We leave the detailed discus-
sion about the necessity of the latter two capabilities for
guest transparent VM encryption in a cloud environment to
Section 6.

To mitigate the previous attacks we identified a minimal
set of additional protection mechanisms, namely limiting ac-
cess to the VM control block and encrypting guest general
purpose registers. Here we explain the protection achieved
through deploying these mitigations to motivate the next at-
tack. The trade-offs and integration options of each mitiga-
tion are discussed in Section 6.

Limiting access to the VM control block prevents exe-
cution of the previous attacks on several levels. The leak-
age of kernel function pointers is prevented, therefore the
guest internal address mapping is not revealed. Whether an
instruction like hlt traps into host mode is controlled via
a bitmap contained in the vmcb. Therefore the number of
instruction sequences suitable for misuse as read and write
primitives can be limited by controlling the configuration of
this bitmap. Further the capability of the hypervisor to con-
trol guest control flow is restricted, as the instruction pointer,
which is also part of the vmcb, can be protected from mali-
cious modification. The encryption of guest control registers
will handicap the application of read and write primitives
by impairing the control over the address of accessed mem-
ory as well as the exposure of the decrypted data. We argue
that limiting hypervisor control over physical memory as-
signment would prevent memory overcommitment as well
as any dynamic load balancing or migration efforts. In fact
we assume this capability to be a crucial in a cloud environ-
ment. We will leave the discussion of memory authentica-
tion schemes to Section 6. Comparably crucial is the ability
to inject virtual interrupts for device virtualization.

We now describe how a malicious hypervisor can launch
a replay attack against a VM running in a protected envi-
ronment, which implements the described mitigations to the
previous attacks in addition to the protection mechanisms
proposed by SEV [2].
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First we give a brief overview of replay attacks and ex-
plain how we can attack an OpenSSH server running in an
unprotected guest by replaying login credentials. Next we
describe how we can infer the correct location and time to
capture and replay guest memory without insight into the
guest memory content, by observing memory access and
system call patterns of the guest. Finally we describe the
steps necessary to implement the attack against a encrypted
VM. We conclude with an evaluation of the presented attack.

5.2.1 Replay Attacks
On a high level replay attacks exploit the lack of data ver-
sioning and authentication, which allows an attacker (in our
case a malicious hypervisor) to eavesdrop on the exchange
of valid authentication tokens and replay them to pose as the
original communication partner. For OpenSSH we identified
the function userauth passwd, shown abbreviated in List-
ing 3, as a suitable target. In line 5 a password string is read
from the network buffer via packet get string and stored
on the stack. The password string is then validated at line 9
by auth passwd. After validation the password is removed
from memory at line 11.

To launch the attack against the OpenSSH server execut-
ing in a unencrypted guest, the hypervisor captures the guest
page containing the credential data in between lines 5 and 9.
The attacker then initiates a new connection. After the server
receives credentials from the attacker controlled client, the
hypervisor replaces the invalid credentials of the attacker,
with the data captured in the previous step. The validation of
the replaced password will then succeed and thereby grant
access to the attacker controlled client at the priviledge level
of the connecting user.

1 s t a t i c i n t u s e r a u t h p a s s w d ( A u t h c t x t ∗ a u t h c t x t ) {
2 char ∗password , ∗newpass ;
3 / / . . .
4 change = p a c k e t g e t c h a r ( ) ;
5 password = p a c k e t g e t s t r i n g (& l e n ) ;
6 / / . . .
7 i f ( change )
8 l o g i t ( ” password change n o t

s u p p o r t e d ” ) ;
9 e l s e i f ( PRIVSEP ( a u t h p a s s w o r d ( a u t h c t x t ,

password ) ) == 1)
10 a u t h e n t i c a t e d = 1 ;
11 memset ( password , 0 , l e n ) ;
12 x f r e e ( password ) ;
13 re turn a u t h e n t i c a t e d ;
14}

Listing 3: userauth passwd

5.2.2 Inferring Memory Content
In a classical replay scenario the hypervisor can monitor
memory content to identify location and state of the memory
region to be captured and later replayed. If the guest memory
is encrypted, the main challenge is to infer those parameters
indirectly.

In this section we describe how we identify when and
where to capture and later replay a memory page without in-
sight into it’s content. The key intuition behind our approach
is that memory content can be inferred through the access
patterns to individual pages, which we express through sys-
tem call sequences. First we explain how we extract infor-
mation about system calls issued by the guest. Next we de-
scribe how the sequence of system calls issued by the guest
is combined with the sequence of writes to guest memory
to identify the location of selected data structures as well as
their state.

Trapping System Calls into the Hypervisor In order to
record a sequence of system calls issued by the guest we
need a mechanisms to trap into the hypervisor when a guest
user process tries to execute a system call. It is important
to note that we are able to extract system call informa-
tion without access to the guest register or control state.
Instead we remove the execute permissions on the guest
memory page containing the system call entry function
entry SYSCALL 64 as well as the pages containing the sys-
tem call handler routines. Thereby we enforce an exit to the
hypervisor whenever system call execution is initiated. By
examining the fault address the hypervisor can determine
which handler caused the fault. Initially only the system call
entry page is protected; if a vmexit is induced by guest ex-
ecution of this page, we restrict access to the handler pages
and restore execute permissions on the entry page. Similarly
If a vmexit is induced by guest execution of one of the
handler pages, we restore execute permissions to all handler
pages, while restricting access to the entry page. This proce-
dure is necessary, to enable the re-execution of the faulting
instruction in the guest.

To remove execute permission from guest pages contain-
ing the respective functions, we first need to locate them in
guest physical memory. Due to KASLR the physical load off-
set of the kernel text section is randomly initialized during
the VM boot process. We therefore employ a similar method
as described in Section 5.1.1 to adjust the guest physical ad-
dresses of the system call entry and handler functions ac-
cordingly. To obtain a point of reference from which to com-
pute the physical load offset of the kernel text section, the hy-
pervisor can trigger the immediate execution of known func-
tions, like interrupt handler routines, by the guest. By previ-
ously marking all guest memory pages as non executable
through the nested pagetables, the guest will immediately
fault, revealing the physical address of the triggered func-
tion through the fault metadata provided to the hypervisor.
The random physical load offset of the kernel text section
is then calculated by subtracting the fault address from the
physical address of the function, obtained from a non ran-
domized kernel image.

Combining System Call and Write Sequences Based on
the recorded system call sequence, the hypervisor can reason
about the state of guest execution. However we still lack the
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Figure 4: System Call Sequences on Guest Memory

ability to identify which of the many guest memory pages
that are written continuously, contains the data selected for
replay. To that end we cross-reference the sequence of guest
memory writes with the system call information by storing a
sequence of system calls for each page that preceded a write
access to the respective page.

We now explain our approach via a simplified example.
Figure 4 shows an excerpt of guest execution with two con-
current processes. The processes are identified by their ac-
cording cr3 values (either 1 or 2). Each process performs
a number of different system calls, whereas the most recent
one is highlighted in bold font. Guest pages are subsequently
marked with the system call identifier that was last recorded
before a write access occurred. To record those we intercept
the guest on memory write access in addition to system call
execution. Upon a vmexit induced by execution of a system
call handler, we now also remove write permission from all
guest pages. Each subsequent write will now trap to the hy-
pervisor, where we firstly restore write permissions for the
respective page to allow for the re-execution of the faulting
instruction and secondly mark the accessed page with the
last recorded system call identifier. On each memory write
we then evaluate these sequences for all guest pages to infer
whether a specific page currently contains the data selected
for replay.

This approach is robust against concurrent process exe-
cution within the guest because, memory pages are either
not shared between processes, as in our example, or can
be classified by the superposition of concurrent access se-
quences, since even different processes will show similar
patterns when accessing identical memory structures.

5.2.3 Replay Attacks against Encrypted VMs
In this section we first describe the four phases composing
our replay attack, namely offline analysis, tracing, capture
and replay. We then illustrate these steps by describing our
procedure to replay OpenSSH login credentials to gain ac-
cess to a encrypted VM at the privilege level of the connect-
ing user.

Password Correct Pass

GPA HPA

Dummy

(a) Capture

XXX Correct Pass

GPA HPA

XXX

Password Wrong Pass

(b) Replay

Figure 5: Nested Pagetable Modification

Offline Analysis The first stage is an offline analysis of the
target application to determine possible replay attack vec-
tors. Currently we do this manually and on a per-application
basis.

Tracing To determine the location of the credential data
structure in encrypted guest memory, we first trace system
call and memory access patterns of an unencrypted guest
running an identical OS and target application. This allows
us to continuously scan the unencrypted guest memory for
the selected data. If the selected data is detected in a guest
memory page, we store the respective access pattern. Due
to interrupts, scheduling and input from external sources,
execution paths and therefore system call sequences might
differ slightly. We account for this by collecting multiple
traces and extracting the longest trailing sequence occurring
in most of the traces.

Capture and Replay In the capture and replay phases we
compare the collected sequence against those generated by
the encrypted guest. If the system call sequence of a guest
page matches the reference we conclude that the encrypted
page contains the selected data and proceed to capture or
replay the contained data respectively.

In accordance to the encryption scheme described in Sec-
tion 3, the cipher text produced by the memory encryption
algorithm is influenced not only by the content, but also by
the host physical address of the memory page. Therefore the
replayed data has to be placed at the same host physical ad-
dress (HPA) as the captured data. This can be achieved by
manipulating the nested pagetables, which control the map-
ping of the guest physical address (GPA) to it’s HPA as
shown in Figure 5. In Figure 5a the guest memory page, con-
taining the valid credentials ”Correct Pass”, has been iden-
tified for capture. The nested pagetable entry connecting the
GPA to the HPA of this page is then modified to redirect the
GPA to a newly allocated page (Dummy). This removes the
captured data from the guest’s address space, so that it will
not be overwritten. During the replay phase described in Fig-
ure 5b the nested pagetable is again modified to redirect the
GPA from the HPA containing the ”Wrong Pass” to the HPA
of the previously captured page still containing the ”Correct
Pass”.

Using this method the minimum size of data that can be
replayed is a single page (usually 4KB), because the ad-
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Figure 6: Replay Attack Overview

dress translation can be changed only on page granularity.
However, this rather coarse grained granularity did not not
influence the success rate of our replay attack.

Figure 6 gives an overview of our replay attack. Here we
assume that offline analysis has already identified data and
state for capture and replay. We collect a reference sequence
of system calls (Trace Reference) for the page containing
the identified data, by initiating SSH password logins 1© to
an OpenSSH server running in an unencrypted guest (Ref-
erence Guest) with the same software configuration as the
target. Next we wait for an incoming SSH client connection
to the protected guest (Target Guest) 2©, while continuously
comparing the access patterns of the protected guest (Target
Trace) against the reference. If a SSH client authenticates
itself to the server via password, the page containing the
credential data structure (”Target Password”) is identified
and the content of the page is stored 3©. We then re-initiate
a password login to the protected guest from the attacker
controlled SSH client 4©. To grant access to the attacker
controlled client the hypervisor modifies the nested paging
structures to redirect the page containing the invalid creden-
tials of the attacker (”Attacker Password”) to the stored page
5©.

5.2.4 Impact
To show the effectiveness of the replay attack, we evaluate
it by exploiting OpenSSH version 6.7p1-5+de running in a
VM. The test was conducted on a AMD Phenom II X4 965
processor with 4GB RAM. As the host operating system we
used Linux with kernel version 4.4.0 and QEMU version
2.7.50 for communication with the KVM driver module.
For the evaluation we disabled symmetric multiprocessing
on the host system. The guest was configured with 512MB
RAM and ran kernel version 4.9.0-rc5 with the full range of
KASLR options enabled. As AMD SEV is not available at
the time of this writing, we substitute an unencrypted VM as
our target. We argue that the results are applicable to a future
real SEV setup, because none of data structures required for

the attack will be obscured even if SEV is enabled, according
to the currently available documentation.

The effectiveness of our attack is best classified by the
number of successful logins to the target guest, that have to
be observed on average, before successful execution of the
described replay attack. The success rate hinges on the accu-
racy of page identification via system call and memory ac-
cess patterns as well as on the structure of the page selected
during offline analysis.

Page Structure We found that the offset of the credential
data within a memory page varies between four separate val-
ues. The distribution of the offset values is shown in Fig-
ure 7. To determine this distribution we initiated 387 SSH
password logins using a unique password to simplify the
identification of the page. By examining the collected traces,
we determined that the specific location cannot be extracted
from the system call access sequence. Further we discovered
that replaying captured data over a page with mismatching
offset will terminate the guest process handling the login.
However termination of the process spawned by the SSH
server to handle the connection will not impact the function-
ality of the guest, since it is immediately respawned by the
parent process. Yet unsuccessful replay attempts will require
the re-initiation of a new capture, because the captured page
was mapped back into the guest’s memory space. Overwrit-
ing or removing a mapped guest physical page will result
in unpredictable behaviour, unless the content of the page is
known.

Trace Accuracy To improve the coverage of guest execu-
tion paths and thereby the trace accuracy we collect multiple
system call sequences. From those we extract the sequence
of system call identifiers that identifies the greatest number
of the collected traces correctly. To measure the trace ac-
curacy, we collected 387 traces to compute the reference se-
quence. We then proceeded to initiate 2155 SSH connections
to the VM and matched the generated traces against the ref-
erence. To verify the correct identification of the page, we
choose a unique string as the password and tested whether
the guest page identified by the reference sequence con-
tained this string and whether the data structure of the page
matched the data structure of page selected for replay. The
achieved identification accuracy for the page containing the
credential data was 86%. We encountered no false positives
during our test, which is important because the remapping
of a falsely identified guest page during capture, will most
likely have an adverse effect on the guest.

Success Rate To measure the overall success rate we com-
pare the number of observed valid logins against the number
of times the attacker was granted access to the system. To
that end we run two identical VMs (reference and target)
and extract a reference sequence from 387 observed logins
to the reference VM. While using this reference to identify
the password data in the target VM’s memory, we initiated
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Figure 7: Credential Offsets

2155 SSH password logins with valid login credentials to the
target VM. This resulted in 505 successful replays, therefore
the success rate of the attack is 23%. The result is consistent
with the measurements of data location distribution and trace
accuracy. Especially the variation of credential offsets within
a memory page limits the possible success rate to maximally
25%. However we argue that this factor can alleviated by a
more thorough investigation of the target software stack, to
identify data structures suited for replay, with less varying
location offsets.

6. Discussion
In the previous sections we laid out the details how a mali-
cious hypervisor can exploit design issues in AMD’s upcom-
ing Secure Encrypted Virtualization technology to a) gain
access to a guest, b) read protected guest memory and c) to
fully revert any memory protection configured by the tenant.

In this chapter we discuss possible mitigations to these
threats, while evaluating their projected impact on perfor-
mance and usability.

6.1 Mitigations
The design issues discussed in Section 4 cannot be elimi-
nated by pure software changes. To thwart the attacks pre-
sented here we propose the following design changes for fu-
ture versions of SEV:

• Encrypted general purpose registers.
• No access to the vmcb after an initial configuration.
• Memory protection against hypervisor access.

Access to general purpose registers The general purpose
registers must never be visible to the hypervisor as they leak
sensitive guest data on any vmexit. A guest does not have
control over exits to the hypervisor, thus the encryption of
general purpose registers must be enforced by the hardware.
This imposes another difficulty as certain guest operations
require the hypervisor to read the general purpose registers.
For example when the guest writes data to a virtual device,
this memory access will lead to a trap into the hypervisor. If

the instruction causing the trap takes the value to write from
a register, the hypervisor attempting to emulate the access,
will not be able to read it when the general purpose regis-
ters are encrypted. To overcome this issue the vmcb must be
extended to contain decode assists for these events. As in-
dicated in [20] decode assists are already in place to allow
the hypervisor to read the instruction causing an vmexit.
For future versions of SEV these assists must be extended to
also contain the register values that contain the arguments to
the instruction. To ensure that malicious hypervisors cannot
force a guest to reveal register content through decode as-
sists, the system must ensure that only vmexit events caused
by traps to shared pages are augmented with these decode
assists.

Access to the vmcb Usually the vmcb is configured only
once during the initial setup while at runtime a benign hyper-
visor does not need to alter the vmcb, with some exceptions.
The fact that SEV allows us to alter the vmcb nevertheless,
imposes a security risk as it allows us to divert the control
flow of guest by setting an arbitrary instruction pointer. We
propose to alter the existing state caching mechanism to al-
low for creating a write-once vmcb. Currently the content of
the vmcb is already cached to improve context switch per-
formance. The CPU is allowed to use the cached values of
the vmcb unless the hypervisor explicitly clears bits in a spe-
cial vmcb area called vmcb clean field and thereby forces
the CPU to reread vmcb data. By prohibiting the hypervisor
from altering this field, the CPU is allowed to always use the
cached values. At the initial start of a guest the CPU copies
the hypervisor provided vmcb into the cache. During runtime
the system always uses the cached vmcb. As the initial vmcb
was taken into account for the remote attestation it can be as-
sumed to be trustworthy. If the hypervisor wants to schedule
another guest, hence another vmcb must be loaded, the sys-
tem must provide a way to store the cached vmcb encrypted
in normal memory.

However, there are elements in the vmcb which the hyper-
visor must be able to modify at runtime. Most importantly,
injecting virtual interrupts into a VM requires the modifi-
cation of several fields, among them V IRQ, V INTR PRIO,
V INTR MASKING and V INTR VECTOR. Efficient injection
of multiple pending interrupts also requires access to the
EVENTINJ field and to the VINTR bit in the generic instruc-
tion intercept selection bitmask. These elements would ei-
ther have to be excluded from our proposed “mandatory
caching” scheme, or AMD’s interrupt controller virtualiza-
tion (AVIC) could be declared as a dependency of SEV, thus
obsoleting those vmcb elements.

Access to guest memory Writes by the untrusted hypervi-
sor to guest memory are dangerous. The fact that no mem-
ory authentication is in use opens the door for fault injection
and replay attacks as presented in this paper. The most com-
mon way to protect memory from unauthorized access are
integrity trees. However, they induce a notable performance
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and memory space overhead [22]. In a more relaxed attack
model where physical attacks such as bus intercepts or direct
memory accesses are not considered, it is sufficient to pre-
vent the hypervisor from writing encrypted guest memory
using mechanisms such as CIP as presented in [23]. Yet the
exclusion of pages from hypervisor access requires non triv-
ial changes to the guest operation system as well as the hy-
pervisor. Further the proposed access restrictions impact or
even prohibit major cloud maintanace operations like snap-
shotting or live migration. Intel’s SGX technology uses both
encryption and integrity checks to protect the memory of en-
claves [14]. However, SGX enclaves are small compared to
VMs and it is thus still an open question whether protecting
the memory of complete VMs by integrity trees is feasible.

7. Related Work
In the following section we present a number of topics which
are relevant for this work.

7.1 Attacks
While attacks against AMD’s SEV have not been published,
several attacks against similar systems have been proposed.
Checkoway et al. [5] proposed an attack method dubbed Iago
whereby a malicious kernel manipulates system call return
values to mount arbitrary code execution attacks on a system
that protects userland applications from a malicious kernel.
This work clearly shows that it is important to secure the
system call interface from an adversary. Linux system calls
can be identified by a unique number that is stored in the
general purpose registers. As these registers are still subject
to manipulation by a hypervisor, this type of attack is also
applicable to AMD SEV.

Xu et al. [27] showed how secret data can be extracted by
inferring from page faults that specific execution paths in-
side an protected SGX enclave were executed. Using these
execution traces, they were able to reconstruct images that
where processed inside this enclave. Their approach of in-
ferring memory content based on pagetable fault informa-
tion, is similar to the approach used in the proposed replay
attack. SGX however does not hide the process internal ad-
dress mapping from the attacker, which allows for a much
more direct method of inference. Further they did not deal
with multiple concurrent processes.

Weichbrodt et al. proposed an attack dubbed AsyncShock
[25]. They exploit the fact that the operating system is re-
sponsible for scheduling SGX enclave threads. By forcing
enclave exits during the execution of multithreaded enclave
code, they were able to mount use-after-free and TOCTTOU
attacks on SGX protected enclaves.

7.2 Defenses
Protecting applications from higher privileged software has
been the subject of research for a long time. Many solu-
tions that target single applications were proposed such as

[6, 7, 13, 21]. Many of these solutions assume the existence
of a trusted hypervisor to enforce protection of single appli-
cations or parts of an application.

A different direction is explored in the publications [16,
23, 23, 28]. The goal of their research is to provide protec-
tion mechanisms that ensure the integrity and confidentiality
of the guest even in the case of a compromised hypervisor.
Zhang et al. proposed CloudVisor [28] where a trusted secu-
rity manager provides protection of guest VMs by the means
of nested virtualization. In contrast, Seongwook et al. pro-
posed H-SVM [16], a purely hardware-based mechanism to
protect guest systems. The guest memory is not mapped into
the hypervisor context and a new hardware component, H-
SVM, is controlling the nested pagetable. This ensures that
the hypervisor cannot access guest memory as it cannot cre-
ate mappings itself. H-SVM protects the guest state by set-
ting aside a dedicated memory area that is also not accessi-
ble by the hypervisor. If the hypervisor needs to access guest
memory, the corresponding page must be explicitly marked
by the guest. Physical attacks are not considered by H-SVM.

Similarly, Szefer et al. presented HyperWall [23]. Instead
of removing the hypervisor’s ability to manage the nested
pagetable, an additional protection mechanism is introduced:
Confidentiality and Intergrity Protection tables, short CIP.
These tables are consulted by the MMU when accessing
memory.

Xia et al [26] followed this path with HyperCoffer and
added protection against physical attacks by using encrypted
memory with integrity checks. In this later publication they
also address the lack of support for common cloud main-
tanance operations, like live migration or VM snapshoting
and restoration.

8. Conclusion
This paper presents a first security evaluation of the upcom-
ing Secure Encrypted Virtualization technology by AMD.
While there are no actual CPUs available yet, the official
documents published by AMD give away design issues that
can be exploited by a malicious hypervisor.
By implementing three proof-of-concept attacks we showed
that these issues can be exploited to fully circumvent the
protection mechanisms introduced by SEV. This reduces
the usefulness of the current SEV version to mere protec-
tion against cold-boot attacks. Furthermore we showed that
even when the hypervisor is not able to control the guest
using the vmcb and general purpose registers, the control
over the nested pagetable combined with the ability to in-
ject interrupts is enough to mount an replay attack. We pro-
posed possible hardware extensions to mitigate our attacks
and compared similar solutions presented by the scientific
community. Although we discovered serious design issues
of AMD’s SEV, we still think that the technology is promis-
ing considering the mitigations discussed in this paper.
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