Skip to main content
Log in

Phase separation and disorder in doped nematic elastomers

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We formulate and analyse a model describing the combined effect of mechanical deformation, dynamics of the nematic order parameter, and concentration inhomogeneities in an elastomeric mixture of a mesogenic and an isotropic component. The uniform nematic state may exhibit a long-wave instability corresponding to nematic-isotropic demixing. Numerical simulations starting from either a perfectly ordered nematic state or a quenched isotropic state show that coupling between the mesogen concentration and the nematic order parameter influences the shape and orientation of the domains formed during the demixing process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Poulin, H. Stark, T.C. Lubensky, D.A. Weitz, Science 275, 1770 (1997).

    Article  Google Scholar 

  2. H. Stark, Physics of Colloidal Dispersions in Nematic Liquid Crystals (North-Holland, Amsterdam, 2001).

  3. V.A. Raghunathan, Europhys. Lett. 24, 479 (1993).

    Article  ADS  Google Scholar 

  4. S. Samitsu, Y. Takanishi, J. Yamamoto, Nat. Mater. 9, 816 (2010).

    Article  ADS  Google Scholar 

  5. A.D. Rey, Soft Matter 6, 3402 (2010).

    Article  ADS  Google Scholar 

  6. A. Matsuyama, R.M.L. Evans, M.E. Cates, Eur. Phys. J. E 9, 79 (2002).

    Google Scholar 

  7. J. Fukuda, Phys. Rev. E 58, R6939 (1998).

    Article  ADS  Google Scholar 

  8. D. Kim, T. Kyu, T. Hashimoto, J. Polymer Sci. B 44, 3621 (2006).

    Article  Google Scholar 

  9. P.G. de Gennes, C. R. Acad. Sci., Ser. B 281, 101 (1975).

    Google Scholar 

  10. M. Warner, E.M. Terentjev, Liquid Crystal Elastomers (Clarendon Press, Oxford, 2003).

  11. M. Hébert, R. Kant, P.G. de Gennes, J. Phys. I 7, 909 (1997).

    Google Scholar 

  12. P. Bladon, E.M. Terentjev, M. Warner, Phys. Rev. E 47, R3838 (1993).

    Article  ADS  Google Scholar 

  13. J. Kundler, H. Finkelmann, Macromol. Rapid Commun. 16, 679 (1995).

    Article  Google Scholar 

  14. S. Conti, A. DeSimone, G. Dolzmann, Phys. Rev. E 66, 061710 (2002).

    Article  ADS  Google Scholar 

  15. T.C. Lubensky, F. Ye, Phys. Rev. E 82, 011704 (2010).

    Article  ADS  Google Scholar 

  16. B.L. Mbanga, F. Ye, J.V. Selinger, R.L.B. Selinger, Phys. Rev. E 82, 051701 (2010).

    Article  ADS  Google Scholar 

  17. E. Fried, S. Sellers, J. Appl. Phys. 100, 043521 (2006).

    Article  ADS  Google Scholar 

  18. C. D. Modes, K. Bhattachariya, M. Warner, Proc. R. Soc. London, Ser. A 467, 1121 (2011).

    Article  ADS  MATH  Google Scholar 

  19. W. Zhu, M. Shelley, P. Palffy-Muhoray, Phys. Rev. E 83, 051703 (2011).

    Article  ADS  Google Scholar 

  20. S.K Das, A.D. Rey, J. Chem. Phys. 121, 9733 (2004).

    Article  ADS  Google Scholar 

  21. D.R. Anderson, D.E Carlson, E. Fried, J. Elasticity 56, 33 (1999).

    Article  MathSciNet  Google Scholar 

  22. D.E. Carlson, E. Fried, S. Sellers, J. Elasticity 69, 161 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  23. V. Agostiniani, A. DeSimone, Int. J. Non-Linear Mech. 47, 402 (2012).

    Article  ADS  Google Scholar 

  24. E.K. Rodriguez, A. Hoger, A.D. McCulloch, J. Biomech 27, 455 (1994).

    Article  Google Scholar 

  25. L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Pergamon Press, Oxford, 1970).

  26. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, U.K., 1993).

  27. C. Ohm, M. Brehmer, R. Zentel, Adv. Mater. 22, 3366 (2010).

    Article  Google Scholar 

  28. J.D. Goddard, Annu. Rev. Fluid Mech. 35, 113 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  29. T. Qian, P. Sheng, Phys. Rev. E 58, 7475 (1998).

    Article  ADS  Google Scholar 

  30. S. Fürthauer, M. Neef, S.W. Grill, K. Kruse, F. Jülicher, New J. Phys. 14, 023001 (2012).

    Article  Google Scholar 

  31. J.P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd edition (Dover, New York, 2000).

  32. W.H. Press, Numerical Recipes in C (Cambridge University Press, Cambridge, 1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Pismen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köpf, M.H., Pismen, L.M. Phase separation and disorder in doped nematic elastomers. Eur. Phys. J. E 36, 121 (2013). https://doi.org/10.1140/epje/i2013-13121-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13121-1

Keywords

Navigation