Skip to main content
Log in

Curvature effects on the velocity profile in turbulent pipe flow

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Prandtl and von Kármán have developed the famous log-law for the mean velocity profile for turbulent flow over a plate. The log-law has also been applied to turbulent pipe flow, though the wall surface is curved (in span-wise direction) and has finite diameter. Here we discuss the theoretical framework, based on the Navier-Stokes equations, with which one can describe curvature effects and also the well-known finite-size effects in the turbulent mean-velocity profile. When comparing with experimental data we confirm that the turbulent eddy viscosity must contain both curvature and finite-size contributions and that the usual ansatz for the turbulent eddy viscosity as being linear in the wall distance is insufficient, both for small and large wall distances. We analyze the experimental velocity profile in terms of an r-dependent generalized turbulent viscosity \(\nu_{turb} \equiv u_{\ast} a g(\rho /a)\) (with \(\rho\) being the wall distance, a pipe radius, u * shear stress velocity, and g(\(\rho\)/a) the nondimensionalized viscosity), which reflects the radially strongly varying radial eddy transport of the axial velocity. After the near wall linear viscous sublayer, which soon sees the pipe wall's curvature, a strong transport (eddy) activity steepens the profile considerably, leading to a maximum in g(\(\rho\)/a) at about half radius, then decreasing again towards the pipe center. This reflects the smaller eddy transport effect near the pipe's center, where even in strongly turbulent flow (the so-called “ultimate state”) the profile remains parabolic. The turbulent viscous transport is strongest were the deviations of the profile from parabolic are strongest, and this happens in the range around half radius.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Tennekes, J.L. Lumley, A first course in turbulence (The MIT Press, Cambridge, Massachusetts, 1972)

  2. H. Schlichting, Boundary layer theory, 7th ed. (McGraw Hill, New York, 1979)

  3. A.A. Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1976)

  4. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1987).

  5. H. Schlichting, K. Gersten, Boundary layer theory, 8th ed. (Springer Verlag, Berlin, 2000)

  6. S.B. Pope, Turbulent Flow (Cambridge University Press, Cambridge, 2000)

  7. H. Reichardt, Z. Angew. Math. Mech. 31, 108 (1951)

    Google Scholar 

  8. D.B. Spalding, J. Appl. Mech. 28, 455 (1961)

    Article  ADS  Google Scholar 

  9. R.L. Panton, J. Fluid Eng. 119, 325 (1997)

    Article  Google Scholar 

  10. N. Afzal, K. Yajnik, J. Fluid Mech. 61, 23 (1973)

    Article  ADS  Google Scholar 

  11. Y. Mizuno, J. Jimenez, Phys. Fluids 23, 085112 (2011)

    Article  ADS  Google Scholar 

  12. S. Pirozzoli, J. Fluid Mech. 745, 378 (2014)

    Article  ADS  Google Scholar 

  13. J.O. Hinze, Turbulence (McGraw-Hill, New York, 1975)

  14. C.B. Millikan, in Proceedings of the 5th Int. Congr. Appl. Mech. (Wiley/Chapman and Hall, New York, 1938) p. 386

  15. I. Marusic, B.J. McKeon, P.A. Monkewitz, H.M. Nagib, A.J. Smits, K.R. Sreenivasan, Phys. Fluids 22, 065103 (2010)

    Article  ADS  Google Scholar 

  16. A.J. Smits, B.J. McKeon, I. Marusic, Annu. Rev. Fluid Mech. 43, 353 (2011)

    Article  ADS  Google Scholar 

  17. X. Wu, J.R. Baltzer, R.J. Adrian, J. Fluid Mech. 698, 235 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  18. J. Jimenez, Annu. Rev. Fluid Mech. 44, 27 (2012)

    Article  ADS  Google Scholar 

  19. M. Hultmark, M. Vallikivi, S.C.C. Bailey, A.J. Smits, Phys. Rev. Lett. 108, 094501 (2012)

    Article  ADS  Google Scholar 

  20. J. Jimenez, Phys. Fluids 25, 101302 (2013)

    Article  ADS  Google Scholar 

  21. S.C.C. Bailey, M. Hultmark, J.P. Monty, P.H. Alfredsson, M.S. Chong, R.D. Duncan, J.H.M. Fransson, N. Hutchins, I. Marusic, B.J. McKeon, H.M. Nagib, R. Orlu, A. Segalini, A.J. Smits, R. Vinuesa, J. Fluid Mech. 715, 642 (2013)

    Article  ADS  Google Scholar 

  22. M. Hultmark, M. Vallikivi, S.C.C. Bailey, A.J. Smits, J. Fluid. Mech. 728, 376 (2013)

    Article  ADS  Google Scholar 

  23. I. Marusic, J.P. Monty, M. Hultmark, A.J. Smits, J. Fluid. Mech. 716, R3 (2013)

    Article  ADS  Google Scholar 

  24. A.J. Smits, I. Marusic, Phys. Today 66, 25 (2013)

    Article  Google Scholar 

  25. S.C.C. Bailey, M. Vallikivi, M. Hultmark, A.J. Smits, J. Fluid Mech. 749, 79 (2014)

    Article  ADS  Google Scholar 

  26. S. Grossmann, D. Lohse, C. Sun, Phys. Fluids 26, 025114 (2014)

    Article  ADS  Google Scholar 

  27. P.R. Spalart, J. Fluid Mech. 187, 61 (1988)

    Article  ADS  Google Scholar 

  28. S. Grossmann, D. Lohse, Phys. Fluids 24, 125103 (2012)

    Article  ADS  Google Scholar 

  29. A.E. Perry, M.S. Chong, J. Fluid Mech. 119, 106 (1982)

    Article  Google Scholar 

  30. A.E. Perry, I. Marusic, J. Fluid Mech. 298, 361 (1995)

    Article  ADS  Google Scholar 

  31. C.M. de Silva, I. Marusic, J.D. Woodcock, C. Meneveau, J. Fluid Mech. 769, 654 (2015)

    Article  ADS  Google Scholar 

  32. C. Meneveau, I. Marusic, J. Fluid Mech. 719, R1 (2013)

    Article  ADS  Google Scholar 

  33. X.I.A. Yang, I. Marusic, C. Meneveau, J. Fluid Mech. 791, R2 (2016)

    Article  ADS  Google Scholar 

  34. B. Eckhardt, S. Grossmann, D. Lohse, J. Fluid Mech. 581, 221 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  35. S. Grossmann, D. Lohse, A. Reeh, Phys. Fluids 9, 3817 (1997)

    Article  ADS  Google Scholar 

  36. M. Vallikivi, M. Hultmark, S.C.C. Bailey, A.J. Smits, Exp. Fluids 51, 1521 (2011)

    Article  Google Scholar 

  37. S.C.C. Bailey, G.J. Kunkel, M. Hultmark, M. Vallikivi, J. Hill, K. Meyer, C.B. Arnold, A.J. Smits, J. Fluid Mech. 663, 160 (2010)

    Article  ADS  Google Scholar 

  38. M.V. Zagarola, A.J. Smits, J. Fluid Mech. 373, 33 (1998)

    Article  ADS  Google Scholar 

  39. M.V. Zagarola, Ph.D. thesis, Princeton University, 1996

  40. S. Grossmann, D. Lohse, Phys. Fluids 23, 045108 (2011)

    Article  ADS  Google Scholar 

  41. D. Coles, J. Fluid Mech. 1, 191 (1956)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlef Lohse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grossmann, S., Lohse, D. Curvature effects on the velocity profile in turbulent pipe flow. Eur. Phys. J. E 40, 16 (2017). https://doi.org/10.1140/epje/i2017-11504-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11504-x

Keywords

Navigation