Skip to main content
Log in

Electron impact ionization cross section studies of C2F x (x = 1 − 6) and C3F x (x = 1 − 8) fluorocarbon species

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The total ionization cross section for C2F x (x = 1 − 6) and C3F x (x = 1 − 8) fluorocarbon species are studied with the Binary-Encounter Bethe (BEB) model using various orbital parameters calculated from restricted/unrestricted Hartree-Fock (RHF/UHF) and Density Functional Theory (DFT). All the targets were optimized for their minimal structures and energies with several ab-initio methods with the aug-cc-pVTZ basis set. Among them, the present results with RHF/UHF orbital energies showed good agreement with the experimental results for stable targets C2F6, C2F4, C3F6 and C3F8. The results with the DFT (ωB97X/ωB97X-D) showed a reasonable agreement with the recent calculation of Bull et al. [J.N. Bull, M. Bart, C. Vallance, P.W. Harland, Phys. Rev. A 88, 062710 (2013)] for C2F6, C3F6 and C3F8 targets. The ionization cross section for C2F, C2F2, C2F3, C3F, C3F2, C3F3, C3F4, C3F5 and C3F7 were computed for the first time in the present study. We have also computed the vertical ionization potentials and polarizability for all the targets and compared them with other experimental and theoretical values. A good agreement is found between the present and the previous results. The calculated polarizability in turn is used to study the correlation with maximum ionization cross section and in general a good correlation is found among them, confirming the consistency and reliability of the present data. The cross section data reported in this article are very important for plasma modeling especially related to fluorocarbon plasmas.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.J. Keiffer, G.H. Dunn, Rev. Mod. Phys. 38, 1 (1966), and references. therein.

    Article  ADS  Google Scholar 

  2. K.N. Dzhumagulova, E.O. Shalenov, G.L. Gabdullin, Phys. Plasmas 20, 042702 (2013)

    Article  ADS  Google Scholar 

  3. K.N. Dzhumagulova, E.O. Shalenov, T.S. Ramazanov, Phys. Plasmas 22, 082120 (2015)

    Article  ADS  Google Scholar 

  4. T.S. Ramazanov, K.N. Dzhumagulova, G.L. Gabdullin, Phys. Plasmas 17, 042703 (2010)

    Article  ADS  Google Scholar 

  5. C.-G. Kim, Y.-D. Jung, Phys. Plasmas 19, 014502 (2012)

    Article  ADS  Google Scholar 

  6. D.W. Flaherty, M.A. Kasper, J.E. Baio, D.B. Graves, H.F. Winters, C. Winstead, V. McKoy, J. Phys. D: Appl. Phys. 39, 4393 (2006)

    Article  ADS  Google Scholar 

  7. V. Tarnovsky, H. Deutsch, K. Becker, J. Phys. B: At. Mol. Opt. Phys. 32, L573 (1999)

    Article  ADS  Google Scholar 

  8. Y.K. Kim, K.K. Irikura, AIP Conf. Proc. 543, 220 (2000)

    Article  ADS  Google Scholar 

  9. S.J. Moss, A. Ledwith, The chemistry of the semiconductor industry (Blackie, London, 1987)

  10. S.J. Moss, A. Ledwith, P.L. Timms, J. Chem. Soc. Dalton Trans. 815, (1999)

  11. J. Benedikt, J. Phys. D: Appl. Phys. 43, 043001 (2010)

    Article  ADS  Google Scholar 

  12. P. Verma, D. Mahato, J. Kaur, B. Antony, Phys. Plasmas 23, 093512 (2016)

    Article  ADS  Google Scholar 

  13. H. Nishimura, W.M. Huo, M.A. Ali, Y.-K. Kim, J. Chem. Phys. 110, 3811 (1999), and references therein

    Article  ADS  Google Scholar 

  14. Y.-K. Kim, M.E. Rudd, Phys. Rev. A 50, 3954 (1994)

    Article  ADS  Google Scholar 

  15. W. Hwang, Y.-K. Kim, M.E. Rudd, J. Chem. Phys. 104, 2956 (1996)

    Article  ADS  Google Scholar 

  16. M. Bart, P.W. Harland, J.E. Hudson, C. Vallance, Phys. Chem. Chem. Phys. 3, 800 (2001)

    Article  Google Scholar 

  17. D. Margreiter, H. Deutsch, T.D. Märk, Contr. Plasma Phys. 30, 487 (1990)

    Article  ADS  Google Scholar 

  18. J.N. Bull, M. Bart, C. Vallance, P.W. Harland, Phys. Rev. A 88 062710 (2013)

    Article  ADS  Google Scholar 

  19. J.V. Ortiz, J. Chem. Phys. 104, 7599 (1996)

    Article  ADS  Google Scholar 

  20. J.N. Bull, P.W. Harland, C.J. Vallance, Phys. Chem. A 116, 767 (2012)

    Article  Google Scholar 

  21. J.A. Beran, L. Kevan, J. Phys. Chem. 73, 3866 (1969)

    Article  Google Scholar 

  22. R. Basner, M. Schmidt, E. Denisov, P. Lopata, K. Becker, H. Deutsch, Int. J. Mass Spectrom. 214, 365 (2002)

    Article  ADS  Google Scholar 

  23. M.V. Kurepa, 3rd Cz. Conference on Electronics and Vacuum Transactions (1965)

  24. H.U. Poll, J. Meichsner, Contrib. Plasma Phys. 27, 359 (1987)

    Google Scholar 

  25. C.Q. Jiao, A. Garscadden, P.D. Haaland, Chem. Phys. Lett. 325, 203 (2000)

    Article  ADS  Google Scholar 

  26. H. Deutsch, K. Becker, R. Basner, M. Schmidt, T.D. Märk, J. Phys. Chem. 102, 8819 (1998)

    Article  Google Scholar 

  27. A. Jain, K.L. Baluja, Phys. Rev. A 45, 202 (1992)

    Article  ADS  Google Scholar 

  28. D. Gupta, B. Antony, J. Chem. Phys. 141, 054303 (2014)

    Article  ADS  Google Scholar 

  29. B.K. Antony, K.N. Joshipura, N.J. Mason, J. Phys. B: At. Mol. Opt. Phys. 38, 189 (2005)

    Article  ADS  Google Scholar 

  30. L.G. Christophorou, J.K. Olthoff, J. Phys. Chem. Ref. Data 27, 1 (1998)

    Article  ADS  Google Scholar 

  31. L.G. Christophorou, J.K. Olthoff, J. Phys. Chem. Ref. Data 27, 889 (1998)

    Article  ADS  Google Scholar 

  32. L.G. Christophorou, J.K. Olthoff, J. Phys. Chem. Ref. Data 30, 449 (2001)

    Article  ADS  Google Scholar 

  33. N.F. Mott, Proc. R. Soc. Lond. Ser. A 126, 259 (1930)

    Article  ADS  Google Scholar 

  34. H.A. Bethe, Ann. Phys. 5, 325 (1930)

    Article  Google Scholar 

  35. Y.-K. Kim, W. Hwang, N.M. Weinberg, M.A. Ali, M.E. Rudd, J. Chem. Phys. 106, 1026 (1997)

    Article  ADS  Google Scholar 

  36. M.A. Ali, Y.-K. Kim, W. Hwang, N.M. Weinberg, M.E. Rudd, J. Chem. Phys. 106, 9602 (1997)

    Article  ADS  Google Scholar 

  37. Y.-K. Kim, M.A. Ali, M.E. Rudd, J. Res. Natl. Inst. Stand. Technol. 102 693 (1997)

    Article  Google Scholar 

  38. Y.-K. Kim, M.E. Rudd, Comments At. Mol. Phys. 34, 293 (1999)

    Google Scholar 

  39. J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008)

    Article  Google Scholar 

  40. J.-D. Chai, M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008)

    Article  ADS  Google Scholar 

  41. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  42. C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999)

    Article  ADS  Google Scholar 

  43. R. Kanakaraju, K. Senthilkumar, P. Kolandaivel, J. Mol. Struct. (Theochem.) 589/590, 95 (2002)

    Article  Google Scholar 

  44. M.J. Frisch et al., Gaussian 09, Revision D.01, Gaussian, Inc. Wallingford CT (2013)

  45. G. Bieri, E. Heilbronner, J.-P. Stadelmann, J. Vogt, W.V. Niessen, J. Am. Chem. Soc. 99, 6832 (1977)

    Article  Google Scholar 

  46. S.G. Lias, J.E. Bartmess, J.F. Liebman, J.L. Holmes, R.D. Levin, W.G. Mallard, J. Phys. Chem. Ref. Data 17, Suppl. 1 (1988)

  47. G. Bieri, W.V. Niessen, L. Asbrink, A. Svensson, Chem. Phys. 60, 61 (1981)

    Article  ADS  Google Scholar 

  48. I.P. Fisher, J.B. Homer, F.P. Lossing, J. Am. Chem. Soc. 87, 957 (1965)

    Article  Google Scholar 

  49. M.G. Inghram, G.R. Hanson, R. Stockbauer, Int. J. Mass Spectrom. Ion Phys. 33, 253 (1980)

    Article  ADS  Google Scholar 

  50. R.K. Thomas, H. Thompson, Proc. R. Soc. London A 339, 29 (1974)

    Article  ADS  Google Scholar 

  51. N.D. Kagramanov, K. Ujszaszy, J. Tamas, A.K. Maltsev, O.M. Nefedov, Bull. Acad. Sci. USSR, Div. Chem. Sci. 7, 1531 (1983)

    Article  Google Scholar 

  52. D.W. Berman, D.S. Bomes, J.L. Beauchamp, Int. J. Mass Spectrom. Ion Phys. 39, 263 (1981)

    Article  ADS  Google Scholar 

  53. M.J.S. Dewar, S.D. Worley, J. Chem. Phys. 50, 654 (1969)

    Article  ADS  Google Scholar 

  54. W. Wang, Y. Wu, M.Z. Rong, L. Éhn, I. Èernušak, J. Phys. D: Appl. Phys. 45, 285201 (2012)

    Article  Google Scholar 

  55. L. Éhn, I. Èernšáuk, P. Neogrády, Croat. Chem. Acta 82, 253 (2009)

    Google Scholar 

  56. F.W. Lampe, J.L. Franklin, F.H. Field, J. Am. Chem. Soc. 79, 6129 (1957)

    Article  Google Scholar 

  57. P.W. Harland, C. Vallance, Int. J. Mass Spectrom. Ion Proc. 171, 173 (1997)

    Article  ADS  Google Scholar 

  58. J.E. Hudson, Ze F. Weng, C. Vallance, P.W. Harland, Int. J. Mass. Spectrom. 248, 42 (2006)

    Article  ADS  Google Scholar 

  59. D. Gupta, R. Naghma, B. Antony, Can. J. Phys. 91, 744 (2013)

    Article  ADS  Google Scholar 

  60. J. Kaur, D. Gupta, R. Naghma, D. Ghoshal, B. Antony, Can. J. Phys. 93, 617 (2015)

    Article  ADS  Google Scholar 

  61. D. Gupta, R. Naghma, B. Antony, Mol. Phys. 112, 1201 (2014)

    Article  ADS  Google Scholar 

  62. G.P. Karwasz, P. Możejko, Mi-Young Song, Int. J. Mass Spectrom. 365/366, 232 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhanoj Gupta.

Additional information

Contribution to the Topical Issue “Atomic and Molecular Data and their Applications”, edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, D., Choi, H., Song, MY. et al. Electron impact ionization cross section studies of C2F x (x = 1 − 6) and C3F x (x = 1 − 8) fluorocarbon species. Eur. Phys. J. D 71, 88 (2017). https://doi.org/10.1140/epjd/e2017-70769-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70769-6

Navigation