Skip to main content
Log in

On the relevance of the maximum entropy principle in non-equilibrium statistical mechanics

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

At first glance, the maximum entropy principle (MEP) apparently allows us to derive, or justify in a simple way, fundamental results of equilibrium statistical mechanics. Because of this, a school of thought considers the MEP as a powerful and elegant way to make predictions in physics and other disciplines, rather than a useful technical tool like others in statistical physics. From this point of view the MEP appears as an alternative and more general predictive method than the traditional ones of statistical physics. Actually, careful inspection shows that such a success is due to a series of fortunate facts that characterize the physics of equilibrium systems, but which are absent in situations not described by Hamiltonian dynamics, or generically in nonequilibrium phenomena. Here we discuss several important examples in non equilibrium statistical mechanics, in which the MEP leads to incorrect predictions, proving that it does not have a predictive nature. We conclude that, in these paradigmatic examples, an approach that uses a detailed analysis of the relevant aspects of the dynamics cannot be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106, 620 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. E.T. Jaynes, Information theory and statistical mechanics II, Phys. Rev. 108, 171 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. E.T. Jaynes, Information Theory and Statistical Mechanics, in K. Ford (ed.), Statistical Physics (Benjamin, New York, 1963), pp. 181–218

  4. S. Chibbaro, L. Rondoni, A. Vulpiani, Reductionism, Emergence and Levels of Reality: The Importance of Being Borderline (Springer, Heidelberg, 2014)

  5. S. Chibbaro, L. Rondoni, A. Vulpiani, On the foundations of statistical mechanics: ergodicity, many degrees of freedom and inference, Comm. Theor. Phys. 62, 469 (2014)

    Article  MATH  Google Scholar 

  6. J. Uffink, Can the maximum entropy principle be explained as a consistency requirement?, Stud. History Philos. Mod. Phys. 26, 223 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. J. Uffink, The constraint rule of the maximum entropy principle, Stud. History Philos. Mod. Phys. 27, 47 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. A. Shimony, The Status of the Principle of Maximum Entropy, Synthese 63, 35. Search for a Naturalistic Point of View, Cambridge, University Press

  9. K. Friedman, A. Shimny, Jaynes’s maximum entropy prescription and probability theory, J. Stat. Phys. 3, 381 (1971)

    Article  ADS  Google Scholar 

  10. P.W. Atkins, J. De Paula, Physical Chemistry (Oxford, University Press, 2002, 2nd ed. 2006)

  11. A.C. Elitzur, Locality and indeterminism preserve the second law, Phys. Lett. A167, 335 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  12. A.C. Elitzur, S. Dolev, Quantum Phenomena Within a New Theory of Time, in A.C., Elitzur, S. Dolev, N. Kolenda (eds.), Quo Vadis Quantum Mechanics? (Springer, Berlin, 2005) pp. 325–49

  13. J.L. Lebowitz, Boltzmann’s entropy and time’s arrow, Phys. Today 46, 32 (1993)

    Article  Google Scholar 

  14. M. Falcioni, L. Palatella, S. Pigolotti, L. Rondoni, A. Vulpiani, Initial growth of Boltzmann entropy and chaos in a large assembly of weakly interacting systems, Phys. A 385, 170 (2007)

    Article  MathSciNet  Google Scholar 

  15. O.E. Lanford, III, in: J. Moser (ed.), Dynamical Systems, Theory and Applications, Lecture Notes in Physics (Springer, Berlin, 1975), Vol. 38

  16. L. Cerino, F. Cecconi, M. Cencini, A. Vulpiani, The role of the number of degrees of freedom and chaos in macroscopic irreversibility, Physica A 442, 486 (2016)

    Article  ADS  Google Scholar 

  17. A.L. Kuzemsky, Probability information and statistical physics, Int. J. Theor. Phys. 55, 1378 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge University Press, 1995)

  19. T. Bohr, M.H. Jensen, G. Paladin, A. Vulpiani, Dynamical Systems Approach to Turbulence (Cambridge University Press, 1998)

  20. P.D. Ditlevsen, I.A. Mogensen, Cascades and statistical equilibrium in shell models of turbulence, Phys. Rev. E 53, 4785 (1996)

    Article  ADS  Google Scholar 

  21. M.H. Jensen, G. Paladin, A. Vulpiani, Intermittency in a cascade molel for 3-dimensional turbulence, Phys. Rev. A 43, 798 (1991)

    Article  ADS  Google Scholar 

  22. R. Dewar, Information theory explanation of the fluctuation theorem maximum entropy production and self-organized criticality in non-equilibrium stationary states, J. Phys. A36, 631 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  23. R. Dewar, Maximum entropy production and the fluctuation theorem, J. Phys. A38, L371 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  24. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991)

  25. L. Onsager, S. Machlup, Fluctuations and irreversible processes, Phys. Rev. 91, 1505 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. S.K. Ma, Statistical Mechanics (World Scientific, Singapore, 1985)

  27. D.J. Evans, D.J. Searles, L. Rondoni, Application of the Gallavotti-Cohen fluctuation relation to thermostated steady states near equilibrium, Phys. Rev. E 71, 056120 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  28. L. Rondoni, C. Mejà-Monasterio, Fluctuations in nonequilibrium statistical mechanics: models, mathematical theory, physical mechanisms, Nonlinearity 20, R1 (2007)

    Article  ADS  MATH  Google Scholar 

  29. U. Marini Bettolo Marconi, A. Puglisi, L. Rondoni, A. Vulpiani, Fluctuation-dissipation: Response theory in statistical physics, Phys. Rep. 461, 111 (2008)

    Article  ADS  Google Scholar 

  30. E.G.D. Cohen, G. Gallavotti, Note on two theorems in nonequilibrium statistical mechanics, J. Stat. Phys. 96, 1343 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. D.J. Searles, L. Rondoni, D.J. Evans, The steady state fluctuation relation for the dissipation function, J. Stat. Phys. 128, 1337 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. F. Bonetto, G. Gallavotti, A. Giuliani, F. Zamponi, Chaotic hypothesis, fluctuation theorem and singularities, J. Stat. Phys. 123, 39 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. F. Bonetto, G. Gallavotti, Reversibility, coarse graining and the chaoticity principle, Commun. Math. Phys. 189, 263 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. L. Rondoni, G.P. Morriss, Large fluctuations and axiom-Cstructures in deterministically thermostatted systems, Open Syst. Inf. Dynam. 10, 105 (2003)

    Article  MATH  Google Scholar 

  35. G. Gallavotti, L. Rondoni, E. Segre, Lyapunov spectra and nonequilibrium ensembles equivalence in 2D fluid mechanics, Physica D 187, 338 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. J. Farago, Injected power fluctuations in Langevin equation, J. Stat. Phys. 107, 781 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. G.M. Wang, E.M. Sevick, E. Mittag, D.J. Searles, D.J. Evans, Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales, Phys. Rev. Lett. 89, 050601 (2002)

    Article  ADS  Google Scholar 

  38. R. van Zon, E.G.D. Cohen, Stationary and transient work-fluctuation theorems for a dragged Brownian particle, Phys. Rev. E 67, 046102 (2003)

    Article  ADS  Google Scholar 

  39. M. Baiesi, T. Jacobs, C. Maes, N.S. Skantzos, Fluctuation symmetries for work and heat, Phys. Rev. E 74, 021111 (2006)

    Article  ADS  Google Scholar 

  40. T. Mai, A. Dhar, Nonequilibrium work fluctuations for oscillators in non-Markovian baths, Phys. Rev. E 75, 061101 (2007)

    Article  ADS  Google Scholar 

  41. R.J. Harris, Ràkos, M. Schütz, Breakdown of Gallavotti-Cohen symmetry for stochastic dynamics, Europhys. Lett. 75, 227 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  42. L. Conti, P. De Gregorio, G. Karapetyan, C. Lazzaro, M. Pegoraro, M. Bonaldi, L. Rondoni, Effects of breaking vibrational energy equipartition on measurements of temperature in macroscopic oscillators subject to heat flux, JSTAT 2013, P12003 (2013)

    Article  Google Scholar 

  43. G. Auletta, A Paradigm Shift in Biology? Information 1, 28 (2010)

    Google Scholar 

  44. G. Auletta, Cognitive Biology: Dealing with Information from Bacteria to Minds, (Oxford University Press, 2011)

  45. I. Prigogine, Etude thermodynamique des phénomènes irréversibles (Desoer, Liège, 1947)

  46. K.J. Friston, B. Sengupta, G. Auletta, Cognitive Dynamics: From Attractors to Active Inference, Proc. IEEE 102, 427 (2014)

    Article  Google Scholar 

  47. Ch. Feinauer, M.J. Skwark, A. Pagnani, E. Aurell, Improving Contact Prediction along Three Dimensions, PLOS Comp. Biol. 10, e1003847 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gennaro Auletta, Lamberto Rondoni or Angelo Vulpiani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auletta, G., Rondoni, L. & Vulpiani, A. On the relevance of the maximum entropy principle in non-equilibrium statistical mechanics. Eur. Phys. J. Spec. Top. 226, 2327–2343 (2017). https://doi.org/10.1140/epjst/e2017-70064-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2017-70064-x

Navigation