Skip to main content
Log in

Scalings and universality for high-frequency excited high-pressure argon microplasma

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The breakdown transition mechanism, scaling law for transition frequency, and universal law for breakdown voltage of a Ramsauer gas Ar with various ranges of neutral gas pressure and micron gap distance between parallel electrodes are examined. The electron kinetics in argon gas is analyzed to understand the reason of the abrupt transition of breakdown voltage partitioning γ- and α-regimes. The quiver motion of electron in high frequency source implies that the breakdown voltage drastically drops when the oscillating amplitude of an electron becomes smaller than its critical value. The scaling law, which reveals that the transition frequency is inversely proportional to the neutral gas pressure and the gap distance to the fractional power, supports the conjecture about the transition mechanism, and this is confirmed by particle-in-cell incorporating Monte Carlo collision (PIC/MCC) simulations. Breakdown voltage as a function of the product of the neutral gas pressure and gap distance, the ratio of the driving frequency and neutral gas pressure, secondary electron emission coefficient induced by the ion bombardment, and the ratio of gap distance over the radius of electrodes is expressed by the universal law which, as well, are confirmed by the PIC/MCC and fluid simulations. Furthermore, no universality is observed at the plasma size of 3 μm with field emission under diversified neutral gas pressure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Iza, G.J. Kim, S.M. Lee, J.K. Lee, J.L. Walsh, Y.T. Zhang, M. Kong, Plasma Proc. Polymers 5, 322 (2008)

    Article  Google Scholar 

  2. X. Lu, G.V. Naidis, M. Laroussi, S. Reuter, D.B. Graves, K. Ostrikov, Physics Reports 630, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. D. Dobrynin, G. Fridman, G. Friedman, A. Fridman, New J. Phys. 11, 115020 (2009)

    Article  ADS  Google Scholar 

  4. S.K. Kang, P.Y. Kim, I.G. Koo, H.Y. Kim, J.C. Jung, M.Y. Choi, J.K. Lee, G.J. Collins, Plasma Proc. Polymers 9, 446 (2012)

    Article  Google Scholar 

  5. G. Isbary, W. Stolz, T. Shimizu, R. Monetti, W. Bunk, H.-U. Schmidt, G.E. Morfill, T.G. Klämpfl, B. Steffes, H.M. Thomas, J. Heinlin, S. Karrer, M. Landthaler, J.L. Zimmermann, Clinical Plasma Medicine 1, 25 (2013)

    Article  Google Scholar 

  6. K.H. Schoenbach, K. Becker, Eur. Phys. J. D 70, 29 (2016)

    Article  ADS  Google Scholar 

  7. F. Iza, J.K. Lee, M.G. Kong, Phys. Rev. Lett. 99, 075004 (2007)

    Article  ADS  Google Scholar 

  8. J. Choi, F. Iza, H.J. Do, J.K. Lee, M.H. Cho, Plasma Sources Sci. Technol. 82, 025029 (2009)

    Article  ADS  Google Scholar 

  9. J.L. Walsh, F. Iza, N.B. Janson, V.J. Law, M.G. Kong, J. Phys. D: Appl. Phys. 43, 075201 (2010)

    Article  ADS  Google Scholar 

  10. J. Gregorio, A.R. Hoskinson, J. Hopwood, J. Appl. Phys. 118, 083305 (2015)

    Article  ADS  Google Scholar 

  11. M. Radmilović-Radjenović, J.K. Lee, Phys. Plasmas 12, 063501 (2005)

    Article  ADS  Google Scholar 

  12. V. Lisovskiy, J.-P. Booth, K. Landry, D. Douai, V. Cassagne, V. Yegorenkov, Europhys. Lett. 82, 15001 (2008)

    Article  ADS  Google Scholar 

  13. K. McKay, F. Iza, M.G. Kong, Eur. Phys. J. D 60, 497 (2010)

    Article  ADS  Google Scholar 

  14. H.C. Kwon, I.H. Won, J.K. Lee, Appl. Phys. Lett. 100, 183702 (2012)

    Article  ADS  Google Scholar 

  15. I. Korolov, Z. Donko, Phys. Plasmas 22, 093501 (2015)

    Article  ADS  Google Scholar 

  16. M.U. Lee, S.Y. Jeong, I.H. Won, S.K. Sung, J.K. Lee, G.S. Yun, Phys. Plasmas 23, 070704 (2016)

    Article  ADS  Google Scholar 

  17. M.U. Lee, J. Lee, J.K. Lee, G.S. Yun, Plasma Sources Sci. Technol. 26, 034003 (2017)

    Article  ADS  Google Scholar 

  18. F.L. Jones, G.C. Williams, Proc. Phys. Soc. B 64, 560 (1951)

    Article  ADS  Google Scholar 

  19. J.P. Verboncoeur, A.B. Langdon, N.T. Gladd, Comput. Phys. Commun. 87, 199 (1995)

    Article  ADS  Google Scholar 

  20. H.C. Kim, F. Iza, S.S. Yang, M. Radmilović-Radjenović, J.K. Lee, J. Phys. D: Appl. Phys. 38, R283 (2005)

    Article  ADS  Google Scholar 

  21. M. Hayashi, S. Ushiroda, J. Chem. Phys. 78, 2621 (1983)

    Article  ADS  Google Scholar 

  22. M.A. Herlin, S.C. Brown, Phys. Rev. 74, 291 (1948)

    Article  ADS  Google Scholar 

  23. T. Kihara, Rev. Mod. Phys. 24, 45 (1952)

    Article  ADS  Google Scholar 

  24. G. Chen, L.L. Raja, J. Appl. Phys. 96, 6073 (2004)

    Article  ADS  Google Scholar 

  25. H. Margenau, Phys. Rev. 69, 508 (1946)

    Article  ADS  Google Scholar 

  26. R.H. Fowler, L. Nordheim, Proc. Phys. Soc. A 119, 173 (1928)

    Article  Google Scholar 

  27. W.S. Boyle, P. Kisliuk, Phys. Rev. 97, 255 (1955)

    Article  ADS  Google Scholar 

  28. A. Garscadden, Atmospheric Pressure Glow Discharges in “Low Temperature Plasmas”,edited by by R. Hippler, H. Kersten, M. Schmidt, K.H. Schoenbach, (Wiley-VCH, 2008), Vol. 2, p. 411

  29. Plasma Module User’s Guide, COMSOL Multiphysics® v. 5.2. www.comsol.com. COMSOL AB, Stockholm, Sweden (2013)

  30. P. Rumbach, D.B. Go, J. Phys. D: Appl. Phys. 112, 103302 (2012)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Uk Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M.U., Lee, J., Yun, G.S. et al. Scalings and universality for high-frequency excited high-pressure argon microplasma. Eur. Phys. J. D 71, 94 (2017). https://doi.org/10.1140/epjd/e2017-70558-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70558-3

Keywords

Navigation