
Real-Time User-Guided Image Colorization with Learned Deep Priors

RICHARD ZHANG*, University of California, Berkeley
JUN-YAN ZHU*, University of California, Berkeley
PHILLIP ISOLA, University of California, Berkeley
XINYANG GENG, University of California, Berkeley
ANGELA S. LIN, University of California, Berkeley
TIANHE YU, University of California, Berkeley
ALEXEI A. EFROS, University of California, Berkeley

Fig. 1. Our proposed method colorizes a grayscale image (left), guided by sparse user inputs (second), in real-time, providing the capability for quickly
generating multiple plausible colorizations (middle to right). Photograph of Migrant Mother by Dorothea Lange, 1936 (Public Domain).

We propose a deep learning approach for user-guided image colorization.
The system directly maps a grayscale image, along with sparse, local user
“hints" to an output colorizationwith a Convolutional Neural Network (CNN).
Rather than using hand-defined rules, the network propagates user edits by
fusing low-level cues along with high-level semantic information, learned
from large-scale data. We train on a million images, with simulated user
inputs. To guide the user towards efficient input selection, the system recom-
mends likely colors based on the input image and current user inputs. The col-
orization is performed in a single feed-forward pass, enabling real-time use.
Even with randomly simulated user inputs, we show that the proposed sys-
tem helps novice users quickly create realistic colorizations, and offers large
improvements in colorization quality with just a minute of use. In addition,
we demonstrate that the framework can incorporate other user “hints" to
the desired colorization, showing an application to color histogram transfer.
Our code and models are available at https://richzhang.github.io/ideepcolor.

CCS Concepts: • Computing methodologies → Image manipulation;
Computational photography; Neural networks;

Additional Key Words and Phrases: Colorization, Edit propagation, Interac-
tive colorization, Deep learning, Vision for graphics

1 INTRODUCTION
There is something uniquely and powerfully satisfying about the
simple act of adding color to black and white imagery. Whether as
a way of rekindling old, dormant memories or expressing artistic
creativity, people continue to be fascinated by colorization. From
remastering classic black and white films, to the enduring popularity

2017. The definitive Version of Record was published in ACM Transactions on Graphics,
https://doi.org/http://dx.doi.org/10.1145/3072959.3073703.

of coloring books for all ages, to the surprising enthusiasm for
various (often not very good) automatic colorization bots online1,
this topic continues to fascinate the public.
In computer graphics, two broad approaches to image coloriza-

tion exist: user-guided edit propagation and data-driven automatic
colorization. In the first paradigm, popularized by the seminal work
of Levin et al. (2004), a user draws colored strokes over a grayscale
image. An optimization procedure then generates a colorized im-
age that matches the user’s scribbles, while also adhering to hand-
defined image priors, such as piecewise smoothness. These methods
can achieve impressive results but often require intensive user in-
teraction (sometimes over fifty strokes), as each differently colored
image region must be explicitly indicated by the user. Because the
system purely relies on user inputs for colors, even regions with
little color uncertainty, such as green vegetation, need to be spec-
ified. Less obviously, even if a user knows what general color an
object should take on, it can be surprisingly difficult to select the
exact desired natural chrominance.

To address these limitations, researchers have also explored more
data-driven colorizationmethods. Thesemethods colorize a grayscale
photo in one of two ways: either by matching it to an exemplar
color image in a database and non-parametrically “stealing” colors
from that photo, an idea going back to Image Analogies (Hertzmann
et al. 2001), or by learning parametric mappings from grayscale
to color from large-scale image data. The most recent methods in
this paradigm proposed by Iizuka et al. (2016), Larsson et al. (2016),

1e.g., http://demos.algorithmia.com/colorize-photos/
* indicates equal contribution

ar
X

iv
:1

70
5.

02
99

9v
1

 [
cs

.C
V

]
 8

 M
ay

 2
01

7

https://richzhang.github.io/ideepcolor
https://doi.org/http://dx.doi.org/10.1145/3072959.3073703
http://demos.algorithmia.com/colorize-photos/

2 • Richard Zhang*, Jun-Yan Zhu*, Phillip Isola, Xinyang Geng, Angela S. Lin, Tianhe Yu, and Alexei A. Efros

and Zhang et al. (2016), use deep networks and are fully automatic.
Although this makes colorizing a new photo cheap and easy, the
results often contain incorrect colors and obvious artifacts. More
fundamentally, the color of an object, such as a t-shirt, is often inher-
ently ambiguous – it could be blue, red, or green. Current automatic
methods aim to choose a single colorization, and do not allow a
user to specify their preference for a plausible, or perhaps artistic,
alternative.

Might we be able to get the best of both worlds, leveraging large-
scale data to learn priors about natural color imagery, while at the
same time incorporating user control from traditional edit propa-
gation frameworks? We propose to train a CNN to directly map
grayscale images, along with sparse user inputs, to an output col-
orization. During training, we randomly simulate user inputs, al-
lowing us to bypass the difficulty of collecting user interactions.
Though our network is trained with ground truth natural images,
the network can colorize objects with different, or even unlikely
colorizations, if desired.
Most traditional tools in interactive graphics are defined either

procedurally – e.g., as a designed image filter – or as constraints
applied in a hand-engineered optimization framework. The behavior
of the tool is therefore fully specified by human fiat. This approach
is fundamentally limited by the skill of engineers to design complex
operations/constraints that actually accomplish what is intended
of them. Our approach differs in that the effect of interaction is
learned. Through learning, the algorithm may come up with a more
powerful procedure for translating user edits to colorized results
than would be feasible by human design.
Our contribution are as follows: (1) We end-to-end learn how to

propagate sparse user points from large-scale data, by training a
deep network to directly predict the mapping from grayscale image
and user points to full color image. (2) To guide the user toward
making informed decisions, we provide a data-driven color palette,
which suggests the most probable colors at any given location. (3)
We run a study, showing that even given minimal training with our
interface and limited time to colorize an image (1 min), novice users
can quickly learn to produce colorizations that can often fool real
human judges in a real vs. fake test. (4) Though our system is trained
on natural images, it can also generate unusual colorizations. (5)
We demonstrate that this framework is not limited to user points,
and can, in principle, be trained with any statistic of the output, for
example, global color distribution or average image saturation.

2 RELATED WORK
User-guided colorization. Prior interactive colorization work fo-

cused on local control, such as user strokes (Huang et al. 2005; Levin
et al. 2004). Because the strokes are propagated using low-level
similarity metrics, such as spatial offset and intensity difference, nu-
merous user edits are typically required to achieve realistic results.
To reduce user efforts, later methods focused on designing better
similarity metrics (Luan et al. 2007; Qu et al. 2006) and utilizing long-
range connections (An and Pellacini 2008; Xu et al. 2009). Learning
machinery, such as boosting (Li et al. 2008), local linear embeddings
(Chen et al. 2012), feature discrimination (Xu et al. 2013), and more
recently, neural networks (Endo et al. 2016), have been proposed to
automatically learn similarity between pixels given user strokes and

input images. In addition to local control, varying the color theme (Li
et al. 2015; Wang et al. 2010) and color palette (Chang et al. 2015)
are popular methods of expressive global control. We show that we
can integrate global hints to our network and control colorization
results by altering the color distribution and average saturation (see
Section 3.3). Concurrently, Sangkloy et al. (2017) developed a sys-
tem to translate sketches to real images, with support for user color
strokes, while PaintsChainer (2017) and Frans (2017) have devel-
oped open-source interactive online applications for line-drawing
colorization.

Automatic colorization. Early semi-automatic methods (Chia et al.
2011; Gupta et al. 2012; Irony et al. 2005; Liu et al. 2008; Welsh et al.
2002) utilize an example-based approach that transfers color statis-
tics from a reference image or multiple images (Liu et al. 2014; Mori-
moto et al. 2009) to the input grayscale image with techniques such
as color transfer (Reinhard et al. 2001) and image analogies (Hertz-
mann et al. 2001). These methods work remarkably well when the
input and the reference share similar content. However, finding
reference images is time-consuming and can be challenging for rare
objects or complex scenes, evenwhen using semi-automatic retrieval
methods (Chia et al. 2011). In addition, some algorithms (Chia et al.
2011; Irony et al. 2005) involve tedious manual efforts on defining
corresponding regions between images.

Recently, fully automatic methods (Cheng et al. 2015; Deshpande
et al. 2015; Iizuka et al. 2016; Isola et al. 2017; Larsson et al. 2016;
Zhang et al. 2016) have been proposed. The recent methods from
train CNNs (LeCun et al. 1998) on large-scale image collections (Rus-
sakovsky et al. 2015; Zhou et al. 2014) to directly map grayscale
images to output colors. The networks can learn to combine low
and high-level cues to perform colorization, and have been shown
to produce realistic results, as determined by human judgments
(Zhang et al. 2016). However, these approaches aim to produce a
single plausible result, even though colorization is intrinsically an ill-
posed problem with multi-modal uncertainty (Charpiat et al. 2008).
Larsson et al. (2016) provide some post-hoc control through globally
biasing the hue, or by matching global statistics to a target his-
togram. Our work addresses this problem by learning to integrate
input hints in an end-to-end manner.

Deep semantic image editing. Deep neural networks (Krizhevsky
et al. 2012) excel at extracting rich semantics from images, from
middle-level concepts like material (Bell et al. 2015; Wang et al.
2016) and segmentation (Xie and Tu 2015), to high-level knowledge
such as objects (Girshick et al. 2014) and scene categories (Zhou
et al. 2014). All of this information could potentially benefit seman-
tic image editing, i.e. changing the high-level visual content with
minimal user interaction. Recently, neural networks have shown
impressive results for various image processing tasks, such as photo
enhancement (Yan et al. 2016), sketch simplification (Simo-Serra
et al. 2016), style transfer (Gatys et al. 2016; Selim et al. 2016), in-
painting (Pathak et al. 2016), image blending (Zhu et al. 2015) and
denoising (Gharbi et al. 2016). Most of these works built image filter-
ing pipelines and trained networks that produce a filtered version
of the input image with different low-level local details. However,
none of these methods allowed dramatic, high-level modification
of the visual appearance, nor do they provide diverse outputs in a

Real-Time User-Guided Image Colorization with Learned Deep Priors • 3

Output
colorization

Color
distribution

64 128 256 512

384

H/4,	W/4

384 384 384 384 384

313

512 512 512 256 128 1281 2

512316 512 512 512

3

conv1 conv2 conv3 conv4 conv5
(à trous/dilated)

conv6
(à trous/dilated)

conv7 conv8 conv9 conv10

64

H/2,	W/2

H,W

H/8,	W/8
H/4,	W/4

Grayscale
image

Local	
hints

Global	
hints

Added	to	main	network
Main	colorization	network	layers
Local	Hints	Network only	layers
Global	Hints	Network only	layers Spatial	upsampling

Input	layer

Fig. 2. Network architectureWe train two variants of the user interaction colorization network. Both variants use the blue layers for predicting a colorization.
The Local Hints Network also uses red layers to (a) incorporate user points Ul and (b) predict a color distribution Ẑ. The Global Hints Network uses the
green layers, which transforms global input Uд by 1 × 1 conv layers, and adds the result into the main colorization network. Each box represents a conv
layer, with vertical dimension indicating feature map spatial resolution, and horizontal dimension indicating number of channels. Changes in resolution are
achieved through subsampling and upsampling operations. In the main network, when resolution is decreased, the number of feature channels are doubled.
Shortcut connections are added to upsampling convolution layers.

user controllable fashion. On the contrary, we train a network that
takes an input image as well as minimal user guidance and produces
global changes in the image with a few clicks. Barnes et al. (2009)
emphasize that control and interactivity are key to image editing,
because user intervention not only can correct errors, but can also
help explore the vast design space of creative image manipulation.
We incorporate this concept into an intuitive interface that provides
expressive controls as well as real-time feedback. Zhu et al. (2016)
provided an interactive deep image synthesis interface that builds
on an image prior learned by a deep generative network. Xu et
al. (2016) train a deep network for interactive object segmentation.
Isola et al. (2017) and Sangkloy et al. (2017) train networks to gen-
erate images from sketches, using synthetic sketches generated by
edge detection algorithms for training data.

3 METHODS
We train a deep network to predict the color of an image, given
the grayscale version and user inputs. In Section 3.1, we describe
the objective of the network. We then describe the two variants of
our system (i) the Local Hints Network in Section 3.2, which uses
sparse user points, and (ii) the Global Hints Network in Section
3.3, which uses global statistics. In Section 3.4, we define our network
architecture.

3.1 Learning to Colorize
The inputs to our system are a grayscale image X ∈ RH×W ×1,
along with an input user tensor U. The grayscale image is the L,
or lightness in the CIE Lab color space, channel. The output of the
system is Ŷ ∈ RH×W ×2, the estimate of the ab color channels of the
image. The mapping is learned with a CNN F , parameterized by θ ,
with the network architecture specified in Section 3.4 and shown in
Figure 2. We train the network to minimize the objective function

in Equation 1, across D, which represents a dataset of grayscale
images, user inputs, and desired output colorizations. Loss function
L describes how close the network output is to the ground truth.

θ∗ = argmin
θ
EX,U,Y∼D [L(F (X,U;θ),Y)] (1)

We train two variants of our network, with local user hints Ul
and global user hints Uд . During training, the hints are generated
by giving the network a “peek", or projection, of the ground truth
color Y using functions Pl and Pд , respectively.

Ul = Pl (Y) Uд = Pд(Y) (2)

The minimization problems for the Local and Global Hints Net-
works are then described below in Equation 3. Because we are using
functions Pl ,Pд to synethtically generate user inputs, our dataset
only needs to contain grayscale and color images. We use the 1.3M
ImageNet dataset (Russakovsky et al. 2015).

θ∗l = argmin
θl
EX,Y∼D [L(Fl (X,Ul ;θl),Y)]

θ∗д = argmin
θд
EX,Y∼D [L(Fд(X,Uд ;θд),Y)]

(3)

Loss Function. The choice of an appropriate loss function L,
which measures network performance and guides learning, requires
some consideration. Iizuka et al. (2016) use an ℓ2 loss. Previous
work (Charpiat et al. 2008; Larsson et al. 2016; Zhang et al. 2016)
note that this loss is not robust to the inherent multi-modal nature of
the problem, and instead use a classification loss, followed by a fixed
inference step. Another challenge is the large imbalance in natural
image statistics, with many more pixels in desaturated regions of
the color gamut. This can often lead to desaturated and dull coloriza-
tions. Zhang et al. (2016) use a class-rebalancing step to oversample
more colorful portions of the gamut during training. This results in
more colorizations which are vibrant and able to fool humans, but at
the expense of images which are over-aggressively colorized. In the

4 • Richard Zhang*, Jun-Yan Zhu*, Phillip Isola, Xinyang Geng, Angela S. Lin, Tianhe Yu, and Alexei A. Efros

Grayscale	image	

Suggested	colors Different	possible	colorizations

Fig. 3. Suggested Palette Our interface provides suggested colors for any pixel, sorted by likelihood, based on the predicted color distribution given by our
network. In this example, we show first suggested colors on the background vegetation (top palette), sorted by decreasing likelihood. The suggested colors are
common colors for vegetation. We also show the top six suggested colors (bottom palette) of a pixel on the image of the bird. On the right, we show the
resulting colorizations, based on the user selecting these top six suggested colors. Photograph of blue-and-yellow macaw by Luc Viatour, 2009.

pix2pix framework, Isola et al. (2017) use an ℓ1 regression loss with
a Generative Adversarial Network (GAN) (Goodfellow et al. 2014)
term, which can help generate exciting, higher frequency patterns.
However, in our work, we forgo the use of class rebalancing

from (Zhang et al. 2016) and GAN term from (Isola et al. 2017) and
use a smooth-ℓ1 (or Huber) loss, described in Equation 4. In the Local
Hints Network, from a user experience standpoint, we found it more
pleasing to start with a conservative colorization and allow the user
to inject desired colors, rather than starting with a more vibrant
but artifact-prone setting and having the user fix mistakes. Much
of the multi-modal ambiguity of the problem is quickly resolved by
a few user clicks. In cases where there is ambiguity, the smooth-ℓ1
is also a robust estimator (Huber 1964), which can help avoid the
averaging problem. In addition, using a regression loss, described in
Equation 4 with δ = 1, enables us to perform end-to-end learning
without a fixed inference step.

ℓδ (x ,y) = 1
2 (x −y)21{ |x−y |<δ } + δ (|x −y | − 1

2δ)1{ |x−y | ≥δ } (4)

The loss function ℓδ is evaluated at each pixel and summed to-
gether to evaluate the loss L for a whole image.

L(F (X,U;θ),Y) =
∑
h,w

∑
q
ℓδ

(
F (X,U;θ)h,w,q ,Yh,w,q

)
(5)

Next, we describe the specifics of the local and global variants.

3.2 Local Hints Network
The Local Hints Network uses sparse user points as input. We de-
scribe the input, how we simulate user points, and features of our
user interface.

System Input. The user points are parameterized asXab ∈ RH×W ×2,
a sparse tensor with ab values for the points provided by the user

and Bab ∈ BH×W ×1, a binary mask indicating which points are
provided by the user. The mask differentiates unspecified points
from user-specified gray points with (a,b) = 0. Together, the tensors
form input tensor Ul = {Xab ,Bab } ∈ RH×W ×3.

Simulating User Interactions. One challenge in training deep net-
works is collecting training data. While data for automatic coloriza-
tion is readily available – any color image can be broken up into its
color and grayscale components – an appropriate mechanism for
acquiring user interaction data is far less obvious. Gathering this on
a large scale is not only expensive, but also comes with a chicken
and egg problem, as user interaction behavior will be dependent
on the system performance itself. We bypass this issue by training
with synthetically generated user interactions. A concern with this
approach is the potential domain gap between the generated data
and test-time usage. However, we found that even through randomly
sampling, we are able to cover the input space adequately and train
an effective system.
We sample small patches and reveal the average patch color to

the network. For each image, the number of points are drawn from
a geometric distribution with p = 1

8 . Each point location is sampled
from a 2-D Gaussian with µ = 1

2 [H ,W]T , Σ = diaд
([(H

4
)2
,
(W
4
)2]) ,

as we expect users to more often click on points in the center of
the image. The revealed patch size is drawn uniformly from size
1 × 1 to 9 × 9, with the average ab within the patch revealed to
the network. Lastly, we desire the correct limiting characteristic
– given all of the points by the user, the network should simply
copy the colors from the input to the output. To encourage this,
we provide the full ground truth color to the image for 1% of the
training instances. Though the network should implicitly learn to
copy any provided user points to the output, there is no explicit
constraint for the network to do so exactly. Note that these design

Real-Time User-Guided Image Colorization with Learned Deep Priors • 5

decisions for projection function Pl (Y) were initially selected based
on intuition, found to work well, but not finely tuned.

User interface. Our interface consists of a drawing pad, showing
user points overlaid on the grayscale input image, a display updating
the colorization result in real-time, a data-driven color palette that
suggests likely color for a given location (as shown in Figure 3), and
a regular ab gamut based on the lightness of the current point. A
user is always free to add, move, delete, or change the color of any
existing points. Please see our supplemental video for a detailed
introduction of our interface, along with several demonstrations.

Data-driven color palette. Picking a plausible color is an impor-
tant step towards realistic colorization. Without the proper tools,
selecting a color can be difficult for a novice user to intuit. For ev-
ery pixel, we predict a probability distribution over output colors
Ẑ ∈ RH×W ×Q , where Q is the number of quantized color bins. We
use the parametrization of the CIE Lab color space from Zhang
et al. (2016) – the ab space is divided into 10 × 10 bins, and the
Q = 313 bins that are in-gamut are kept. The mapping from the
input grayscale image and user points to predicted color distribution
Ẑ is learned with network Gl , parametrized by ψl . Ground truth
distribution Z is encoded from ground truth colors Y with the soft-
encoding scheme from (Zhang et al. 2016) – a real ab color value
is expressed as a convex combination of its 10 nearest bin centers,
weighted by a Gaussian kernel with σ = 5. We use a cross-entropy
loss function for every pixel to measure the distance between pre-
dicted and ground truth distributions, and sum over all pixels.

Lcl (Gl (X,Ul ;ψl),Z) = −
∑
h,w

∑
q

Zh,w,q log(Gl (X,Ul ;ψl)h,w,q)

(6)
Network Gl is trained to minimize expected classification loss

over the training set. We further describe the network architecture
in Section 3.4.

ψ ∗
l = argmin

ψl
EX,Y∼D [Lcl (Gl (X,Ul ;ψl),Y)] (7)

To provide discrete color suggestions, we soften the softmax
distribution at the queried pixel, to make it less peaky, and perform
weighted k-means clustering (with K = 9) to find modes of the
distribution. For example, the system often recommends plausible
colors based on the type of object, material and texture, for example,
suggesting different shades of green the vegetation in Figure 3. For
objects with diverse colors such as a parrot, our systemwill provide a
wide range of suggestions. Once a user selects a suggested color, our
system will produce the colorization result in real-time. In Figure 3,
we show six possible colorizations based on the different choices for
the parrot’s feather. The color suggestions are continuously updated
as the user adds additional points.

3.3 Global Hints Network
An advantage of the end-to-end learning framework is that it may
be easily adapted to different types of user inputs. We show an addi-
tional use case, where the user provides global statistics, described
by a global histogram Xhist ∈ ∆Q and average image saturation
Xsat ∈ [0, 1]. Whether or not the inputs are provided is indexed by

indicator variables Bhist ,Bsat ∈ B, respectively. The user input to
the system is then Uд = {Xhist ,Bhist ,Xsat ,Bsat } ∈ R1×1×(Q+3).

We compute global histograms by resizing the color Y to quarter
resolution using bilinear interpolation, encoding each pixel in quan-
tized ab space, and averaging spatially. Saturation is computed by
converting the ground truth image to HSV colorspace and averaging
over the S channel spatially. We randomly reveal the ground truth
colorization distribution, ground truth saturation, both, or neither,
to the network during training.

3.4 Network Architecture
We show our network architecture in Figure 2. The main coloriza-
tion branch is used by both Local Hints and Global Hints networks.
We then describe the layers which are only used for the Local Hints
Network, namely processing the sparse user input Ul and the color
distribution prediction branch, both shown in red. Finally, we de-
scribe the Global Hints Network-specific input branch, shown in
green, as well as its integration in the main network.

3.4.1 Main colorization network. The main branch of our net-
work, F , uses a U-Net architecture (Ronneberger et al. 2015), which
has been shown to work well for a variety of conditional genera-
tion tasks (Isola et al. 2017). We also utilize design principles from
(Simonyan and Zisserman 2014) and (Yu and Koltun 2016). The net-
work is formed by 10 convolutional blocks, conv1-10. In conv1-4,
in every block, feature tensors are progressively halved spatially,
while doubling in the feature dimension. Each block contains 2-3
conv-relu pairs. In the second half, conv7-10, spatial resolution is
recovered, while feature dimensions are halved. In block conv5-6,
instead of halving the spatial resolution, dilated convolutions with
factor 2 is used. This has an equal effect on the receptive field of each
unit with respect to the input pixels, but allows the network to keep
additional information in the bottleneck. Symmetric shortcut con-
nections are added to help the network recover spatial information
(Ronneberger et al. 2015). For example, the conv2 and conv3 blocks
are connected to the conv8 and conv9 blocks, respectively. This also
enables easy accessibility to important low-level information for
later layers; for example, the lightness value will limit the extent
of the ab gamut. Changes in spatial resolution are achieved using
subsampling or upsampling operations, and each convolution uses
a 3 × 3 kernel. BatchNorm layers are added after each convolutional
block, which has been shown to help training.
A subset of our network architecture, namely conv1-8 without

the shortcut connections, was used by Zhang et al. (2016). For these
layers, we fine-tune from these pre-trained weights. The added
conv9, conv10 layers and shortcut connections are trained from
scratch. A last conv layer, which is a 1 × 1 kernel, maps between
conv10 and the output color. Because the ab gamut is bounded, we
add a final tanh layer on the output, as is common practice when
generating images (Goodfellow et al. 2014; Zhu et al. 2016).

3.4.2 Local Hints Network. The layers specific to the Local Hints
Network are shown in red in Figure 2. Sparse user points are inte-
grated by concatenation with the input grayscale image. As a side
task, we also predict a color distribution at each pixel (conditioned
on the grayscale and user points) to recommend to the user. The
task of predicting a color distribution is undoubtedly related to the

6 • Richard Zhang*, Jun-Yan Zhu*, Phillip Isola, Xinyang Geng, Angela S. Lin, Tianhe Yu, and Alexei A. Efros

37247

Automatic Methods Interactive Methods

39281

44713

Shirt

Ground truthGrayscale
Iizuka et al. Larsson et al. Zhang et al. Ours (automatic) Inputs Levin et al. Ours (interactive)

Fig. 4. User study results These results are collected from novice users using our Local Hints Network system for 1 minute for each image, with minimal
training. Users were not given the ground truth image, and were instructed to create a “realistic colorization". The first column shows the grayscale input
image. Columns 2-5 show automatic results from previous methods, as well as our system without user points. Column 6 shows input points from a user,
collected in 1 minute of time from a novice user. Columns 7-8 show the results from the seminal method of (Levin et al. 2004) and our model, incorporating
user points, on the right. The final column shows the ground truth image (which was not provided to the user). In the selected examples in rows 1-4, our
system produces higher quality colorizations given sparse inputs than (Levin et al. 2004), and produce nearly photorealistic results given little user interaction.
Rows 5-6 show some failures of our system. In row 5, the green color by the user on the top-right is not successfully propagated to the top-left of the image. In
row 6, the colors selected on the jeans are propagated to the background, demonstrating undesired non-local effects. All of the user study results are publicly
available on https://richzhang.github.io/ideepcolor/. Images are from the ImageNet dataset (Russakovsky et al. 2015).

task of predicting a single colorization, so we reuse features from
the main branch. We use a hypercolumn approach (Hariharan et al.
2015; Larsson et al. 2016) by concatenating features from multiple
layers of the main branch, and learning a two-layer classifier on top.
Network Gl is composed of the main branch, up to conv8, along
with this side branch. The side task should not affect the main task’s
representation, so we do not back-propagate the gradients from the
side task into the main branch. To save computation, we predict the
distribution at a quarter resolution, and apply bilinear upsampling
to predict at full resolution.

3.4.3 Global Hints Network. Because the global inputs have no
spatial information, we choose to integrate the information into the
middle of the main colorization network. As shown in the top green
branch in Figure 2, the inputs are processed through 4 conv-relu
layers, with kernel size 1 × 1 and 512 channels each. This feature
map is repeated spatially to match the size of the conv4 feature in

the main branch,RH/8×W/8×512, and merged by summation, a similar
strategy to the one used by Iizuka et al. (2016).

4 EXPERIMENTS
We detail qualitative and quantitative experiments with our system.
In Section 4.1, we first automatically test the Local Hints Network.
We then describe our user study in Section 4.2. The results suggest
that even with little training and just 1 minute to work with an
image, novice users can quickly create realistic colorizations. In
Section 4.3, we show qualitative examples on unusual colorizations.
In Section 4.4 we evaluate our Global Hints Network. In Section 4.5,
we investigate how the Local Hints Network reconciles two colors
within a single segment. Finally, we show qualitative examples on
legacy grayscale images in Section 4.6.

https://richzhang.github.io/ideepcolor/

Real-Time User-Guided Image Colorization with Learned Deep Priors • 7

Fig. 5. Selected User Study ResultsWe show grayscale images with user inputs, alongside the output from our algorithm. Each image was colorized in only
1 minute of time by a novice user. All of the user study results are publicly available on https://richzhang.github.io/ideepcolor/. Images are from the Imagenet
dataset (Russakovsky et al. 2015).

Method Added Inputs PSNR (dB)
Predict gray – 22.82±0.18
Zhang et al. (2016) automatic 22.04±0.11
Zhang et al. (2016) (no-rebal) automatic 24.51±0.15
Larsson et al. (2016) automatic 24.93±0.14
Iizuka et al. (2016) automatic 23.69±0.13
Ours (Local) automatic 24.43±0.14
Ours (Global) + global hist 27.85±0.13
Ours (Global) + global sat 25.78±0.15
Ours (Local) + gt colors 37.70±0.14
Edit propagation + gt colors ∞

Table 1. PSNR with added information. Run on 1000 held-out test im-
ages, in the ILSVRC2012 (Russakovsky et al. 2015) validation dataset. Ours
(Local)-automatic is run completely automatically, with no user inputs.
Methods (Iizuka et al. 2016; Larsson et al. 2016; Zhang et al. 2016) are recently
automatic colorization methods. Even though our network is trained pri-
marily for interactive colorization, it performs competitively for automatic
colorization as well by this metric. Ours (Global) +global hist provides
global distribution of colors in the ab gamut; Ours (Global) +global sat
provides global saturation to the system. Our Global Hints Network learns
to incorporate global statistics for more accurate colorizations.

4.1 How well does the system incorporate inputs?
We test the system automatically by randomly revealing patches
to the algorithm, and measuring PSNR, as shown in Figure 6. The
pitfalls of using low-level or per-pixel metrics have been discussed
in the automatic colorization regime (Zhang et al. 2016). A system
which chooses a plausible but different mode than the ground truth
color will be overly penalized, and may even achieve a lower score
than an implausible but neutral colorization, such as predicting gray
for every pixel (PSNR 22.8). In this context, however, since ground
truth colors are revealed to the algorithm, the problem is much more
constrained, and PSNR is a more appropriate metric.
With no revealed information, edit propagation methods will

default to gray for the whole image. Our system will perform au-
tomatic colorization, and provide its best estimate (PSNR 24.4), as
described in Table 1. As points are revealed, PSNR incrementally
increases across all methods. Our method achieves a higher PSNR
than other methods, even up to 500 random points. As the number
of points increases, edit propagation techniques such as (Levin et al.
2004) approach our method, and will inevitably surpass it. In the
limiting case, where every point is revealed, edit propagation tech-
niques such as (Barron and Poole 2016; Endo et al. 2016; Levin et al.
2004) will correctly copy the inputs to the outputs (PSNR∞). Our

https://richzhang.github.io/ideepcolor/

8 • Richard Zhang*, Jun-Yan Zhu*, Phillip Isola, Xinyang Geng, Angela S. Lin, Tianhe Yu, and Alexei A. Efros

Fig. 6. Average PSNR vs Number of Revealed PointsWe measure the
average PSNR from our ImageNet test set across different algorithms. Points
are revealed to each algorithm by random or max-error sampling. Max-
error sampling selects the point with maximum ℓ2 error in ab space between
predicted and ground truth. Random sampling uses a uniformly drawn
random point. The average color on a 7×7 patch is revealed to the algorithm.
The x-axis is on a logarithmic scale. Baselines (Barron and Poole 2016; Endo
et al. 2016; Levin et al. 2004) are computed with publicly available code
from the authors. Because our algorithm is learned on a large-scale corpus
of data, our system provides more accurate colorizations given little user
supervision. With large amounts of input points (approximately 500 for
random sampling), (Levin et al. 2004) begins to achieve equal accuracy to
ours. For reference, we show our network without user inputs,Ours (auto),
and predicting Gray for every pixel.

system is taught to do this, based on 1% of the training examples,
but will not do so perfectly (PSNR 37.70). As the number of points
increases to the hundreds, knowledge of mid-to-high-level natural
image statistics has diminishing importance, and the problem can
be solved using low-level optimization.
We also run the same test, but with points sampled in a more

intelligent manner. Given an oracle which provides the ground truth
image, we compute the ℓ2 error between the current prediction and
the ground truth, and average over a 25×25 window. We then select
the point with the maximum error to reveal a 7× 7 patch, excluding
points which overlap with previously revealed patches. As expected,
this sampling strategy typically achieves a higher PSNR, and the
same trend holds – our method achieves higher accuracy than the
current state-of-the-art method. Inferring the full colorization of an
image given sparsely revealed points has been previously exploited
in the image compression literature (Cheng and Vishwanathan 2007;
He et al. 2009). An interesting extension of our network would be
to optimally choose which points to reveal.
We also note that our method has been designed with point

inputs, whereas previous work has been designed with stroke and

Method AMT Fooling Rate
Ours-automatic 18.58% ± 1.09
Ours-no recommendation 26.98% ± 1.76
Ours 30.04% ± 1.80

Table 2. Amazon Mechanical Turk real vs fake fooling rate We test
how often colorizations generated by novice users fool real humans.Ours is
our full method, with color recommendations.Ours-no recommendation
is our method, without the color recommendation system.Ours-automatic
is our method with no user inputs. Note that the 95% confidence interval
shown is not accounting for possible inter-subject variation (all subjects are
assumed to be identical).

point-based inputs in mind. In an interactive setting, the collection
cost of strokes versus points is difficult to define, and will heavily
depend on factors such as proper optimization of the user interface.
However, the results strongly suggest that our method is able to
accurately propagate sparse, point-based inputs.

4.2 Does our system aid the user in generating realistic
colorizations?

We run a user study, with the goal of evaluating if novice users,
given little training, can quickly produce realistic colorizations using
our system. We provide minimal training for 28 test subjects, briefly
walking them through our interface for 2 minutes. The subjects
are given the goal of producing “realistic colorizations" (without
benefit of seeing the ground truth), and are provided 1 minute for
each image. Images are randomly drawn from our ImageNet test set.
Each subject is given 20 images – 10 images with our algorithm and
full interface, including suggested colors, and 10 images with our
algorithm but no color suggestions, for a total of 560 images (280
per test setting). We evaluate the resulting colorizations, along with
automatic colorization, by running a real vs. fake test on Amazon
Mechanical Turk (AMT), using the procedure proposed by Zhang et
al. (2016). AMT evaluators are shown two images in succession for
1 second each – one ground truth and one synthesized – and asked
to identify the synthesized. We measure the “fooling rate" of each
algorithm; one which produces ground truth colorizations every
time would achieve 50% by this metric. The results are shown in
Table 2. Note that the results may differ on an absolute scale from
previous iterations of this test procedure (Isola et al. 2017; Zhang
et al. 2016), due to shifts or biases in the AMT population when the
algorithm has been tested. Our network produces a fooling rate of
18.6% when run completely automatically (no user inputs). We test
our interface without recommended colors, but with HSV sliders
and 48 common colors. With this baseline interface, the fooling
rate increases dramatically to 27.0%, indicating that users quickly
acclimated to our network and made dramatic improvements with
just 1 minute. When provided the data-driven color palette, the
fooling rate further increases to 30.0%. This suggests that the color
prediction feature can aid users in quickly selecting a desired color.

We show example results from our study in Figures 4 and 5. We
compare the annotations to the seminal method proposed by Levin
et al. (2004), along with the automatic output from our network.
Qualitatively, the added user points typically add (1) saturationwhen
the automatic result is lacking and (2) accurate higher frequency
detail, that automatic methods have difficulty producing. Comparing

Real-Time User-Guided Image Colorization with Learned Deep Priors • 9

(a) (b) (c)

Fig. 7. Unusual colorization (a) User inputs with unusual colors (b) Out-
put colorization using user points with unusual colors (c) Output coloriza-
tion with user points using conventional colors. Photograph by Corporal
Michael Guinto, 2014 (Public Domain).

(a) (b) (c) (d) (e) (f)

Fig. 8. Multiple user colors within a segment. (a) Input grayscale image.
(b,c)Output colorization conditioned on a single centered user point colored
(b-blue, c-red). (d) Locations used for user points for (e) and (f). (e,f)Outputs
given different user input colors (e-blue&red, f-green&pink).

our method to Levin et al. (2004), our method is more effective at
finding segment boundaries given sparse user inputs. We do note
that the user points are collected by running our system, which
provides an advantage. However, collecting these points, with the
right colors, is enabled by the interactive nature of our algorithm
and our color recommendation system.

4.3 Does the network generalize to unusual colorizations?
During training, we use natural images, and reveal the ground truth
colors to simulate user input. However, there are use cases where
the user may intentionally desire an unusual colorization. Will the
network be able to follow the inputs in these cases? In Figure 7,
we show an unusual colorization guided by the user, giving the
actor a green face with three user points on the face. These results
suggest that in the absence of nearby user inputs, the network will
attempt to find an appropriate colorization for the object, based on
the training corpus. However, once an input is provided by the user,
the system fills in the segment with the desired color.

4.4 Is the system able to incorporate global statistics?
We train a variant of our system, taking global statistics as inputs,
instead of local points. As described in Table 1, when given the
ground truth statistics, such as the global histogram of colors or
average saturation, the network achieves a higher PSNR scores, 27.9
and 25.6, respectively, than when performing automatic colorization
(24.4), indicating that the network has learned how to fuse global
statistics. We also test on the SUN-6 dataset, shown in Table 3,
proposed by Deshpande et al. (2015). We show higher performance
than Despande et al. (2015) and almost equal performance with
Larsson et al. (2016), which fuses the predictions from an automatic
colorization network with a ground truth histogram using an energy
minimization procedure.

Method Added Inputs PSNR (dB)
Deshpande et al. (2015) automatic 23.18 ± 0.20
Larsson et al. (2016) automatic 25.60 ± 0.23
Ours automatic 25.65 ± 0.23
Deshpande et al. (2015) + global hist 23.85 ± 0.23
Larsson et al. (2016) + global hist 28.62 ± 0.23
Ours + global hist 28.57 ± 0.21

Table 3. Global Histogram We test our Global Hints Network at incor-
porating the global truth histogram on 240 images from SUN used by
(Deshpande et al. 2015).

The network has only been trained on images with its own ground
truth histogram. In Figure 9, we qualitatively the network’s gen-
eralization ability by computing the global histogram on separate
reference images, and apply them to a photograph. The bird is an in-
teresting test case, as it can be plausibly colorized in many different
ways. We observe that that the color distributions of the reference
input image is successfully transferred to the target grayscale image.
Furthermore, the colorizations are realistic and diverse.

4.5 How does the system respond to multiple colors
within an equiluminant segment?

In natural images, chrominance changes almost never appear with-
out a lightness change. In Figure 8(a), we show a toy example of an
image of a gray square on top of a black square. If given a 7×7 point
in the center of the image, the system will successfully propagate
the color to the center region, as shown in Figures 8(a)(b). However,
how does the system respond if given two different colors within
the same segment, as shown in Figure 8(d)? Given blue and red
points, the system draws a seam between the two colors, as shown
in Figure 8(e), where two points are placed symmetrically around
the center of the image. Because our system is learned from data,
it is difficult to characterize how the system will exactly behave
in such a scenario. Qualitatively, we observe that the seam is not
straight, and the shape as well as the sharpness of the transition is
dependent on the colors. For example, in Figure 8(f), green and pink
points produce a harder seam. We found similar behavior under
similar scenarios in natural images as well.

4.6 Is the system able to colorize legacy photographs?
Our system was trained on “synthetic" grayscale images by remov-
ing the chrominance channels from color images. We qualitatively
test our system on legacy grayscale images, and show some selected
results in Figure 10.

5 LIMITATIONS AND DISCUSSION
A benefit of our system is that the network predicts user-intended
actions based on learned semantic similarities. However, the net-
work can also be over-optimistic and produce undesired non-local
effects. For example, points added on a foreground object may cause
an undesired change in the background, as shown on the last row
in Figure 4. Qualitatively, we found that adding some control points
can remedy this. In addition, the network can also fail to completely
propagate a user point, as shown in the fifth row in Figure 4. In
these instances, the user can fill in the region with additional input.

10 • Richard Zhang*, Jun-Yan Zhu*, Phillip Isola, Xinyang Geng, Angela S. Lin, Tianhe Yu, and Alexei A. Efros

Fig. 9. Global histogram transfer Using our Global Hints Network, we colorize the grayscale version of the image on the left using global histograms from
the top-right inset images. Images are from the Imagenet dataset (Russakovsky et al. 2015).

Fig. 10. Legacy black and white photographs Our method applied to legacy black and white photographs. Top left: The Tetons and Snake River, Ansel
Adams, 1942; Bottom left: Photo by John Rooney of Muhammad Ali versus Sonny Liston, 1965 (c.f. color photo by Neil Leifer at almost exactly the same
moment); Right: V-J Day in Times Square, Alfred Eisenstaedt, 1945.

For scenes with difficult segmentation boundaries, the user some-
times needs to define boundaries explicitly by densely marking
either side. Our system can continuously incorporate this informa-
tion, even with hundreds of input points, as shown on Figure 6.
Points can be added to fix color bleeding artifacts when the system
has poor underlying segmentation. However, our interface is mainly
designed for the “few seconds to couple minutes" interaction regime.
For users wanting high-precision control and willing to spend hours
per photograph, working in Photoshop is likely a better solution.
Our system is currently trained on points; we find that in this

regime random sampling covers the low-dimensional workspace
surprisingly well. However, a future step is to better simulate the
user, and to effectively incorporate stroke-based inputs that tradi-
tional methods utilize. Integration between the local user points
and global statistics inputs would be an interesting next step. Our
interface code and models are publicly available at https://richzhang.

github.io/ideepcolor, along with all images generated from the user
study and random global histogram transfer results.

ACKNOWLEDGEMENTS
We thank members of the Berkeley Artificial Intelligence Research
Lab for helpful discussions. We also thank the participants in our
user study, along with Aditya Deshpande and Gustav Larsson for
providing images for comparison. This work has been supported, in
part, by NSF SMA-1514512, a Google Grant, BAIR, and a hardware
donation by NVIDIA.

CHANGE LOG
v1 Initial release. SIGGRAPH camera ready version. DOI: http://dx.
doi.org/10.1145/3072959.3073703

https://richzhang.github.io/ideepcolor
https://richzhang.github.io/ideepcolor
http://dx.doi.org/10.1145/3072959.3073703
http://dx.doi.org/10.1145/3072959.3073703

Real-Time User-Guided Image Colorization with Learned Deep Priors • 11

REFERENCES
Xiaobo An and Fabio Pellacini. 2008. AppProp: all-pairs appearance-space edit propa-

gation. 27, 3 (2008), 40.
Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan Goldman. 2009. Patch-

Match: a randomized correspondence algorithm for structural image editing. ACM
Transactions on Graphics (TOG) 28, 3 (2009), 24.

Jonathan T Barron and Ben Poole. 2016. The Fast Bilateral Solver. ECCV (2016).
Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. 2015. Material recognition in

the wild with the materials in context database. In CVPR. 3479–3487.
Huiwen Chang, Ohad Fried, Yiming Liu, Stephen DiVerdi, and Adam Finkelstein. 2015.

Palette-based photo recoloring. ACM Transactions on Graphics (TOG) 34, 4 (2015),
139.

Guillaume Charpiat, Matthias Hofmann, and Bernhard Schölkopf. 2008. Automatic
image colorization via multimodal predictions. In ECCV.

Xiaowu Chen, Dongqing Zou, Qinping Zhao, and Ping Tan. 2012. Manifold preserving
edit propagation. ACM Transactions on Graphics (TOG) 31, 6 (2012), 132.

Li Cheng and SVN Vishwanathan. 2007. Learning to compress images and videos. In
Proceedings of the 24th international conference on Machine learning. ACM, 161–168.

Zezhou Cheng, Qingxiong Yang, and Bin Sheng. 2015. Deep Colorization. In ICCV.
415–423.

Alex Yong-Sang Chia, Shaojie Zhuo, Raj Kumar Gupta, Yu-Wing Tai, Siu-Yeung Cho,
Ping Tan, and Stephen Lin. 2011. Semantic colorization with internet images. In
ACM Transactions on Graphics (TOG), Vol. 30. ACM, 156.

Aditya Deshpande, Jason Rock, and David Forsyth. 2015. Learning Large-Scale Auto-
matic Image Colorization. In ICCV. 567–575.

Yuki Endo, Satoshi Iizuka, Yoshihiro Kanamori, and Jun Mitani. 2016. DeepProp:
Extracting Deep Features from a Single Image for Edit Propagation. In Computer
Graphics Forum, Vol. 35. Wiley Online Library, 189–201.

Kevin Frans. 2017. Outline Colorization through Tandem Adversarial Networks. In
arXiv:1704.08834.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2016. Image style transfer
using convolutional neural networks. In CVPR. 2414–2423.

Michaël Gharbi, Gaurav Chaurasia, Sylvain Paris, and Frédo Durand. 2016. Deep joint
demosaicking and denoising. ACM Transactions on Graphics (TOG) 35, 6 (2016), 191.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich feature
hierarchies for accurate object detection and semantic segmentation. In CVPR.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In
NIPS. 2672–2680.

Raj Kumar Gupta, Alex Yong-Sang Chia, Deepu Rajan, Ee Sin Ng, and Huang Zhiyong.
2012. Image colorization using similar images. In Proceedings of the 20th ACM
international conference on Multimedia. ACM, 369–378.

Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. 2015. Hyper-
columns for object segmentation and fine-grained localization. In CVPR. 447–456.

Xiaofei He, Ming Ji, and Hujun Bao. 2009. A unified active and semi-supervised learning
framework for image compression. In CVPR. IEEE, 65–72.

Aaron Hertzmann, Charles E Jacobs, Nuria Oliver, Brian Curless, and David H Salesin.
2001. Image analogies. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques. ACM.

Yi-Chin Huang, Yi-Shin Tung, Jun-Cheng Chen, Sung-Wen Wang, and Ja-Ling Wu.
2005. An adaptive edge detection based colorization algorithm and its applications.
In Proceedings of the 13th annual ACM international conference on Multimedia. ACM,
351–354.

Peter J Huber. 1964. Robust estimation of a location parameter. The Annals of Mathe-
matical Statistics 35, 1 (1964), 73–101.

Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. 2016. Let there be Color!:
Joint End-to-end Learning of Global and Local Image Priors for Automatic Image
Colorization with Simultaneous Classification. SIGGRAPH 35, 4 (2016).

Preferred Networks Inc. 2017. Paints Chainer. (2017). https://github.com/pfnet/
PaintsChainer

Revital Irony, Daniel Cohen-Or, and Dani Lischinski. 2005. Colorization by example. In
Eurographics Symp. on Rendering, Vol. 2. Citeseer.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-image
translation with conditional adversarial networks. CVPR (2017).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classification
with deep convolutional neural networks. In NIPS. 1097–1105.

Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. 2016. Learning Represen-
tations for Automatic Colorization. In ECCV.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based
learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–2324.

Anat Levin, Dani Lischinski, and Yair Weiss. 2004. Colorization using optimization. In
ACM Transactions on Graphics (TOG), Vol. 23. ACM, 689–694.

Xujie Li, Hanli Zhao, Guizhi Nie, and Hui Huang. 2015. Image recoloring using geodesic
distance based color harmonization. Computational Visual Media 1, 2 (2015), 143–
155.

Yuanzhen Li, Edward Adelson, and Aseem Agarwala. 2008. ScribbleBoost: Adding
Classification to Edge-Aware Interpolation of Local Image and Video Adjustments.
In Computer Graphics Forum, Vol. 27. Wiley Online Library, 1255–1264.

Xiaopei Liu, Liang Wan, Yingge Qu, Tien-Tsin Wong, Stephen Lin, Chi-Sing Leung,
and Pheng-Ann Heng. 2008. Intrinsic colorization. In ACM Transactions on Graphics
(TOG), Vol. 27. ACM, 152.

Yiming Liu, Michael Cohen, Matt Uyttendaele, and Szymon Rusinkiewicz. 2014. Au-
toStyle: automatic style transfer from image collections to users’ images. InComputer
Graphics Forum, Vol. 33. Wiley Online Library, 21–31.

Qing Luan, Fang Wen, Daniel Cohen-Or, Lin Liang, Ying-Qing Xu, and Heung-Yeung
Shum. 2007. Natural image colorization. In Proceedings of the 18th Eurographics
conference on Rendering Techniques. Eurographics Association, 309–320.

Yuji Morimoto, Yuichi Taguchi, and Takeshi Naemura. 2009. Automatic colorization of
grayscale images using multiple images on the web. In SIGGRAPH’09: Posters. ACM,
32.

Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell, and Alexei Efros.
2016. Context Encoders: Feature Learning by Inpainting. In CVPR.

Yingge Qu, Tien-Tsin Wong, and Pheng-Ann Heng. 2006. Manga colorization. In ACM
Transactions on Graphics (TOG), Vol. 25. ACM, 1214–1220.

Erik Reinhard, Michael Ashikhmin, Bruce Gooch, and Peter Shirley. 2001. Color Transfer
Between Images. IEEE Comput. Graph. Appl. 21, 5 (Sept. 2001), 34–41. DOI:http:
//dx.doi.org/10.1109/38.946629

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer, 234–241.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, and others.
2015. Imagenet large scale visual recognition challenge. IJCV 115, 3 (2015).

Patsorn Sangkloy, Jingwan Lu, Chen Fang, Fisher Yu, and James Hays. 2017. Scribbler:
Controlling Deep Image Synthesis with Sketch and Color. CVPR (2017).

Ahmed Selim, Mohamed Elgharib, and Linda Doyle. 2016. Painting style transfer for
head portraits using convolutional neural networks. ACM Transactions on Graphics
(TOG) 35, 4 (2016), 129.

Edgar Simo-Serra, Satoshi Iizuka, Kazuma Sasaki, and Hiroshi Ishikawa. 2016. Learning
to simplify: fully convolutional networks for rough sketch cleanup. ACM Transac-
tions on Graphics (TOG) 35, 4 (2016), 121.

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

Baoyuan Wang, Yizhou Yu, Tien-Tsin Wong, Chun Chen, and Ying-Qing Xu. 2010.
Data-driven image color theme enhancement. In ACM Transactions on Graphics
(TOG), Vol. 29. ACM, 146.

Ting-Chun Wang, Jun-Yan Zhu, Ebi Hiroaki, Manmohan Chandraker, Alexei A Efros,
and Ravi Ramamoorthi. 2016. A 4D light-field dataset and CNN architectures for
material recognition. In ECCV. Springer, 121–138.

Tomihisa Welsh, Michael Ashikhmin, and Klaus Mueller. 2002. Transferring color to
greyscale images. ACM Transactions on Graphics (TOG) 21, 3 (2002), 277–280.

Saining Xie and Zhuowen Tu. 2015. Holistically-nested edge detection. In ICCV.
Kun Xu, Yong Li, Tao Ju, Shi-Min Hu, and Tian-Qiang Liu. 2009. Efficient affinity-based

edit propagation using kd tree. ACM Transactions on Graphics (TOG) 28, 5 (2009),
118.

Li Xu, Qiong Yan, and Jiaya Jia. 2013. A sparse control model for image and video
editing. ACM Transactions on Graphics (TOG) 32, 6 (2013), 197.

Ning Xu, Brian Price, Scott Cohen, Jimei Yang, and Thomas S Huang. 2016. Deep
interactive object selection. In CVPR.

Zhicheng Yan, Hao Zhang, Baoyuan Wang, Sylvain Paris, and Yizhou Yu. 2016. Auto-
matic photo adjustment using deep neural networks. ACM Transactions on Graphics
(TOG) 35, 2 (2016), 11.

Fisher Yu and Vladlen Koltun. 2016. Multi-Scale Context Aggregation by Dilated
Convolutions. International Conference on Learning Representations (2016).

Richard Zhang, Phillip Isola, and Alexei A Efros. 2016. Colorful Image Colorization. In
ECCV.

Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. 2014.
Learning deep features for scene recognition using places database. In NIPS.

Jun-Yan Zhu, Philipp Krahenbuhl, Eli Shechtman, and Alexei A Efros. 2015. Learning a
discriminative model for the perception of realism in composite images. In CVPR.

Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. 2016. Generative
visual manipulation on the natural image manifold. (2016).

https://github.com/pfnet/PaintsChainer
https://github.com/pfnet/PaintsChainer
http://dx.doi.org/10.1109/38.946629
http://dx.doi.org/10.1109/38.946629

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Learning to Colorize
	3.2 Local Hints Network
	3.3 Global Hints Network
	3.4 Network Architecture

	4 Experiments
	4.1 How well does the system incorporate inputs?
	4.2 Does our system aid the user in generating realistic colorizations?
	4.3 Does the network generalize to unusual colorizations?
	4.4 Is the system able to incorporate global statistics?
	4.5 How does the system respond to multiple colors within an equiluminant segment?
	4.6 Is the system able to colorize legacy photographs?

	5 Limitations and Discussion
	References

