
k-variates++: more pluses in the k-means++

Richard Nock
Nicta & The Australian National University

richard.nock@nicta.com.au

Raphaël Canyasse
Ecole Polytechnique & The Technion

raphael.canyasse@polytechnique.edu

Roksana Boreli
Nicta & The University of New South Wales
roksana.boreli@nicta.com.au

Frank Nielsen
Ecole Polytechnique & Sony Computer Science Laboratories, Inc.

Frank.Nielsen@acm.org

January 22, 2018

Abstract

k-means++ seeding has become a de facto standard for hard clustering algorithms. In this
paper, our first contribution is a two-way generalisation of this seeding, k-variates++, that
includes the sampling of general densities rather than just a discrete set of Dirac densities an-
chored at the point locations, and a generalisation of the well known Arthur-Vassilvitskii (AV)
approximation guarantee, in the form of a bias+variance approximation bound of the global
optimum. This approximation exhibits a reduced dependency on the ”noise” component with
respect to the optimal potential — actually approaching the statistical lower bound. We show
that k-variates++ reduces to efficient (biased seeding) clustering algorithms tailored to specific
frameworks; these include distributed, streaming and on-line clustering, with direct approxi-
mation results for these algorithms. Finally, we present a novel application of k-variates++ to
differential privacy. For either the specific frameworks considered here, or for the differential
privacy setting, there is little to no prior results on the direct application of k-means++ and its
approximation bounds — state of the art contenders appear to be significantly more complex
and / or display less favorable (approximation) properties. We stress that our algorithms can
still be run in cases where there is no closed form solution for the population minimizer. We
demonstrate the applicability of our analysis via experimental evaluation on several domains
and settings, displaying competitive performances vs state of the art.

1

ar
X

iv
:1

60
2.

01
19

8v
2

 [
cs

.L
G

]
 1

3
Fe

b
20

16

1 Introduction
Arthur-Vassilvitskii’s (AV) k-means++ algorithm has been extensively used to address the hard
membership clustering problem, due to its simplicity, experimental performance and guaranteed
approximation of the global optimum; the goal being the k-partitioning of a dataset so as to min-
imize the sum of within-cluster squared distances to the cluster center (Arthur & Vassilvitskii,
2007), i.e., a centroid or a population minimizer (Nock et al., 2016).

The k-means++ non-uniform seeding approach has also been utilized in more complex settings,
including tensor clustering, distributed, data stream, on-line and parallel clustering, clustering with
non-metric distortions and even clustering with distortions not allowing population minimizers
in closed form (Ailon et al., 2009; Balcan et al., 2013; Jegelka et al., 2009; Liberty et al., 2014;
Nock et al., 2008; Nielsen & Nock, 2015). However, apart from the non-uniform seeding, all these
algorithms are distinct and (seemingly) do not share many common properties.

Finally, the application of k-means++ in some scenarios is still an open research topic, due to
the related constraints – e.g., there is limited prior work in a differentially private setting (Nissim
et al., 2007; Wang et al., 2015).
Our contribution — In a nutshell, we describe a generalisation of the k-means++ seeding process,
k-variates++, which still delivers an efficient approximation of the global optimum, and can be
used to obtain and analyze efficient algorithms for a wide range of settings, including: distributed,
streamed, on-line clustering, (differentially) private clustering, etc. . We proceed in two steps.

First, we describe k-variates++ and analyze its approximation properties. We leverage two
major components of k-means++: (i) data-dependent probes (specialized to observed data in the
k-means++) are used to compute the weights for selecting centers, and (ii) selection of centers is
based on an arbitrary family of densities (specialized to Diracs in the k-means++). Informally, the
approximation properties (when only (ii) is considered), can be shown as:

expected cost(k-variates++) ≤ (2 + log k) · Φ , with

Φ
.

= 6 · optimal noise-free cost + 2 · noise (bias + variance), where “noise” refers to the family
of densities (note that constants are explicit in the bound). The dependence on these densities is
arguably smaller than expectable (factor 2 for noise vs 6 for global optimum). There is also not
much room for improvement: we show that the guarantee approaches the Fréchet-Cramér-Rao-
Darmois lowerbound.

Second, we use this general algorithm in two ways. We use it directly in a differential privacy
setting, addressing a conjecture of (Nissim et al., 2007) with weaker assumptions. We also demon-
strate the use of this algorithm for a reduction to other biased seeding algorithms for distributed,
streamed or on-line clustering, and obtain the approximation bounds for these algorithms. This
simple reduction technique allows us to analyze lightweight algorithms that compare favorably to
the state of the art in the related domains (Ailon et al., 2009; Balcan et al., 2013; Liberty et al.,
2014), from the approximation, assumptions and / or complexity aspects. Experiments against
state of the art for the distributed and differentially private settings display that solid performance
improvement can be obtained.

The rest of this paper is organised as follows: Section 2 presents k-variates++. Section 3
presents approximation properties for distributed, streamed and on-line clustering that use a re-
duction from k-variates++. Section 4 presents direct applications of k-variates++ to differential

2

Algorithm 0 k-variates++

Input: data A ⊂ Rd with |A| = m, k ∈ N∗, densities
{
p(µa,θa),a ∈ A

}
, probe functions

℘t : A→ Rd (t ≥ 1);
Step 1: Initialise centers C← ∅;
Step 2: for t = 1, 2, ..., k

2.1: randomly sample a ∼qt A, with q1
.

= um and, for t > 1,

qt(a)
.

= Dt(a)

(∑
a′∈A

Dt(a
′)

)−1

, where Dt(a)
.

= min
x∈C
‖℘t(a)− x‖2

2 ; (1)

2.2: randomly sample x ∼ p(µa,θa);
2.3: C← C ∪ {x};

Output: C;

Qt

A

℘t

Xt θa

Qt′

∀a ∈ A

∀t′ > t

Figure 1: Graphical model for the k-means++ seeding process (black) and our generalisation (black
+ red, best viewed in color).

privacy. Section 5 presents experimental results. Last Section discusses extensions (to more dis-
tortion measures) and conclude. In order not to laden the paper’s body, an Appendix, starting page
18, provides all proofs, extensive experiments and additional remarks on the paper’s content.

2 k-variates++
We consider the hard clustering problem (Banerjee et al., 2005; Nock et al., 2016): given set
A ⊂ Rd and integer k > 0, find centers C ⊂ Rd which minimizes the L2

2 potential to the centers
(here, c(a)

.
= arg minc∈C ‖a− c‖2

2):

φ(A;C)
.

=
∑
a∈A

‖a− c(a)‖2
2 , (2)

3

Algorithm 0 describes k-variates++. um denotes the uniform distribution over A (|A| = m). The
parenthood with k-means++ seeding, which we name “k-means++” for short1 (Arthur & Vassil-
vitskii, 2007) can be best understood using Figure 1 (the red parts in Figure 1 are pinpointed in
Algorithm 0). k-means++ is a random process that generates cluster centers from observed data A.
It can be modelled using a two-stage generative process for a mixture of Dirac distributions: the
first stage involves random variable Qt ∼ Mult(m,πt) whose parameters πt ∈ 4m (the m-dim
probability simplex) are computed from the data and previous centers; sampling Qt chooses the
Dirac distribution, which is then “sampled” for one center (and the process iterates). All the crux
of the technique is the design of πt, which, under no assumption of the data, yield in expectation a
k-means potential for the centers chosen that is within 8(2 + log k) of the global optimum (Arthur
& Vassilvitskii, 2007).

k-variates++ generalize the process in two ways: first, the update of πt depends on data and
previous probes, using a sequence of probe functions ℘t : A → Rd (℘ = Id,∀t in k-means++).
Second, Diracs are replaced by arbitrary but fixed local (sometimes also called noisy) distributions
with parameters2 (µa,θa) that depend on A.

Let Copt ⊂ Rd denote the set of k centers minimizing (2) on A. Let copt(a)
.

= arg minc∈Copt ‖a−
c‖2

2 (a ∈ A), and

φopt
.

=
∑
a∈A

‖a− copt(a)‖2
2 , (3)

φbias
.

=
∑
a∈A

‖µa − copt(a)‖2
2 , (4)

φvar
.

=
∑
a∈A

tr (Σa) . (5)

φopt is the optimal noise-free potential, φbias is the bias of the noise3, and φvar its variance, with
Σa

.
= Ex∼pa [(x−µa)(x−µa)>] the covariance matrix of pa. Notice that when µa = a, φbias =

φopt. Otherwise, it may hold that φbias < φopt, and even φbias = 0 if expectations coincide with
Copt. Let Copt denote the partition of A according to the centers in Copt. We say that probe function
℘t is η-stretching if, informally, replacing points by their probes does not distort significantly the
observed potential of an optimal cluster, with respect to its actual optimal potential. The formal
definition follows.

Definition 1 Probe functions ℘t are said η-stretching on A, for some η ≥ 0, iff the following
holds: for any cluster A ∈ Copt and any a0 ∈ A such that φ(℘t(A); {℘t(a0)}) 6= 0, for any set of
at most k centers C ⊂ Rd,

φ(A;C)

φ(A; {a0})
≤ (1 + η) · φ(℘t(A);C)

φ(℘t(A); {℘t(a0)}) ,∀t . (6)

1Both approaches can be completed with the same further local monotonous optimization steps like Lloyd or
Hartigan iterations; furthermore, it is the biased seeding which holds the approximation properties of k-means++.

2Because expectations are the major parameter for clustering, we split the parameters in the form of µa (expecta-
tion) and θa (other parameters, e.g. covariance matrix).

3We term it bias by analogy with supervised classification, considering that the expectations of the densities could
be used as models for the cluster centers (Kohavi & Wolpert, 1996).

4

Since φ(A;Copt) =
∑
a0∈A φ(A; {a0}) (Arthur & Vassilvitskii, 2007) (Lemma 3.2), Definition 1

roughly states that the potential of an optimal cluster with respect to a set of cluster centers, rel-
atively to its potential with respect to the optimal set of centers, does not blow up through probe
function ℘t. The identity function is trivially 0-stretching, for any A. Many local transforma-
tions would be eligible for η-stretching probe functions with η small, including local translations,
mappings to core-sets (Har-Peled & Mazumdar, 2004), mappings to Voronoi diagram cell centers
(Boissonnat et al., 2010), etc. Notice that ineq. (6) has to hold only for optimal clusters and not any
clustering of A. Let E[φ(A;C)]

.
=
∫
φ(A|C)dp(C) denote the expected potential over the random

sampling of C in k-variates++.

Theorem 2 For any dataset A, any sequence of η-stretching probe functions ℘t and any density
{pa,a ∈ A}, the expected potential of k-variates++ satisfies:

E[φ(A;C)] ≤ (2 + log k) · Φ , (7)

with Φ
.

= (6 + 4η)φopt + 2φbias + 2φvar.

(Proof in page 19) Five remarks are in order. First, we retrieve the result of (Arthur & Vassilvitskii,
2007) in their setting (η = φvar = 0, φbias = φopt). Second, in the case where φbias < φopt, we may
beat AV’s bound. This is not due to an improvement of the algorithm, but to a finer analysis which
shows that special settings may “naturally” favor the improvement. We shall see one example in
the distributed clustering case. Third, apart from being η-stretching, there is no constraint on the
choice of probe functions ℘t: it can be randomized, iteration dependent, etc. Fourth, the algorithm
can easily be generalized to the case where points are weighted. Last, as we show in the following
Lemma, the dependence in noise in ineq. (7) can hardly be improved in our framework.

Lemma 3 Suppose each point in A is replaced (i.i.d.) by a point sampled in pa with Σa = Σ.
Then any clustering algorithm suffers: E[φ(A;C)] = Ω(|A|tr (Σ)).

(Proof in page 22) We make use of k-variates++ in two different ways. First, we show that it can
be used to prove approximation properties for algorithms operating in different clustering settings:
distributed clustering, streamed clustering and on-line clustering. The proof involves a reduction
(see page 23) from k-variates++ to each of these algorithms. By reduction, we mean there exists
distributions and probe functions (even non poly-time computable) for which k-variates++ yields
the same result in expectation as the other algorithm, thus directly yielding an approximability
ratio of the global optimum for this latter algorithm via Theorem 2. Second, we show how k-
variates++ can directly be specialized to address settings for which no efficient application of
k-means++ was known.

3 Reductions from k-variates++
Despite tremendous advantages, k-means++ has a serious downside: it is difficult to paral-

lelize, distribute or stream it under relevant communication, space, privacy and/or time resource
constraints (Bahmani et al., 2012). Although extending k-means clustering to these settings has
been a major research area in recent years, there has been no obvious solution to tailoring k-
means++ (Ackermann et al., 2010; Ailon et al., 2009; Bahmani et al., 2012; Balcan et al., 2013;
Liberty et al., 2014; Shindler et al., 2011) (and others).

5

Ref. Property Them Us
(1) (Bahmani et al., 2012) Communication complexity O(n2` · log φ1) (expected) O(n2k)
(2) (Bahmani et al., 2012) # data to compute one center m ≤ maxi∈[n](m/mi)

(3) (Bahmani et al., 2012) Data points shared O(` · log φ1) (expected) k

(4) (Bahmani et al., 2012) Approximation bound O((log k) · φopt) (2 + log k) ·
(
10φopt + 6φFs

)
(I) (Balcan et al., 2013) Communication complexity Ω((nkd/ε4) + n2k ln(nk)) O(n2k)

(II) (Balcan et al., 2013) Data points shared Ω((kd/ε4) + nk ln(nk)) k

(III) (Balcan et al., 2013) Approximation bound (2 + log k)(1 + ε) · 8φopt (2 + log k) ·
(
10φopt + 6φFs

)
(i) (Ailon et al., 2009) Time complexity (outer loop) — identical —
(ii) (Ailon et al., 2009) Approximation bound (2 + log k)(1 + η) · 32φopt (2 + log k) · ((8 + 4η)φopt + 2φ℘s)
(a) (Liberty et al., 2014) Knowledge required Lowerbound φ∗ ≤ φopt None
(b) (Liberty et al., 2014) Approximation bound O(logm · φopt) (2 + log k) ·

(
4 + (32/ς2)

)
φopt

(A) (Nissim et al., 2007) Knowledge required λ(φopt) None
(B) (Nissim et al., 2007) Noise variance (σ) O(λkR/ε) O(R/(ε + logm))

(C) (Nissim et al., 2007) Approximation bound O∗(φopt +mλ2kR2/ε2) O(log k(φopt +mR2/(ε + logm)2))
(α) (Wang et al., 2015) Assumptions on φopt Several (separability, size of clusters, etc.) None
(β) (Wang et al., 2015) Approximation bound O∗(φopt + km log(m)R2/ε2) O(log k(φopt +mR2/(ε + logm)2))

Table 1: Comparison with state of the art approaches for distributed clustering (1-4, I-III), streamed
clustering (i, ii), on-line clustering (a, b) and differential privacy (A-C, α, β). Notations used for
the ”Them” column are as follows. φ1 is the expected potential of a clustering with a single cluster
over the whole data and ` is in general Ω(k) (Bahmani et al., 2012). ε is the coreset approximation
factor in (Balcan et al., 2013). η is the approximation factor of the optimum in (Ailon et al., 2009).
λ is the separability factor in Definition 5.1 in (Nissim et al., 2007).

Algorithm 1 Dk-means++ (// PDk-means++)
Input: Forgy nodes (Fi,Ai), i ∈ [n],
for t = 1, 2, ..., k
Round 1 : N∗ picks i∗ ∼qDt [n] and asks Fi∗ for a center;
Round 2 : Fi∗ picks a ∼ui∗ Ai∗ and sends a to Fi,∀i;

// PDk-means++: Fi∗ sends x ∼ p(µa,θa) to Fi,∀i;
Round 3 : ∀i,Fi updates Dt(Ai) and sends it to N∗;

Output: C = set of broadcasted as (or xs);

Distributed clustering We consider horizontally partitioned data among peers, in line with
(Bahmani et al., 2012), and a setting significantly more restrictive than theirs: each peer can only
locally run the standard operations of Forgy initialisation (that is, uniform random seeding) on its
own data, unlike for example the biased distributions of (Bahmani et al., 2012). This is consistent
with the notion that data handling peers are not necessarily computationally intensive resources.
Additionally, due to privacy constraints, we limit the data sharing between nodes. We denote the
nodes handling the data Forgy nodes. We have n such nodes, (Fi,Ai), i ∈ [n], where Ai is the
dataset held by Fi. To enable more complex operations necessary to implement k-variates++, we
introduce a special node, N∗, that has high computation power, but is not allowed to handle any
data (points) from the Forgy nodes. We therefore split the location of the computational power
from the location of the data. We also prevent the Forgy nodes from exchanging any data between
themselves, with the sole exception of cluster centers. We note that none of the algorithms of
(Ailon et al., 2009; Balcan et al., 2013; Bahmani et al., 2012) would be applicable to this setting
without non-trivial modifications affecting their properties.

Algorithm 1 defines the mechanism that is consistent with our setting. It includes two variants:
a protected version Dk-means++ where Forgy nodes directly share local centers and a private

6

version PDk-means++ where the nodes share noisy centers, such as to ensure a differentially private
release of centers (with relevant noise calibration). Notations used in Algorithm 1 are as follows.
Let Dt(Ai)

.
=
∑
a∈Ai Dt(a) and qDti

.
= Dt(Ai) · (

∑
j Dt(Aj))

−1 if t > 1 and qDti
.

= 1/n otherwise.
Also, ui is uniform distribution on [mi], with mi

.
= |Ai|.

Theorem 4 Let φFs
.

=
∑

i∈[n]

∑
a∈Ai ‖c(Ai)−a‖2

2 be the total spread of the Forgy nodes (c(Ai)
.

=

(1/mi) ·
∑

Ai
a). At iteration k, the expected potential on the total data A

.
= ∪iAi satisfies ineq.

(7) with

Φ
.

=

{
10φopt + 6φFs (Dk-means++)
10φopt + 4φFs + 2φvar (PDk-means++)

. (8)

Here, φopt is the optimal potential on total data A.

(Proof in page 23) We note that the optimal potential is defined on the total data. The dependence
on φFs , which is just the peer-wise variance of data, is thus rather intuitive. A positive point is
that φFs is weighted by a factor smaller than the factor that weights the optimal potential. Another
positive point is that this parameter can be computed from data, and among peers, without disclos-
ing more data. Hence, it may be possible to estimate the loss against the centralized, k-means++
setting, taking as reference eq. (8). To gain insight in the leverage that Theorem 4 provides, Table
1 compares Dk-means++ to (Balcan et al., 2013)’s (ε is the coreset approximation parameter), even
though the latter approach would not be applicable to our restricted framework. To be fair, we as-
sume that the algorithm used to cluster the coreset in (Balcan et al., 2013) is k-means++. We note
that, considering the communication complexity and the number of data points shared, Algorithm
1 is a clear winner. In fact, Algorithm 1 can also win from the approximability standpoint. The
dependence in ε prevents to fix it too small in (Balcan et al., 2013). Comparing the bounds in row
(III) shows that if ε > 1/4, then we can also be better from the approximability standpoint if the
spread satisfies φFs = O(φopt). While this may not be feasible over arbitrary data, it becomes more
realistic on several real-world scenarii, when Forgy nodes aggregate “local” data with respect to
features, e.g., state-wise insurance data, city-wise financial data, etc. When n increases, this also
becomes more realistic.

Streaming clustering We have access to a stream S, with an assumed finite size: S is a sequence
of points a1,a2, ...,am. We authorise the computation / output of the clustering at the end of the
stream, but the memory n allowed for all operations satisfies n < m, such as n = mα with α < 1
in (Ailon et al., 2009). We assume for simplicity that each point can be stored in one storage
memory unit. Algorithm 2 (Sk-means++) presents our approach. It relies on the standard “trick”
of summarizing massive datasets via compact representations (synopses) before processing them
(Indyk et al., 2014). The approximation properties of Sk-means++, proven using a reduction from
k-variates++, hold regardless of the way synopses are built. They show that two key parameters
may guide its choice: the spread of the synopses, analogous to the spread of Forgy nodes for
distributed clustering, and the stretching properties of the synopses used as centers.

Theorem 5 Let ℘(a)
.

= arg mins′∈S ‖a − s′‖2
2,∀a ∈ S. Let φ℘s

.
=
∑
a∈S ‖℘(a) − a‖2

2 be the
spread of ℘ on synopses set S. Let η > 0 such that ℘ is η-stretching on S. Then the expected

7

Algorithm 2 Sk-means++
Input: Stream S
Step 1: S .

= {(sj,mj), i ∈ [n]} ← SYNOPSIS(S, n);
Step 2: for t = 1, 2, ..., k

2.1: if t = 1 then let sj ∼un S else sj ∼qSt S s.t.

qSt (sj)
.

= mjDt(sj)

∑
j′∈[n]

mj′Dt(sj′)

−1

; (9)

// Dt(sj)
.

= minc∈C ‖sj − c‖2
2;

2.2: C← C ∪ {sj};
Output: Cluster centers C;

Algorithm 3 OLk-means++
Input: Minibatch Sj , current weighted centers C;
Step 1: if j = 1 then let s ∼u1 S1 else s ∼qOj Sj s.t.

qOj (s)
.

= Dt(s)

∑
s′∈Sj

Dt(s
′)

−1

; (10)

// Dt(s)
.

= minc∈C ‖s− c‖2
2;

Step 2: C← C ∪ {s};

potential of Sk-means++ on stream S satisfies ineq. (7) with

Φ
.

= (8 + 4η)φopt + 2φ℘s ,

Here, φopt is the optimal potential on stream S.

(Proof in page 25) It is not surprising to see that Sk-means++ looks like a generalization of (Ailon
et al., 2009) and almost matches it (up to the number of centers delivered) when k′ � k synopses
are learned from k′-means#. Yet, we rely on a different — and more general — analysis of its
approximation properties. Table 1 compares properties of Sk-means++ to (Ailon et al., 2009) (η
relates to approximation of the k-means objective in inner loop).

On-line clustering This setting is probably the farthest from the original setting of the k-means++
algorithm. Here, points arrive in a sequence, finite, but of unknown size and too large to fit in mem-
ory (Liberty et al., 2014). We make no other assumptions – the sequence can be random, or chosen
by an adversary. Therefore, the expected analysis we make is only with respect to the internal
randomisation of the algorithm, i.e., for the fixed stream sequence as it is observed. We do not
assume a feedback for learning (common for supervised learning); so, we do not assume that the
algorithm has to predict a cluster for each point that arrives, yet it has to be easily modifiable to do
so.

8

Our approach is summarized in Algorithm 3 (OLk-means++), a variation of k-means++ which
consists of splitting the stream S into minibatches Sj for j = 1, 2, ..., each of which is used to
sample one center. u1 denotes the uniform distribution with support S1. Let R .

= maxa,a′∈S ‖a −
a′‖2(�∞) be the diameter of S.

Theorem 6 Let ς > 0 be the largest real such that the following conditions are met (for any
A ∈ Copt, j ≥ 1): for any set of at most k centers C,

∑
a,a′∈A ‖a − a′‖2

2 ≥ ς ·
(|A|

2

)
R2 and∑

a∈A∩Sj ‖a− c(a)‖2
2 ≥ ς ·∑a∈A ‖a− c(a)‖2

2 (with c(a) defined in eq. (2)). Then the expected
potential of OLk-means++on stream S satisfies ineq. (7) with

Φ
.

=

(
4 +

32

ς2

)
· φopt ,

where φopt is the optimal potential on stream S.

(Proof in page 26) Notice that loss function φ(S,C) in eq. (2) implies the finiteness of S, and the
existence of ς > 0; also, the second condition implies ς ≤ 1. In (Liberty et al., 2014), the clustering
algorithm is required to have space and time at most polylog in the length of the stream. Hence,
each minibatch can be reasonably large with respect to the stream — the larger they are, the larger
ς . The knowledge of ς is not necessary to run OLk-means++; it is just a part of the approximation
bound which quantifies the loss in approximation due to the fact that centers are computed from the
partial knowledge of the stream. Table 1 compares properties of OLk-means++ to (Liberty et al.,
2014) (we picked the fully on-line, non-heuristic algorithm). To compare the bounds, suppose that
batches have the same size, b, so that log k = log(m/b). If batches are at least polylog size, up to
what is hidden in the big-Oh notation, our approximation can be quite competitive when ς is large,
e.g., if d is large and optimal clusters are not too small.

4 Direct use of k-variates++
The most direct application domain of k-variates++ is differential privacy. Several algorithms have
independently emphasised the idea that powerful mechanisms may be amended via a carefully de-
signed noise mechanism to broaden their scope with new capabilities, without overly challenging
their original properties. Examples abound (Hardt & Price, 2014; Kalai & Vempala, 2005; Chaud-
huri et al., 2011; Chichignoud & Lousteau, 2014), etc. Few approaches are related to clustering,
yet noise injected is big — the existence of a smaller, sufficient noise, was conjectured in (Nissim
et al., 2007) — and approaches rely on a variety of assumptions or knowledge about the optimum
(See Table 1) (Nissim et al., 2007; Wang et al., 2015). To apply k-variates++, we consider that
℘t = Id,∀t, and assume 0 < R � ∞ s.t. maxa,a′∈A ‖a − a′‖2 ≤ R (a current assumption in the
field (Dwork & Roth, 2014)).

A general likelihood ratio bound for k-variates++ We show that the likelihood ratio of the
same clustering for two “close” instances is governed by two quantities that rely on the neigh-
borhood function. Most importantly for differential privacy, when densities p(µa,θa) are carefully
chosen, this ratio always → 1 as a function of m, which is highly desirable for differential pri-
vacy. We let NNN(a)

.
= arg mina′∈N ‖a − a′‖2 denote the nearest neighbour of a in N, and let

c(A)
.

= (1/|A|) ·∑a∈A a.

9

Figure 2: Checking that δs is small, for N the set of crosses (+). Any set A of points close to each
other, such as the black dots (•), would be N-packed (pick x = c(A) in this case), but would fail to
be N-packed if too spread (e.g., red dot (•) plus black dots). Segments depict the Voronoi diagram
of N. Best viewed in color.

Definition 7 We say that neighborhood in A is δw-spread for some δw > 0 iff for any N ⊆ A with
|N| = k − 1, and any B ⊆ A with |B| = |A| − 1,∑

a∈B

‖a− NNN(a)‖2
2 ≥

R2

δw
. (11)

Definition 8 We say that neighborhood in A is δs-monotonic for some δs > 0 iff the following
holds. ∀N ⊆ A with |N| ∈ {1, 2, ..., k − 1}, for any A ⊆ A\N which is N-packed, we have:∑

a∈A

‖a− NNN(a)‖2
2

≤ (1 + δs) ·
∑
a∈A

‖a− NNN∪{c(A)}(a)‖2
2 . (12)

Set A is said N-packed iff there exists x ∈ Rd satisfying x = arg minc∈N∪{x} ‖a− c‖2
2, ∀a ∈ A.

It is worthwhile remarking that as long as k < |A| � ∞, both 0 < δw � ∞ and 0 < δs � ∞
always exist. Informally, δw brings that the sum of squared distances to any subset of k− 1 centers
in A must not be negligible against the diameter R. δs yields a statement a bit more technical,
but it roughly reduces to stating that adding one center to any set of at most k − 1 points that
are already close to each other should not decrease significantly the overall potential to the set of
centers. Figure 2 provides a schematic view of the property, showing that the modifications of the
potential can be very local, thus yielding small δs in ineq. (12). The following Theorem uses the
definition of neighbouring samples: samples A and A′ are neighbours, written A ≈ A′, iff they
differ by one point. We also define P[C|A] to be the density of output C given input data A.

Theorem 9 Fix ℘t = Id (∀t) and densities p(µ.,θ.) having the same support Ω in k-variates++.
Suppose there exists %(R) > 0 such that densities p(µ.,θ.) satisfy the following pointwise likelihood

10

ratio constraint:

p(µa′ ,θa′)
(x)

p(µa,θa)(x)
≤ %(R) ,∀a,a′ ∈ A,∀x ∈ Ω . (13)

Then, there exists a function f(.) such that, for any δw, δs > 0 such that A is δw-spread and
δs-monotonic, for any A′ ≈ A, for any k > 0 and any C ⊂ Ω of size k output by Algorithm
k-variates++ on whichever of A or A′, the likelihood ratio of C given A and A′ is upperbounded
as:

P[C|A′]
P[C|A]

≤ (1 + δw)k−1+f(k)·δw·(1 + δs)
k−1·%(R) . (14)

(Proof in page 28) Notice that Theorem 9 makes just one assumption (13) about the densities, so
it can be applied in fairly general settings, such as for regular exponential families (Banerjee et al.,
2005). These are a key choice because they extensively cover the domain of distortions for which
the average is the population minimiser.

An (almost) distribution-free 1 + o(1) likelihood ratio We now show that if A is sampled i.i.d.
from any distribution D which satisfies the mild assumption that it is locally bounded everywhere
(or almost surely) in a ball, then with high probability the right-hand side of ineq. (14) is 1 + o(1)
where the little-oh vanishes with m. The proof, of independent interest, involves an explicit bound
on δw and δs.

Theorem 10 Suppose A with |A| = m > 1 sampled i.i.d. from distribution D whose support
contains a L2 ball B2(0, R) with density inside in between εm > 0 and εM ≥ εm. Let ρD

.
=

εM/εm (≥ 1). For any 0 < δ < 1/2, if (i) A ⊂ B(0, R) and (ii) the number of clusters k meets:

k ≤ δ2

4ρD

· √m , (15)

then there is probability 1−δ over the sampling of A that k-variates++, instantiated as in Theorem
9, satisfies P[C|A′]/P[C|A] ≤ 1 + ρk

D
· g(m, k, d,R), ∀A′ ≈ A, with

g(m, k, d,R)
.

=
4

m
1
4

+ 1
d+1

+

(
64

k
2
d

)k
· %(2R)

m
. (16)

(Proof in page 34) The key informal statement of Theorem 10 is that one may obtain with high
probability some “good” datasets A, i.e., for which δw, δs are small, under very weak assumptions
about the domain at hand. The key point is that if one has access to the sampling, then one can
resample datasets A until a good one comes.

Applications to differential privacy Let M be any algorithm which takes as input A and k, and
returns a set of k centers C. Let PM [C|A] denote the probability, over the internal randomisation of
M , that M returns C given A and k (k, fixed, is omitted in notations). Following is the definition
of differential privacy (Dwork et al., 2006), tailored for conciseness to our clustering problem.

11

Definition 11 M is ε-differentially private (DP) for k clusters iff for any neighbors A ≈ A′, set C
of k centers,

PM [C|A′]/PM [C|A] ≤ exp ε . (17)

A relaxed version of ε-DP is (ε, δ)-DP, in which we require PM [C|A′] ≤ PM [C|A] · exp ε + δ;
thus, ε-DP = (ε, 0)-DP (Dwork & Roth, 2014). We show that low noise may be affordable to
satisfy ineq. (17) using Laplace distribution, Lap(σ/

√
2). We refer to the Laplace mechanism as a

popular mechanism which adds to the output of an algorithm a sufficiently large amount of Laplace
noise to be ε-DP. We refer to (Dwork et al., 2006) for details, and assume from now on that data
belong to a L1 ball B1(0, R).

Theorem 12 Using notations and setting of Theorem 9, let

ε̃
.

= log

(
exp(ε)− (1 + δw)k−1

f(k) · δw · (1 + δs)
k−1

)
. (18)

Then, k-variates++ with p(µ.,θ.) a product of Lap(σ1/
√

2), for σ1
.

= 2
√

2R/ε̃, both meets ineq.
(17) and its expected potential satisfies ineq. (7) with

Φ = Φ1
.

= 8 ·
(
φopt +

mR2

ε̃2

)
. (19)

On the other hand, if we opt for σ2
.

= 2
√

2kR/ε, then k-variates++ is an instance of the Laplace
mechanism and its expected potential satisfies ineq. (7) with

Φ = Φ2
.

= 8 ·
(
φopt +

mk2R2

ε2

)
. (20)

(Proof in page 41) A question is how do σ1 (resp. Φ1) and σ2 (resp. Φ2) compare with each other,
and how do they compare to the state of the art (Nissim et al., 2007; Wang et al., 2015) (we only
consider methods with provable approximation bounds of the global optimum). The key fact is
that, if m is sufficiently large, then it happens that we can fix δw = O(1/m) and δs = O(1). The
proof of Theorem 10 (page 34) and the experiments (page 44) display that such regimes are indeed
observed. In this case, it is not hard to show that ε̃ = Ω(ε+ logm), granting σ1 = o(σ2) since

σ1 = O

(
R

ε+ log(m)

)
, (21)

i.e. the noise guaranteeing ineq. (17) vanishes at 1/ log(m) rate. Consequently, in this regime, Φ1

in eq. (19) becomes:

Φ1 = Õ

(
φopt +

mR2

(ε+ logm)2

)
, (22)

ignoring all factors other than those noted. Thus, the noise dependence grows sublinearly in m.
Since in this setting, unless all datapoints are the same, δw and δs for A and any possible neighbor

12

 4
 5

 6
 7

 8
 9

 10
k 0

 10
 20

 30
 40

 50

p

-4
-2
 0
 2
 4
 6
 8

ρφ

Figure 3: Plot of ρφ(H) = f(k, p) (points below z = 0 — isocontour shown — correspond to
superior performances for Dk-means++). Left: H=k-means++; right: H=k-means‖ (best viewed
in color).

A′ are within 1 + o(1), it is also possible to overestimate δw and δs to still have δw = O(1/m) and
δs = O(1) and grant ε-DP for k-variates++. Otherwise, the setting of Theorem 10 can be used to
grant (ε, δ)-DP without any tweak. Table 1 compares k-variates++ to (Nissim et al., 2007; Wang
et al., 2015) in this large sample regime, which is actually a prerequisite for (Nissim et al., 2007;
Wang et al., 2015). NotationO∗ removes all dependencies in their model parameters (assumptions,
model parameters, and δ for the (ε, δ)-DP in (Wang et al., 2015)), and λ is the separability assump-
tion parameter (Nissim et al., 2007)4. The approximation bounds in (Nissim et al., 2007) consider
Wasserstein distance between (estimated / optimal) centers, and not the potential involving data
points like us. To obtain bounds that can be compared, we have used the simple trick that the
observed potential is, up to a constant, no more than the optimal potential plus a fonction of the
distance between (estimated / optimal) centers. This somewhat degrades the bound, but not enough
for the observed discrepancies with our bound to reverse or even vanish. It is clear from the bounds
that the noise dependence is significantly in our favor, and our bound is also significantly better at
least when k is not too large.

5 Experiments
The experiments carried out are provided in extenso in the Appendix (from page 44).
Dk-means++ vs k-means++ and k-means‖ (Bahmani et al., 2012) To address algorithms that can
be reduced from k-variates++ (Section 3), we have tested Dk-means++ vs state of the art approach
k-means‖; to be fair with Dk-means++, we use k-means++ seeding as the reclustering algorithm
in k-means‖. Parameters are in line with (Bahmani et al., 2012). To control the spread of Forgy
nodes φFs (Theorem 4), each peer’s initial data consists of points uniformly sampled in a random
hyperrectangle in a space of d = 50 (expected number of peers points mi = 500, ∀i). We sample

4λ is named φ in (Nissim et al., 2007). We use λ to avoid confusion with clustering potentials.

13

Dataset m d k (ε̃/ε) ρ′
φ

(F-DP) ρ′
φ

(GUPT)

LifeSci 26 733 10 3 4.5 163.0 0.7
Image 34 112 3 2.5 7.9 188.5 2.9

EuropeDiff 169 308 2 5 13.0 2857.1 40.4

Table 2: k-variates++ vs F-DP and GUPT (see text).

peers until a total of m ≈ 20000 point is sampled. Then, each point moves with p% chances to a
uniformly sampled peer. We checked that φFs blows up with p, i.e., >20 times for p = 50% with
respect to p = 0. A remarkable phenomenon was the fact that, even when the number of peers
n is quite large (dozens on average), Dk-means++ is able to beat both k-means++ and k-means‖,
even for large values of p, as computed by ratio ρφ(H)

.
= 100 · (φ(Dk-means++) − φ(H))/φ(H)

for H ∈ {k-means++, k-means‖} (Figure 3). Another positive point is that the amount of data to
compute a center for Dk-means++ is in average ≈ n times smaller than k-means‖.

The fact that Dk-means++, which locally implements the biased seeding, may be able to beat
k-means++, which globally implements this seeding technique, is not surprising, and in fact may
come from the leverage brought by the compartmentalization of distributed data: as discussed in
deeper details in page 47, this may even improve the approximability ratio of Dk-means++ so that
it beats the AV bound.
k-variates++ vs Forgy-DP and GUPT To address algorithms that can be obtained via a direct use
of k-variates++ (Section 4), we have tested it in a differential privacy framework vs state of the
art approach GUPT (Mohan et al., 2012). We let ε = 1 in our experiments. We also compare it
to Forgy DP (F-DP), which is just Forgy initialisation in the Laplace mechanism, with noise rate
(standard dev.) ∝ kR/ε. In comparison, the noise rate for GUPT is ∝ kR/(`ε) at the end of its
aggregation process, where ` is the number of blocks. Table 2 gives results for the average (over the
choices of k) parameters used, k, ε̃, and ratio ρ′φ where ρ′φ(H)

.
= φ(H)/φ(k-variates++) — values

above 1 indicate better results for k-variates++. We use ε̃ as the equivalent ε for k-variates++, i.e.
the value that guarantees ineq. (17). From Theorem 12, when ε̃ > ε, this brings a smaller noise
magnitude, desirable for clustering. The obtained results show that k-variates++ becomes more
of a contender with increasing m, but its relative performance tends to decrease with increasing
k. This is in accordance with the “good” regime of Theorem 12. Results on synthetic domains
display the same patterns, along with the fact that relative performances of k-variates++ improves
with d, making it a relevant choice for ”big” domains.

In fact, extensive experiments on synthetic data (page 44) show that intuitions regarding the
sublinear noise regime in eq. (22) are experimentally observed, and furthermore they may happen
for quite small values of m.

6 Discussion and Conclusion
We first show in this paper that the k-means++ analysis of Arthur and Vassilvitskii can be carried
out on a significantly more general scale, aggregating various clustering frameworks of interest
and for which no trivial adaptation of k-means++ was previously known. Our contributions stand
at two levels: (i) we provide the “meta” algorithm, k-variates++, and two key results, one on its

14

approximation abilities of the global optimum, and one on the likelihood ratio of the centers it
delivers. We do expect further applications of these results, in particular to address several other
key clustering problems: stability, generalisation and smoothed analysis (Arthur et al., 2011; von
Luxburg, 2010); (ii) we provide two examples of application. The first is a reduction technique
from k-variates++, which shows a way to obtain straight approximabilty results for other clustering
algorithms, some being efficient proxies for the generalisation of existing approaches (Ailon et al.,
2009). The second is a direct application of k-variates++ to differential privacy, exhibiting a noise
component significantly better than existing approaches (Nissim et al., 2007; Wang et al., 2015).

We have not discussed here the possibility to replace the L2
2 distortion which computes the po-

tential by elements from large and interesting classes — clustering being a huge practical problem,
it is indeed reasonable to tailor the distortion to the application at hand. One example are Bregman
divergences, that fail simple metric transforms (Acharyya et al., 2013). Another example are total
divergences, that fail the simple computation of the population minimizers (Nock et al., 2016; Liu
et al., 2012). Some do not even admit population minimizers in closed form (Nielsen & Nock,
2015). It turns out that k-variates++, and its good approximation properties, can be extended to
such cases (see page 42) for total Jensen divergence (Nielsen & Nock, 2015).

7 Acknowledgments
Thanks are due to Stephen Hardy, Guillaume Smith, Wilko Henecka and Max Ott for stimulating
discussions and feedback on the subject. Nicta is funded by the Australian Government through
the Department of Communications and the Australian Research Council through the ICT Center
of Excellence Program.

References
Acharyya, S., Banerjee, A., and Boley, D. Bregman divergences and triangle inequality. In Proc.

of the 13th SIAM International Conference on Data Mining, pp. 476–484, 2013.

Ackermann, M.-R., Lammersen, C., Märtens, M., Raupach, C., Sohler, C., and Swierkot, K.
Streamkm++: A clustering algorithms for data streams. In 12th ALENEX, pp. 173–187, 2010.

Ailon, N., Jaiswal, R., and Monteleoni, C. Streaming k-means approximation. In NIPS*22, pp.
10–18, 2009.

Arthur, D. and Vassilvitskii, S. k-means++ : the advantages of careful seeding. In 19th SODA, pp.
1027 – 1035, 2007.

Arthur, D., Manthey, B., and Röglin, H. Smoothed analysis of the k-means method. JACM, 58:19,
2011.

Bahmani, B., Moseley, B., Vattani, A., Kumar, R., and Vassilvitskii, S. Scalable k-means++. In
38th VLDB, pp. 622–633, 2012.

Balcan, M.-F., Ehrlich, S., and Liang, Y. Distributed k-means and k-median clustering on general
communication topologies. In NIPS*26, pp. 1995–2003, 2013.

15

Banerjee, A., Merugu, S., Dhillon, I., and Ghosh, J. Clustering with Bregman divergences. JMLR,
6:1705–1749, 2005.

Boissonnat, J.-D., Nielsen, F., and Nock, R. Bregman voronoi diagrams. DCG, 44(2):281–307,
2010.

Chaudhuri, K., Monteleoni, C., and Sarwate, A.-D. Differentially private empirical risk minimiza-
tion. JMLR, 12:1069–1109, 2011.

Chichignoud, M. and Lousteau, S. Adaptive noisy clustering. IEEE Trans. IT, 60:7279–7292,
2014.

Dwork, C. and Roth, A. The algorithmic foudations of differential privacy. Found. & Trends in
TCS, 9:211–407, 2014.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. Calibrating noise to sensitivity in private data
analysis. In 3rd TCC, pp. 265–284, 2006.

Har-Peled, S. and Mazumdar, S. On coresets for k-means and k-median clustering. In 37th ACM
STOC, pp. 291–300, 2004.

Hardt, M. and Price, E. The noisy power method: a meta algorithm with applications. In NIPS*27,
pp. 2861–2869, 2014.

Indyk, P., Mahabadi, S., Mahdian, M., and Mirrokni, V.-S. Composable core-sets for diversity and
coverage maximization. In 33rd ACM PODS, pp. 100–108, 2014.

Jegelka, S., Sra, S., and Banerjee, A. Approximation algorithms for tensor clustering. In 20th ALT,
pp. 368–383, 2009.

Kalai, A. and Vempala, S. Efficient algorithms for online decision problems. J. Comp. Syst. Sc.,
pp. 291–307, 2005.

Kohavi, R. and Wolpert, D. Bias plus variance decomposition for zero-one loss functions. In 13th

ICML, pp. 275–283, 1996.

Liberty, E., Sriharsha, R., and Sviridenko, M. An algorithm for online k-means clustering. CoRR,
abs/1412.5721, 2014.

Liu, M., Vemuri, B.-C., .i Amari, S., and Nielsen, F. Shape retrieval using hierarchical total
bregman soft clustering. IEEE Trans. PAMI, 34(12):2407–2419, 2012.

McSherry, F. Privacy integrated queries: an extensible platform for privacy-preserving data analy-
sis. Communications of the ACM, 53(9):89–97, 2010.

Mohan, P., Thakurta, A., Shi, E., Song, D., and Culler, D.-E. GUPT: privacy preserving data
analysis made easy. In 38th ACM SIGMOD, pp. 349–360, 2012.

Nielsen, F. and Nock, R. Total Jensen divergences: definition, properties and clustering. In 40th

IEEE ICASSP, pp. 2016–2020, 2015.

16

Nissim, K., Raskhodnikova, S., and Smith, A. Smooth sensitivity and sampling in private data
analysis. In 40th ACM STOC, pp. 75–84, 2007.

Nock, R., Luosto, P., and Kivinen, J. Mixed Bregman clustering with approximation guarantees.
In 19th ECML, pp. 154–169, 2008.

Nock, R., Nielsen, F., and Amari, S.-I. On conformal divergences and their population minimizers.
IEEE Trans. IT, 62:1–12, 2016.

Shindler, M., Wong, A., and Meyerson, A. Fast and accurate k-means for large datasets. In
NIPS*24, pp. 2375–2383, 2011.

von Luxburg, U. Clustering stability: an overview. Found. & Trends in ML, 2(3):235–274, 2010.

Wang, Y., Wang, Y.-X., and Singh, A. Differentially private subspace clustering. In NIPS*28,
2015.

17

Appendix — Table of contents
Appendix on proofs Pg 19
Proof of Theorem 2 Pg 19
Proof of Lemma 3 Pg 22
Comments on Table 1 Pg 22
Proofs of Theorems 4, 5 and 6 Pg 23
↪→ Proof of Theorem 4 Pg 23
↪→ Proof of Theorem 5 Pg 25
↪→ Proof of Theorem 6 Pg 26
Proof of Theorem 9 Pg 28
Proof of Theorem 10 Pg 34
Proof of Theorem 12 Pg 41
Extension to non-metric spaces Pg 42

Appendix on experiments Pg 44
Experiments on Theorem 12 and the sublinear noise regime Pg 44
Experiments with Dk-means++, k-means++ and k-means‖ Pg 47
Experiments with k-variates++ and GUPT Pg 51

18

8 Appendix on Proofs
Several proofs rely on properties of the k-means++ algorithm that are not exploited in the proof
of (Arthur & Vassilvitskii, 2007). We assume here the basic knowledge of the proof technique of
(Arthur & Vassilvitskii, 2007).

Proof of Theorem 2
Let A denote a subset of A, and c(A)

.
= (1/|A|) ·∑a∈A a the barycenter of A. It is well known

that c(A) = arg mina′∈Rd
∑
a∈A ‖a− a′‖2

2, so the potential of A,

φ(A)
.

=
∑
a∈A

‖a− c(A)‖2
2 (23)

is just the optimal potential of A if A defines a cluster in the optimal clustering. We also define the
noisy potential of A as:

φN(A)
.

=
∑
a∈A

∫
Ωa

‖x− c(A)‖2
2dpa(x) . (24)

The proof of Theorem 2 follows the same path as the proof of Theorem 3.1 in (Arthur & Vassil-
vitskii, 2007). Instead of reproducing the proof, we shall assume basic knowledge of the original
proof and will just provide the side Lemmata that are sufficient for our more general result. The
first Lemma is a generalization of Lemma 3.2 in (Arthur & Vassilvitskii, 2007).

Lemma 13 Let Copt denotes the optimal partition of A according to eq. (2). Let A be an arbitrary
cluster in Copt. Let C be a single-cluster clustering whose center is chosen at random by one step
of Algorithm k-variates++ (i.e. for t = 1). Then

E[φ(A)] = φopt(A) + φNopt(A) . (25)

19

Proof The expected potential of cluster A is

E[φ(A;C = ∅)]

=
1

|A| ·
∑
a0∈A

∫
Ωa0

∑
a∈A

‖a− x‖2
2dpa0(x)

=
1

|A| ·
∑
a0∈A

∫
Ωa0

∑
a∈A

‖a− c(A) + c(A)− x‖2
2dpa0(x)

=
1

|A| ·
∑
a0∈A

(∑
a∈A ‖a− c(A)‖2

2 + |A| ·
∫

Ωa0
‖x− c(A)‖2

2dpa0(x)

+2
∑
a∈A〈a− c(A), c(A)−

∫
Ωa0
xdpa0(x)〉

)

=
1

|A| ·
∑
a0∈A


∑
a∈A ‖a− c(A)‖2

2 + |A| ·
∫

Ωa0
‖x− c(A)‖2

2dpa0(x)

+2〈
∑
a∈A

a− |A|c(A)︸ ︷︷ ︸
=0

, c(A)− a0〉


=

∑
a∈A

‖a− c(A)‖2
2 +

∑
a∈A

∫
Ωa0

‖x− c(A)‖2
2dpa(x)

= φopt(A) + φNopt(A) ,

as claimed.

When pa is a Dirac anchored at a, we recover Lemma 3.2 in (Arthur & Vassilvitskii, 2007). The
following Lemma generalizes Lemma 3.3 in (Arthur & Vassilvitskii, 2007).

Lemma 14 Suppose that the optimal clustering Copt is η-probe approximable. Let A be an arbi-
trary cluster inCopt, and letC be an arbitrary clustering with centers C. Suppose that the reference
point a chosen according to (1) in Step 2.1 is in A. Then the random point x picked in Step 2.2
brings an expected potential that satisfies

E[φ(A)] ≤ (6 + 4η) · φopt(A) + 2 · φNopt(A) . (26)

Proof Let us denote c?(u)
.

= arg minx∈C ‖u−x‖2
2 (since C 6= Copt in general, c?(u) 6= copt(u)),

and D(a)
.

= ‖a − c?(a)‖2
2 the contribution of a ∈ A to the k-means potential defined by C. We

have, using Lemma 3.3 in (Arthur & Vassilvitskii, 2007) and Lemma 13,

Ex[φ(A;C ∪ {x})] =
∑
a0∈A

Dt(a0)∑
a∈ADt(a)

·
∑
a∈A

∫
Ωa0

min{D(a), ‖a− x‖2
2}dpa0(x) . (27)

The triangle inequality gives, for any a ∈ A,√
Dt(a0)

.
= ‖℘t(a0)− c?(℘t(a0))‖2

≤ ‖℘t(a0)− c?(℘t(a))‖2

≤ ‖℘t(a0)− ℘t(a)‖2 + ‖℘t(a)− c?(℘t(a))‖2 ; (28)

since (a+ b)2 ≤ 2a2 + 2b2, then Dt(a0) ≤ 2‖℘t(a0)− ℘t(a)‖2
2 + 2Dt(a), and so, after averaging

over A,

Dt(a0) ≤ 2

|A|
∑
a∈A

‖℘t(a0)− ℘t(a)‖2
2 +

2

|A|
∑
a∈A

Dt(a) , (29)

20

and eq. (27) can be upperbounded as:

Ex[φ(A;C ∪ {x})] ≤ 2

|A|
∑
a0∈A

∑
a∈A ‖℘t(a0)− ℘t(a)‖2

2∑
a∈ADt(a)

·
∑
a∈A

∫
Ωa0

min{D(a), ‖a− x‖2
2}dpa0(x)

+
2

|A|
∑
a0∈A

∑
a∈ADt(a)∑
a∈ADt(a)

·
∑
a∈A

∫
Ωa0

min{D(a), ‖a− x‖2
2}dpa0(x)

≤ 2

|A|
∑
a0∈A

∑
a∈AD(a)∑
a∈ADt(a)

·
∑
a∈A

‖℘t(a0)− ℘t(a)‖2
2︸ ︷︷ ︸

.
=P1

+
2

|A|
∑
a0∈A

∑
a∈A

∫
Ωa0

‖a− x‖2
2dpa0(x)︸ ︷︷ ︸

.
=P2

. (30)

We bound the two potentials P1 and P2 separately, starting with P1. Fix any a0 ∈ A. If
∑
a∈A ‖℘t(a)−

℘t(a0)‖2
2 = 0, then trivially(∑

a∈A

D(a)

)
·
(∑
a∈A

‖℘t(a0)− ℘t(a)‖2
2

)
≤ (1 + η) ·

(∑
a∈A

Dt(a)

)
·
(∑
a∈A

‖a0 − a‖2
2

)
,(31)

since the right-hand side cannot be negative. If
∑
a∈A ‖℘t(a) − ℘t(a0)‖2

2 6= 0, then since ℘t is
η-stretching, we have:∑

a∈A ‖a− c?(a)‖2
2∑

a∈A ‖a− a0‖2
2

≤ (1 + η) ·
∑
a∈A ‖℘t(a)− c?(℘t(a))‖2

2∑
a∈A ‖℘t(a)− ℘t(a0)‖2

2

, (32)

which is exactly ineq. (31) after rearranging the terms. Ineq (31) implies

P1 ≤ 2(1 + η) · 1

|A|
∑
a0∈A

∑
a∈A

‖a0 − a‖2
2

= 4(1 + η) · φopt(A) , (33)

where the equality follows from (Arthur & Vassilvitskii, 2007), Lemma 3.2. Also, Lemma 13
brings

P2 = 2 · 1

|A|
∑
a0∈A

∫
Ωa0

∑
a∈A

‖a− x‖2
2dpa0(x)

= 2φopt(A) + 2φNopt(A) . (34)

We therefore get

Ex[φ(A;C ∪ {x})] ≤ (6 + 4η) · φopt(A) + 2 · φNopt(A) , (35)

as claimed.

21

Again, we recover Lemma 3.3 in (Arthur & Vassilvitskii, 2007) when pa is a Dirac and the probe
function ℘ = Id. The rest of the proof of Theorem 2 consists of the same steps as Theorem 3.1 in
(Arthur & Vassilvitskii, 2007), after having remarked that φNopt(A) can be simplified:

φNopt(A) =
∑
a∈A

∫
Ωa0

‖x− c(A)‖2
2dpa(x)

=
∑
a∈A

∫
Ωa0

‖x‖2
2dpa(x)− 2〈c(A),µa〉+ ‖c(A)‖2

2

=
∑
a∈A

∫
Ωa0

‖x− µa‖2
2dpa(x) + ‖µa‖2

2 − 2〈c(A),a〉+ ‖c(A)‖2
2

=
∑
a∈A

{
tr (Σa) + ‖µa − c(A)‖2

2

}
= φbias(A) + φvar(A) . (36)

Proof of Lemma 3
The proof is a simple application of the Fréchet-Cramér-Rao-Darmois bound. Consider the simple
case k = 1 and a spherical Gaussian noise for p with a single point in A. Renormalize both sides
of (7) by m .

= |A| so that (1/m)
∑

a∈A tr (Σa) = tr (Σ). One sees that the left hand side of ineq.
(7) is just an estimator of the variance of pa, which, by Fréchet-Darmois-Cramér-Rao bound, has
to be at least the inverse of the Fisher information, that is in this case, the trace of the covariance
matrix, i.e. tr (Σ).

Comments on Table 1
(Wang et al., 2015) are concerned with approximating subspace clustering, and so they are using
a very different potential function, which is, between two subspaces S and S′, d(S, S′) = ‖UU> −
U′U′>‖F , where U (resp. U′) is an orthonormal basis for S (resp. S′). To obtain an idea of the
approximation on the k-means clustering problem that their technique yields, we compute φ in the
projected space, using the fact that, because of the triangle inequality and the fact that projections
are linear and do not increase norms,

‖projU(a)− projU′(a
′)‖2 = ‖(projU(a)− projU(a′)) + (projU(a′)− projU′(a

′))‖2 (37)
≤ ‖projU(a)− projU(a′)‖2 + ‖projU(a′)− projU′(a

′))‖2(38)
≤ ‖projU(a)− projU(a′)‖2 + 2‖a′‖2 . (39)

To account for the approximation in the inequalities, we then discard the rightmost term, replacing
therefore ‖projU(a)− projU′(a

′)‖2 by ‖projU(a)− projU(a′)‖2, which amounts, in the approx-
imation bounds, to remove the dependence in the dimension. At this price, and using the trick to
transfer the wasserstein distance between centers to L2

2 potential between points to cluster centers,
we obtain the approximation bound in (β) of Table 1. While it has to be used with care, its main
interest is in showing that the price to pay because of the noise component is in fact not decreasing
in m.

22

(F1, A1)

(F2, A2) (F3, A3)

(F4, A4) (F5, A5)

N⇤

Figure 4: Message passing between peers / nodes in the Dk-means++/PDk-means++ framework.
Black edges and red arcs denote message passing between peers / nodes. On each black edge
circulates at most k data points; on each red arcs circulates k total potentials.

Proofs of Theorems 4, 5 and 6
The proof of these Theorems uses a reduction from k-variates++ to the corresponding algorithms,
meaning that there exists particular probe functions and densities for which the set of centers
delivered by k-variates++ is the same as the one delivered by the corresponding algorithms.

Definition 15 Let H (parameters omitted) be any hard membership k-clustering algorithm. We
way that k-variates++ reduces to H iff there exists data, densities and probe functions depending
on the instance of H such that, in expectation over the internal randomisation of H, the set of
centers delivered by H are the same as the ones delivered by k-variates++. We note it

k-variates++ � H . (40)

Hence, whenever k-variates++ � H, Theorem 2 immediately gives a guarantee for the approxima-
tion of the global optimum in expectation for H, but this requires the translation of the parameters
involved in Φ in ineq. (7) to involve only parameters from H. In all our examples, this translation
poses no problem at all.

Proof of Theorem 4

Figure 4 presents the architecture of message passing in the Dk-means++/PDk-means++ frame-
work. We first focus on the protected scheme, Dk-means++. We reduce k-variates++ to Algorithm

23

1 using identity probe functions: ℘t = Id, ∀t. The trick in reduction relies on the densities. We let
pµa,θa be uniform over the subset Ai to which a belongs. Thus, the support of densities is discrete,
and C is a subset of A; furthermore, the probability qt(a) that a ∈ Ai is chosen at iteration t in
k-variates++ actually simplifies to a convenient expression:

qt(a) = qDti · ui , (41)

where we recall that

qDti
.

=

{
Dt(Ai) · (

∑
j Dt(Aj))

−1 if t > 1

(1/n) otherwise
. (42)

Hence, picking a can be equivalently done by first picking Ai using qDt , and then, given the i
chosen, sampling uniformly at random a in Ai, which is what Forgy nodes do. We therefore get
the equivalence between Algorithm 1 and k-variates++ as instantiated.

Lemma 16 With data, densities and probes defined as before, k-variates++ � Dk-means++.

To get the approximability ratio of Dk-means++, we translate the parameters of Φ in ineq. (7).
First, since (a+ b)2 ≤ 2a2 + 2b2,

φbias
.

=
∑
a∈A

‖µa − copt(a)‖2
2

=
∑
i∈[n]

∑
a∈Ai

‖c(Ai)− copt(a)‖2
2 (43)

=
∑
i∈[n]

∑
a∈Ai

‖c(Ai)− a+ a− copt(a)‖2
2

≤ 2
∑
i∈[n]

∑
a∈Ai

‖c(Ai)− a‖2
2 + 2

∑
a∈A

‖a− copt(a)‖2
2

= 2φFs + 2φopt . (44)

Furthermore,

φvar
.

=
∑
a∈A

tr (Σa)

=
∑
a∈A

∫
Ωa

‖x− µa‖2
2dpa(x)

=
∑
i∈[n]

∑
a∈Ai

∑
a′∈Ai

1

mi

· ‖a′ − c(Ai)‖2
2

=
∑
i∈[n]

∑
a∈Ai

‖a− c(Ai)‖2
2 = φFs . (45)

There remains to plug ineq. (44) and eq. (45) in Theorem 2, along with η = 0 (since ℘ = Id), to
get E[φ(A;C)] ≤ (2 + log k) · (10φopt + 6φs), as in Theorem 4.

The private version, PDk-means++, follows immediately by leaving φvar in Φ instead of carry-
ing eq. (45). This ends the proof of Theorem 4.

24

℘ =

s2

s3s1

Figure 5: Computation of the probe function ℘ for the reduction from k-variates++ to Sk-means++.
Segments display parts of the Voronoi diagram of S.

Proof of Theorem 5

The proof proceeds in the same way as for Theorem 4. The probe function (the same for every
iteration, ℘t = ℘,∀t) is already defined in the statement of Theorem 5, from the definition of
synopses. The distributions pµa,θa are Diracs anchored at the probe (synopses) locations. The
centers chosen in k-variates++ are thus synopses, and it is not hard to check that the probability to
pick a synopsis sj at iteration t factors in the same way as in the definition of qSt in eq. (9). We
therefore get the equivalence between Algorithm 2 and k-variates++ as instantiated.

Lemma 17 With data, densities and probes defined as before, k-variates++ � Sk-means++.

The proof of the approximation property of Sk-means++ then follows from the fact that φvar = 0
(Diracs) and

φbias
.

=
∑
a∈A

‖µa − copt(a)‖2
2

=
∑
a∈A

‖℘(a)− copt(a)‖2
2

=
∑
a∈A

‖℘(a)− a+ a− copt(a)‖2
2

≤ 2
∑
a∈A

‖℘(a)− a‖2
2 + 2

∑
a∈A

‖a− copt(a)‖2
2

= 2
∑
a∈S

‖℘(a)− a‖2
2 + 2

∑
a∈S

‖a− copt(a)‖2
2 = 2φ℘s + 2φopt (46)

(using again (a+ b)2 ≤ 2a2 + 2b2). Using Theorem 2, this brings the statement of the Theorem.

25

Setting Algorithm Probe functions ℘t Densities p(µ.,θ.)
Batch k-means++ (Arthur & Vassilvitskii, 2007) Identity Diracs

Distributed Dk-means++ Identity Uniform on data subsets
Distributed PDk-means++ Identity Non uniform, compact support
Streaming Sk-means++ synopses Diracs

On-line OLk-means++ point (batch not hit) Diracs
/ closest center (batch hit)

Table 3: Synthesis of the parameters for the reductions from k-variates++. We indicate k-means++
as the batch clustering solution (Arthur & Vassilvitskii, 2007).

Figure 5 shows that the ”quality” of the probe function (spread φ℘s , stretching factor η) stem
from the quality of the Voronoi diagram induced by the synopses in S.

Proof of Theorem 6

The proof proceeds in the same way as for Theorem 4. The the reduction from k-variates++ to
OLk-means++ relies on two things: first, the uniform choice of the first center in k-means++ can
be replaced by picking the center uniformly in any subset of the data: it does not change the
expected approximation properties of the algorithm (this comes from Lemma 3.4 in (Arthur &
Vassilvitskii, 2007)); therefore, the choice q1

.
= um in k-variates++ can be replaced with q1

.
= u1

(uniform with support A1). Second, a particular probe function needs to be devised, sketched in
Figure 6. Basically, all probe functions of a minibatch are the same: each point in the minibatch
is probed to itself, while points occurring outside the minibatch are probed to their closest center.
The reduction proceeds in the following steps: we first let A be the complete set of points in the
stream S. Then, we let Aj denote the set of points of minibatch Sj . Remark that minibatch Aj

occurs in the stream before Aj′ for j < j′, and minibatches induce a partition of A. Let j(t) denote
the batch related to iteration t in k-variates++. We define the following probe function ℘t(a) in
k-variates++, letting Aj the minibatch to which a belongs (we do not necessarily have j = j(t)):

• if j = j(t), then ℘t(a)
.

= a;

• else ℘t(a)
.

= arg minc∈C ‖a− c‖2
2 (remark that |C| ≥ 1 in this case).

Finally, densities p(µ.,θ.) are Diracs anchored at selected points, like in k-means++. We get the
equivalence between Algorithm 3 and k-variates++ as instantiated.

Lemma 18 With data, densities and probes defined as before, k-variates++ � OLk-means++.

The proof is immediate, since each minibatch is hit by a center exactly once in OLk-means++, and
when one subset Aj is hit by a center, then the probe function makes that no other center can be
sampled again from Aj (all contributions to the density qt are then zero in Aj). We now finish
the proof of Theorem 6 by showing the same approximability ratio for k-variates++ as reduced.
Because optimal clusters are ς-wide with respect to stream S, we have

1

|A| ·
∑
a,a′∈A

‖a− a′‖2
2 ≥ ς ·R .

26

closest center point closest center

Minibatch Sj

aj,t

probe function ℘j

Figure 6: Computation of the probe function ℘t for the reduction from OLk-means++ to k-
variates++, depending on each minibatch stream Sj .

Recall that c(A)
.

= (1/|A|) ·∑a∈A a. For any a0 ∈ A, it holds that:

1

|A| − 1
·
∑
a∈A

‖a− a0‖2
2 ≥

1

|A| − 1
·
∑
a∈A

‖a− c(A)‖2
2 (47)

=
1

|A| − 1
·
(

1

2|A| ·
∑
a,a′∈A

‖a− a′‖2
2

)
(48)

=
1

4
· 2

|A|(|A| − 1)
·
∑
a,a′∈A

‖a− a′‖2
2

≥ ς

4
·R . (49)

Ineq. (47) holds because c(A) is the population minimizer for optimal cluster A (see e.g., (Arthur
& Vassilvitskii, 2007), Lemma 2.1). Since probes are points of A,

φ(℘j(A); {℘j(a0)}) ≤ |A| ·R

≤ 4|A|
ς(|A| − 1)

·
∑
a∈A

‖a− a0‖2
2 . (50)

On the other hand, we have:

φ(℘t(A);C) =
∑

a∈A∩Sj

‖a− c(a)‖2
2 , (51)

but since minibatches are ς accurate,
∑
a∈A∩Sj ‖a− c(a)‖2

2 ≥ ς ·∑a∈A ‖a− c(a)‖2
2. Therefore,

for any a0 ∈ A,

φ(℘t(A);C)

φ(℘t(A); {℘t(a0)}) ≥
(
ς2(|A| − 1)

4|A|

)
·
∑
a∈A ‖a− c(a)‖2

2∑
a∈A ‖a− a0‖2

2

=

(
ς2(|A| − 1)

4|A|

)
· φ(A;C)

φ(A; {a0})
. (52)

In other words, probe functions are η-stretching, for any η satisfying:

η ≥ 4|A|
ς2(|A| − 1)

− 1 , (53)

27

and they are therefore η-stretching for η = 8/ς2 − 1. There remains to check that, because of the
densities chosen,

φbias = φopt , (54)
φvar = 0 . (55)

This ends the proof of Theorem 6.

Proof of Theorem 9
To simplify notations in the proof, we let pa(x) denote the value of density p(µa,θa) on some x ∈ Ω.
Let us denote Seq(n : k) the number of sequences of integers in set {1, 2, ..., n} having exactly k
elements, whose cardinal is |Seq(n : k)| = n!/(n− k)!. For any sequence I ∈ Seq(n : k), we let
Ii denote its ith element. For any set C .

= {c1, c2, ..., ck} returned by Algorithm k-variates++with
input instance set A .

= {a1,a2, ...,an} ⊂ Ω, the density of C given A is:

P[C|A] =
∑
σ∈Sk

∑
I∈Seq(n:k)

p(σ, I,C|A) , (56)

where Sk denotes the symmetric group on k elements, and the following shorthand is used:

p(σ, I,C|A)
.

=
k∏
i=1

qi(aIi)paIi (cσ(i)) , (57)

where qi is computed using eq. (1) and taking into account the modification due to the choice of
each Ij for j < i in the sequence I .

In the following, we let A and A′ denote two sets of points that differ from one a (they have
the same size), say an ∈ A and a′n ∈ A′, an 6= a′n. We analyze:

P[C|A′]
P[C|A]

=

∑
σ∈Sk

∑
I∈Seq(n:k) p(σ, I,C|A′)∑

σ∈Sk

∑
I∈Seq(n:k) p(σ, I,C|A)

. (58)

Using the definition of q(.), we refine p(σ, I,C|A) as

p(σ, I,C|A) =
N(I)∏k

i=1 M(I i|A)
·

k∏
i=1

paIi (cσ(i)) , (59)

where

N(I)
.

=

j∏
i=2

‖aIi − NNIi(aIi)‖2
2 , (60)

M(I i|A)
.

=

{
n if i = 1∑n

j=1 ‖aj − NNIi(aj)‖2
2 otherwise , (61)

and I i is the prefix sequence I1, I2, ..., Ii−1, and NNIi(a)
.

= arg minj≤i−1 ‖a− aIj‖2 is the nearest
neighbor of a in the prefix sequence. Notice that there is a factor 1/m for q(.) at the first iteration
that we omit in N(I) since it disappears in the ratio in eq. (58).

28

We analyze separately each element in (59), starting with N(I). We define the swapping
operation s`(I) that returns the sequence in which aI` and aI`+1

are permuted, for 1 ≤ ` ≤ k − 1.
This incurs non-trivial modifications in N(s`(I)) compared to N(I), since the nearest neighbors
of aI` and aI`+1

may change in the permutation:

N(s`(I)) =
`−1∏
i=2

‖aIi − NNIi(aIi)‖2
2

· ‖aI`+1
− NNI`(aI`+1

)‖2
2 · ‖aI` − NNI`∪{I`+1}(aI`)‖2

2︸ ︷︷ ︸
6=‖aI`−NN

I`
(aI`)‖

2
2·‖aI`+1

−NN
I`+1 (aI`+1

)‖22

·
k∏

i=`+2

‖aIi − NNIi(aIi)‖2
2 (62)

(I ∪ {j} indicates that element j is put at the end of the sequence). We want to quantify the
maximal increase in N(s`(I)) compared to N(I). The following Lemma shows that the maximal
increase ratio is actually a constant, and thus does not depend on the data.

Lemma 19 The following holds true:

N(s1(I)) = N(I) , (63)
N(s`(I)) ≤ (1 + η)2N(I) ,∀2 ≤ ` ≤ k − 1 . (64)

Here, 0 ≤ η ≤ 3 is a constant.

The proof stems directly from the following Lemma.

Lemma 20 For any non-empty N ⊆ A and x ∈ Ω, let NNN(x) denote the nearest neighbor of x
in N. There exists a constant 0 ≤ η ≤ 3 such that for any ai,aj ∈ A and any nonempty subset
N ⊆ A\{ai,aj},

‖ai − NNN(ai)‖2

‖ai − NNN∪{aj}(ai)‖2

≤ (1 + η) · ‖aj − NNN(aj)‖2

‖aj − NNN∪{ai}(aj)‖2

. (65)

Proof Since ‖aj − NNN∪{ai}(aj)‖2 ≤ ‖aj − NNN(aj)‖2, the proof is true for η = 0 when
NNN(ai) = NNN∪{aj}(ai). So suppose that NNN(ai) 6= NNN∪{aj}(ai), implying NNN∪{aj}(ai) =
aj . We distinguish two cases.
Case 1/2, if NNN∪{ai}(aj) = ai, then we are reduced to showing that ‖ai − NNN(ai)‖2 ≤ (1 +
η)‖aj−NNN(aj)‖2 under the conditions (C) that N∩B(ai, ‖ai−aj‖2) = ∅ and N∩B(aj, ‖ai−
aj‖2) = ∅. Here, B(a, r) denotes the open ball of center a and radius R. The triangle inequality
and conditions (C) bring

‖ai − NNN(ai)‖2 ≤ ‖ai − aj‖2 + ‖aj − NNN(ai)‖2

≤ ‖aj − NNN(aj)‖2 + ‖aj − NNN(ai)‖2 . (66)

If NNN(ai) = NNN(aj) then the inequality holds for η = 1. Otherwise, suppose that ‖aj −
NNN(ai)‖2 > 3‖aj − NNN(aj)‖2. The triangle inequality yields again ‖aj − NNN(ai)‖2 ≤ ‖aj −
ai‖2 + ‖ai − NNN(ai)‖2, and so we have the inequality:

3‖aj − NNN(aj)‖2 < ‖aj − ai‖2 + ‖ai − NNN(ai)‖2 , (67)

29

and since (C) holds, ‖aj − NNN(aj)‖2 ≥ ‖aj − ai‖2 which implies

‖aj − NNN(aj)‖2 <
1

2
· ‖ai − NNN(ai)‖2 . (68)

On the other hand, the triangle inequality brings again

‖ai − NNN(aj)‖2 ≤ ‖ai − aj‖2 + ‖aj − NNN(aj)‖2

≤ 2 · ‖aj − NNN(aj)‖2 (69)

< 2 · 1

2
· ‖ai − NNN(ai)‖2 = ‖ai − NNN(ai)‖2 , (70)

a contradiction since ‖ai − NNN(ai)‖2 ≤ ‖ai − al‖2, ∀al ∈ N by definition. Ineq. (69) uses (C)
and ineq. (70) uses ineq. (68). Hence, if NNN(ai) 6= NNN(aj) then since ‖aj − NNN(ai)‖2 ≤
3‖aj − NNN(aj)‖2, ineq. (66) brings ‖ai− NNN(ai)‖2 ≤ 4 · ‖aj − NNN(aj)‖2, and the inequality
holds for η = 3.
Case 2/2, if NNN∪{ai}(aj) 6= ai, then it implies NNN∪{ai}(aj) = NNN(aj) and so

∃a∗ ∈ N : ‖aj − a∗‖2 ≤ ‖aj − ai‖2 . (71)

Ineq. (65) reduces to proving

‖ai − NNN(ai)‖2 ≤ (1 + η) · ‖ai − aj‖2 , (72)

but ‖ai−a∗‖2 ≤ ‖ai−aj‖2 +‖aj−a∗‖2 ≤ 2‖ai−aj‖2, and since a∗ ∈ N, ‖ai−NNN(ai)‖2 ≤
‖ai−a∗‖2 ≤ 2‖ai−aj‖2, and (72) is proved for η = 1. This achieves the proof of Lemma 20.

Let I be any sequence not containing the index of a′n, and let I(i) denote the sequence in which
we replace aIi by the index of a′n. The sequence of swaps

I(k) = (sk−1 ◦ ... ◦ si+1 ◦ si)(I(i)) (73)

produces a sequence I(k) in which all elements different from a′n are in the same relative order as
they are in I with respect to each other, and a′n is pushed to the end of the sequence in kth rank.
We also have

N(I(i)) ≤ (1 + η)2(k−i)N(I(k)) . (74)

All the properties we need on N(.) are now established. We turn to the analysis of M(I i|A).

Lemma 21 For any δs > 0 such that A is δs-monotonic, the following holds. For any N ⊆ A with
|N| ∈ {1, 2, ..., k − 1}, ∀x,x′ ∈ Ω, we have:∑

a∈A

‖a− NNN∪{x}(a)‖2
2 ≤ (1 + δs) ·

∑
a∈A

‖a− NNN∪{x′}(a)‖2
2 . (75)

Proof Since adding a point to N cannot increase the potential
∑
a∈A ‖a−NNN∪{x}(a)‖2

2, it comes∑
a∈A

‖a− NNN∪{x}(a)‖2
2 ≤

∑
a∈A

‖a− NNN(a)‖2
2 ,∀x ∈ Ω . (76)

30

Consider any x′ ∈ Ω such that
∑
a∈A ‖a−NNN∪{x′}(a)‖2

2 =
∑
a∈A ‖a−NNN(a)‖2

2, i.e., all points
of A are closer to a point in N than they are from x′. In this case, we obtain from ineq. (76),∑

a∈A

‖a− NNN∪{x}(a)‖2
2 ≤

∑
a∈A

‖a− NNN∪{x′}(a)‖2
2 , (77)

and since δs > 0, the statement of the Lemma holds.
More interesting is the case wherex′ ∈ Ω is such that

∑
a∈A ‖a−NNN∪{x′}(a)‖2

2 <
∑
a∈A ‖a−

NNN(a)‖2
2, implying x′ 6∈ N. In this case, let A .

= {a ∈ A : NNN∪{x′}(a) = x′}, which is then
non-empty. Let us denote for short c(A)

.
= (1/|A|) ·∑a∈A a. Since x′ 6∈ N, A∩N = ∅, and since

A is δs-monotonic, then it comes from ineq. (76)∑
a∈A

‖a− NNN∪{x}(a)‖2
2 ≤ (1 + δs) ·

∑
a∈A

‖a− NNN∪{c(A)}(a)‖2
2 . (78)

We have:∑
a∈A

‖a− NNN∪{c(A)}(a)‖2
2 =

∑
a∈A\A

‖a− NNN∪{c(A)}(a)‖2
2 +

∑
a∈A

‖a− NNN∪{c(A)}(a)‖2
2

≤
∑
a∈A\A

‖a− NNN∪{c(A)}(a)‖2
2 +

∑
a∈A

‖a− c(A)‖2
2

≤
∑
a∈A\A

‖a− NNN∪{c(A)}(a)‖2
2 +

∑
a∈A

‖a− x′‖2
2 . (79)

Eq. (79) holds because the arithmetic average is the population minimizer of L2
2. Because of the

definition of A, ∑
a∈A\A

‖a− NNN∪{c(A)}(a)‖2
2 ≤

∑
a∈A\A

‖a− NNN(a)‖2
2

=
∑
a∈A\A

‖a− NNN∪{x′}(a)‖2
2 , (80)

and, still because of the definition of A,∑
a∈A

‖a− x′‖2
2 =

∑
a∈A

‖a− NNN∪{x′}(a)‖2
2 , (81)

so we get from (80) and (81)
∑
a∈A\A ‖a − NNN∪{c(A)}(a)‖2

2 +
∑
a∈A ‖a − x′‖2

2 ≤
∑
a∈A ‖a −

NNN∪{x′}(a)‖2
2, and finally from ineq. (79),∑

a∈A

‖a− NNN∪{c(A)}(a)‖2
2 ≤

∑
a∈A

‖a− NNN∪{x′}(a)‖2
2 , (82)

which, using ineq. (78), completes the proof of Lemma 21.

31

Lemma 22 The following holds true, for any i > 1, any A′ ≈ A, any δw, δs > 0:

A is δw-spread ⇒ (n 6∈ I i ⇒M(I i|A) ≤ (1 + δw) ·M(I i|A′)) , (83)
A is δs-monotonic ⇒ (n ∈ I i ⇒M(I i|A) ≤ (1 + δs) ·M(I i|A′)) . (84)

Proof Suppose first that n 6∈ I i. In this case, since A is δw-spread,

M(I i|A) =
n∑
j=1

‖aj − NNIi(aj)‖2
2

=
n−1∑
j=1

‖aj − NNIi(aj)‖2
2 + ‖an − NNIi(aj)‖2

2

≤
n−1∑
j=1

‖aj − NNIi(aj)‖2
2 +R2

≤ (1 + δw) ·
n−1∑
j=1

‖aj − NNIi(aj)‖2
2 (85)

≤ (1 + δw) ·
(
n−1∑
j=1

‖aj − NNIi(aj)‖2
2 + ‖a′n − NNIi(a

′
n)‖2

2

)
= (1 + δw) ·M(I i|A′) , (86)

as indeed computing the nearest neighbors do not involve the nth element of the sets, i.e. an or a′n.
We have used in ineq. (85) the fact that A is δw-spread.

When n ∈ I i, eq. (84) is an immediate consequence of Lemma 21 in which the distinct ele-
ments of A and A′ play the role of x and x′.

Lemma 23 For any δw > 0, if A is δw-spread, then for any N ⊆ A with |N| = k − 1, ∀x ∈ Ω, it
holds that ‖x− NNN(x)‖2

2 ≤ δw
∑
a∈A ‖a− NNN(a)‖2

2.

Proof Follows directly from the fact that ‖x− NNN(x)‖2
2 ≤ R2 by assumption.

Letting I(k) denote a sequence containing element n pushed to the end of the sequence, we get:∑
σ∈Sk

∑
I∈Seq+(n:k)

p(σ, I,C|A′)

=
∑
σ∈Sk

∑
I∈Seq+(n:k)

N(I)∏k
i=1M(I i|A′)

· pa′n(cσ(i)) ·
k∏

i=1:Ii 6=n

paIi (cσ(i))

≤ (1 + η)2(k−2)

·
∑
σ∈Sk

∑
I∈Seq+(n:k)

N(I(k))∏k
i=1M(I i|A′)

· pa′n(cσ(i)) ·
k∏

i=1:Ii 6=n

paIi (cσ(i)) . (87)

32

Now, take any element I ∈ Seq+(n : k) with a′n in position k, and change a′n by some a ∈ A.
Any of these changes generates a different element I ′ ∈ Seq−(n : k), and so using Lemma 23 and
the following two facts:

• the fact that

pa′n(cσ(i)) ≤ %(R) · pa(cσ(i)) , (88)

for any a ∈ A,

• the fact that, if A is δs-monotonic,

M(I ia|A) ≤ (1 + δs) ·M(I i|A) , (89)

for any a ∈ A not already in the sequence, where Ia denotes the sequence I in which a′n has
been replaced by a,

we get from ineq. (87),∑
σ∈Sk

∑
I∈Seq+(n:k)

p(σ, I,C|A′)

≤ (1 + η)2(k−2) · (1 + δs)
k−1 · δw

·%(R) ·
∑
σ∈Sk

∑
I∈Seq−(n:k)

N(I)∏k
i=1 M(I i|A)

·
k∏
i=1

paIi (cσ(i)) . (90)

Lemma 24 For any δw, δs > 0 such that A is δw-spread and δs-monotonic, for any A′ ≈ A, we
have:

P[C|A′]
P[C|A]

≤ (1 + δw)k−1 ·
(

1 + δw ·
(

1 + δs
1 + δw

)k−1

· (1 + η)2(k−2) · %(R)

)
. (91)

Proof We get from the fact that A is δw-spread,∑
σ∈Sk

∑
I∈Seq−(n:k)

p(σ, I,C|A′) ≤ (1 + δw)k−1 ·
∑
σ∈Sk

∑
I∈Seq−(n:k)

p(σ, I,C|A) , (92)

33

and furthermore ineq. (90) yields:

P[C|A′]
P[C|A]

=

∑
σ∈Sk

∑
I∈Seq(n:k) p(σ, I,C|A′)∑

σ∈Sk

∑
I∈Seq(n:k) p(σ, I,C|A)

≤

 (1 + δw)k−1 ·∑σ∈Sk

∑
I∈Seq−(n:k) p(σ, I,C|A)

+∑
σ∈Sk

∑
I∈Seq+(n:k) p(σ, I,C|A′)


∑
σ∈Sk

∑
I∈Seq(n:k) p(σ, I,C|A)

≤ (1 + δw)k−1

·


∑
σ∈Sk

∑
I∈Seq−(n:k) p(σ, I,C|A)

+

δw ·
(

1+δs
1+δw

)k−1

· (1 + η)2(k−2) · %(R) ·∑σ∈Sk

∑
I∈Seq−(n:k) p(σ, I,C|A′)


∑
σ∈Sk

∑
I∈Seq(n:k) p(σ, I,C|A)

= (1 + δw)k−1 ·
(

1 + δw ·
(

1 + δs
1 + δw

)k−1

· (1 + η)2(k−2) · %(R)

)

·
∑
σ∈Sk

∑
I∈Seq−(n:k) p(σ, I,C|A)∑

σ∈Sk

∑
I∈Seq(n:k) p(σ, I,C|A)︸ ︷︷ ︸

≤1

.

This ends the proof of Lemma 24.

Since

(1 + δw)k−1 ·
(

1 + δw ·
(

1 + δs
1 + δw

)k−1

· (1 + η)2(k−2) · %(R)

)
= (1 + δw)k−1 + (1 + η)2(k−2) · δw · (1 + δs)

k−1 · %(R) ,

and η ≤ 3 from Lemma 19, we get Theorem 9 with

f(k)
.

= 42k−4 . (93)

Proof of Theorem 10
Assume that density D contains a L2 ball B2(0, R) of radiusR, centered without loss of generality
in 0. Fix 0 < κ < m − 1. For any α ∈ (0, 1) and N ⊆ A with |N| ∈ {1, 2, ...,κ} .

= [κ]∗, let
N ⊕ α .

= ∪x∈NB2(x,α · R) be the union of all small balls centered around each element of N,
each of radius α ·R. An important quantity is

q∗
.

= min
N⊆A,|N|∈[κ]∗

µ(B2(0, R)\N ⊕ α)

µ(B2(0, R))
(94)

the minimal mass of B2(0, R)\N ⊕ α relatively to B2(0, R) as measured using D. As depicted
in Figure 7, q∗ is a minimal value of the probability to escape the neighborhoods of N ⊕ α when

34

α · R

B2(0, R)\N ⊕ α

B2(0, R)

Figure 7: q∗ in eq. (94) measures the probability the a point drawn in B2(0, R) escapes the
neighborhoods of N ⊕ α. In this example, two points in black escape the neighborhoods (defined
by three points in red), while two in green do not.

sampling points according to D in ball B2(0, R). If, for some α that shall depend upon the
dimension d and κ, q∗ is large enough, then the spread of points drawn shall guarantee ”small”
values for δw and δs.

This is formalized in the following Theorem, which assumes εm = εM = 1, i.e. the ball has
uniform density. Theorem 10 is a direct consequence of this Theorem.

Theorem 25 Suppose A ⊂ B2(0, R). For any δ ∈ (0, 1), if

m ≥ 3

(
κ

q∗δ2

)2

, (95)

then there is probability ≥ 1 − δ over its sampling that A is δw-spread and δs-monotonic for the
following values of δw, δs:

δw =
1

q∗(1− δ)(m− κ− 1)α2
, (96)

δs =
m

m− κ ·
(

2

min
{

1
4
, q∗(1− δ)

}
· α

)2

− 1 . (97)

Proof We first prove the following Lemma.

35

Lemma 26 Suppose A ⊂ B2(0, R). Let q∗ be defined as in eq. (94). Then for any δ ∈ (0, 1), if
m meets ineq. (95), then there is probability ≥ 1− δ that

|(B2(0, R)\N ⊕ α) ∩ (A\N)| ≥ q∗(1− δ)(m− κ) ,∀N ⊆ A, |N| ∈ [κ]∗ . (98)

Proof Since we assume A ⊂ B2(0, R), Chernoff bounds imply that for any fixed N ⊆ A with
|N| ∈ [κ]∗,

PD

[|(B2(0, R)\N ⊕ α) ∩ (A\N)|
|A\N| ≤ q∗(1− δ)

]
≤ exp

(
−δ2q∗ |A\N| /2

)
. (99)

Now, remark that
κ∑
j=1

(
m

j

)
≤ mκ ,∀m,κ ≥ 1 . (100)

This can be proven by induction, m being fixed: it trivially holds for κ = 1 and κ = 2, and
furthermore

κ∑
j=1

(
m

j

)
=

κ−1∑
j=1

(
m

j

)
+

(
m

κ

)
≤ mκ−1 +

m!

(m− κ)!κ!
, (101)

by induction at rank κ− 1. To prove that the right-hand side of (101) is no more than mκ, we just
have to remark that

m!

(m− κ)!κ!mκ−1
<

m

κ!

≤ m− 1 , (102)

as long as κ > 1 and m > 1. So, the property at rank κ − 1 for κ > 1 implies property at rank κ,
which concludes the induction.

So, we have at most mκ choices for N, so relaxing the choice of N, we get

PD

[
∃N ⊆ A, |N| = κ :

|(B2(0, R)\N ⊕ α) ∩AN|
|AN|

≤ q∗(1− δ)
]

≤ mκ exp

(
−δ

2q∗(m− κ)

2

)
. (103)

We want to compute the minimal m such that the right-hand side is no more than δ, this being
equivalent to

δ2q∗m ≥ 2 log

(
mκ

δ

)
+ κδ2q∗ ,

which, since δ ∈ (0, 1), is ensured if

δ2q∗m ≥ 2κ log
(m
δ

)
+ κδ2q∗ . (104)

36

Suppose

m = 3

(
κ

q∗δ2

)2

.

Since we trivially have κ2/(q∗δ
2)2 ≥ κδ2q∗ (κ ≥ 1, q∗ ∈ (0, 1), δ ∈ (0, 1)), it is sufficient to prove:

2κ

q∗δ2
≥ 2 log 3 + 2 log

(
κ2

q2
∗δ

5

)
, (105)

which, again observing that δ ∈ (0, 1), holds if we can prove

κ

q∗δ2
≥ log 2 +

3

2
· log

(
κ

q∗δ2

)
, (106)

which is equivalent to showing x ≥ (3/2) log x + log 2 for x ≥ 1, which indeed holds (end of the
proof of Lemma 26).

The consequence of Lemma 26 is the following: if A ⊂ B2(0, R) and m satisfies (95), then for
any N ⊆ A with |N| = k − 1, and any B ⊆ A with |B| = |A| − 1,∑

a∈B

‖a− NNN(a)‖2
2 ≥ q∗(1− δ)(m− κ− 1)α2 ·R2 , (107)

and so from Definition 7 A is δs-spread for:

δw =
1

q∗(1− δ)(m− κ− 1)α2
. (108)

Now, suppose we add a single point x∗ in N. If, for some fixed α∗ ∈ (0,α/2],

x∗ 6∈ a⊕ α∗ ,∀a ∈ A , (109)

then because of (107),∑
a∈A

‖a− NNN∪{x∗}(a)‖2
2 ≥ (m− κ) ·min

{
α2
∗, q∗(1− δ)α2

}
·R2 . (110)

Otherwise, consider one a∗ for which x∗ ∈ a∗ ⊕ α∗. If we replace a∗ by x∗ in all N in which a∗
belongs to in Lemma 26, then because x∗ ⊕ α∗ ⊂ a∗ ⊕ α, it comes from Lemma 26:∑

a∈A

‖a− NNN∪{x∗}(a)‖2
2 ≥

1

4
· (m− κ) · q∗(1− δ)α2 ·R2 . (111)

We thus get in all cases∑
a∈A

‖a− NNN∪{c(A)}(a)‖2
2 ≥ min

{
α2

4
,α2
∗, q∗(1− δ)α2

}
(m− κ) · q∗(1− δ) ·R2 ,(112)

37

where c(A) is the arithmetic average computed according to the definition of δs-monotonicity, of
any A ⊆ A\N. Since N ⊆ A ⊂ B2(0, R), we have

∑
a∈A ‖a− NNN(a)‖2

2 ≤ 4mR2, and so∑
a∈A

‖a− NNN(a)‖2
2 ≤

4m

min
{
α2

4
,α2
∗, q∗(1− δ)α2

}
(m− κ) · q∗(1− δ)

·
∑
a∈A

‖a− NNN∪{c(A)}(a)‖2
2 ,(113)

implying from Definition 8 that δs-monotonicity holds with:

δs =
m

m− κ ·
4

min
{
α2

4
,α2
∗, q∗(1− δ)α2

}
· q∗(1− δ)

− 1 . (114)

The statement of the Theorem follows with α∗ = α/2 (end of the proof of Theorem 25).

We finish the proof of Theorem 10. We have

q∗ ≥ 1− καd , (115)

where the lowerbound corresponds to the case where all neighborhoods in N ⊕ α are distinct and
included in B2(0, R). So we have, for any fixed choice of α ∈ (0, 1),

δw ≤ 1

α2 · (1− καd)(1− δ)(m− κ− 1)
. (116)

To minimize this upperbound, we pick α to maximize α2 · (1 − καd) with α ∈ (0, 1), which is
easily achieved picking

α =

(
1

κ(d+ 1)

) 1
d

, (117)

and yields

δw ≤
(

1 +
1

d

)
· 1

(κ(d+ 1))
2
d (1− δ)(m− κ− 1)

≤
(

1 +
1

d

)
· 1

κ
2
d (1− δ)(m− κ− 1)

. (118)

But we have for this choice, 1− καd = d/(d+ 1) ≥ 1/2, so as long as

δ < 1/2 , (119)

we shall have q∗(1− δ) > 1/4 and so we shall have

δs + 1 = 64 · m

m− κ ·
1

α2

≤ 64 · m

m− κ ·
1

κ
2
d

. (120)

We now go back to ineq. (14), which reads:

P[C|A′]
P[C|A]

≤ %1 + %2 , (121)

38

with

%1
.

= (1 + δw)k−1 , (122)
%2

.
= f(k) · δw · (1 + δs)

k−1 · %(R) . (123)

We upperbound separately both terms.

Lemma 27 Suppose ineqs (119) and (15) are met. Then

%1 ≤ 1 +
4

m
1
4

+ 1
d+1

. (124)

Proof Since d ≥ 1 and δ < 1/2, we get from ineq. (118) (using κ = k)

(1 + δw)k−1 ≤
(

1 +

(
1 +

1

d

)
· 1

k
2
d (1− δ)(m− k − 1)

)k−1

≤
(

1 +
2

k
2
d (1− δ)(m− k − 1)

)k−1

≤
(

1 +
4

k
2
d (m− k − 1)

)k−1

. (125)

Let h(k) be the right-hand side of ineq. (125). h(1) trivially meets ineq. (124). When k ≥ 2, h
decreases until k = 2(m− 1)/(d + 2) and then increases. We thus just need to check ineq. (124)
for k = 2 and k =

√
m from ineq. (15). We get h(2) = 1 + 4/(41/d(m − 3)). For ineq. (124) to

be satisfied, we need to have 41/d(m − 3) ≥ m
1
4

+ 1
d+1 , which holds if m ≥ 3 + m3/4 (d ≥ 1), that

is, m ≥ 8. But since ineqs (119) and (15) are satisfied, we have m ≥ 16k2/δ2 ≥ 64k2 ≥ 64, and
so h(2) satisfies ineq. (124).

There remains to check ineq. (124) for k =
√
m. We have

h(
√
m) =

(
1 +

4

m
1
d (m−√m− 1)

)√m−1

≤
(

1 +
4

m
1
d (m−√m)

)√m

≤
(

1 +
2

√
m ·m 1

4
+ 1
d

)√m
, (126)

since any m ≥ 64, we have m−√m ≥ 2m3/4. To conclude, ineq (126) yields

h(
√
m) ≤

(
1 +

2
√
m ·m 1

4
+ 1
d

)√m
≤ exp

(
2

m
1
4

+ 1
d

)
≤ 1 +

4

m
1
4

+ 1
d

. (127)

39

The penultimate ineq. comes from 1 + x ≤ expx, and the last one comes from the fact that
exp(2x) ≤ 1 + 4x for x ≤ 1. Since m

1
4

+ 1
d ≥ m

1
4

+ 1
d+1 , we obtain the statement of the Lemma for

h(
√
m). This concludes the proof of Lemma 27.

Lemma 28 Suppose ineqs (119) and (15) are met. Then

%2 ≤
(

64

k
2
d

)k
· %(2R)

m
. (128)

Proof We fix κ = k, use f(k) = 42k−4 (eq. 93), so we get

%2 = 42k−2 ·
(

1 +
1

d

)
· 1

k
2
d (1− δ)(m− k − 1)

·
(

64 · m

m− k ·
1

k
2
d

)k−1

· %(2R)

≤ 2 · 64k−1 ·
(

1 +
1

d

)
· 1

k
2k
d (m− k − 1)

·
(

1 +
k

m− k

)k−1

· %(2R) (129)

≤ 4 · 1

(m− k − 1)
·
(

1 +
k

m− k

)k−1

︸ ︷︷ ︸
.
=%3

·64k−1 · 1

k
2k
d

· %(2R) , (130)

using the fact that δ < 1/2 and d ≥ 1. Now, we also have(
1 +

k

m− k

)k−1

≤ exp

(
k2

m− k

)
(131)

≤ e , (132)

as long as k ≤ (1/16) · √m, and furthermore, since m ≥ 64 (see the proof of Lemma 27), we also
have 1/(m− k − 1) ≤ 5/m. We thus obtain

%3 ≤
20e

m

≤ 64

m
, (133)

which yields

%2 ≤
(

64

k
2
d

)k
· %(2R)

m
, (134)

as claimed.

Putting altogether Lemmata 27 and 28, we get:

P[C|A′]
P[C|A]

≤ 1 +
4

m
1
4

+ 1
d+1

+

(
64

k
2
d

)k
· %(2R)

m
, (135)

40

as claimed. There remains to check that, with our choice of α, the constraint on m in (95) is
satisfied if

m ≥ 12k2

δ4
(136)

since q∗ ≥ d/(d+ 1). We obtain the sufficient constraint on k:

k ≤ δ2

4
· √m , (137)

which proves Theorem 10 when εm = εM = 1.

When the density do not satisfy εm = εM = 1 we just have to remark that the lowerbound on
q∗ is now

q∗ ≤
εm
εM
· (1− καd) . (138)

Ineq. (118) becomes

δw ≤ εM
εm
·
(

1 +
1

d

)
· 1

κ
2
d (1− δ)(m− κ− 1)

, (139)

ineq. (120) becomes

δs + 1 ≤ εM
εm
· 64 · m

m− κ ·
1

κ
2
d

. (140)

So, the only difference with the εm = εM = 1 is the ratio εM/εm (≥ 1) which multiplies all
quantities of interest, and yields, in lieu of ineq. (135),

P[C|A′]
P[C|A]

≤ 1 +

(
εM
εm

)k
·
(

4

m
1
4

+ 1
d+1

+

(
64

k
2
d

)k
· %(2R)

m

)
, (141)

which is the statement of Theorem 10.

Proof of Theorem 12
When p(µa,θa) is a product of Laplace distributions Lap(b) (b being the scale parameter of the
distribution (Dwork & Roth, 2014)), condition in ineq. (13) becomes:

p(µa′ ,θa′)
(x)

p(µa,θa)(x)
≤ exp

(‖a− a′‖1

b

)
= exp

(√
2‖a− a′‖1

σ1

)

≤ exp

(
2
√

2R

σ1

)
, ∀a,a′ ∈ A, ∀x ∈ Ω , (142)

41

assuming A ⊂ B1(0, R). Let us fix %(R)
.

= exp
(
2
√

2R/σ1

)
. Since B1(0, R) ⊂ B2(0, R) (the

L2 ball), we now want (1+δw)k−1 +f(k) ·δw · (1 + δs)
k−1 ·%(R) = exp(ε). Solving for σ1 yields:

σ1 =
2
√

2R

log
(

exp(ε)−(1+δw)k−1

f(k)·δw·(1+δs)
k−1

) , (143)

as claimed. The proof that k-variates++ meets ineq. (7) with

Φ = Φ1
.

= 8 ·
(
φopt +

mR2

ε̃2

)
(144)

comes from a direct application of Theorem 2, with

η = 0 ,

φbias = φopt ,

φvar = m ·
(

2
√

2R

ε̃

)2

.

The statements for σ2 and Φ2 are direct applications of the Laplace mechanism properties (Dwork
& Roth, 2014; Dwork et al., 2006).

Extension to non-metric spaces
Since its inception, the k-means++ seeding technique has been successfully adapted to various
distortion measures D(·‖·) to handle non-Euclidean features (Jegelka et al., 2009; Nock et al.,
2008, 2016). Similarly, our extended seeding technique can be adapted to these scenarii: this
boils down to putting the distortion as a free parameter of the algorithm, replacing Dt(a) (eq. (1))
by Dt(a)

.
= mina′∈PD(a‖a′). For example, by noticing that the squared Euclidean distance is

merely an example of Bregman divergences (the well-known canonical divergences in information
geometry of dually flat spaces), k-variates++ can be been extended to that family of dissimilari-
ties (Nock et al., 2008). But more interesting examples now appear, that build on constraints that
distortions have to satisfy for certain problems, like the invariance to rotations of the coordinate
space. This is all the more challenging in practice for clustering since sometimes no-closed form
solution are available for some of these divergences. Because it bypasses the construction of the
population minimisers, k-variates++ offers an elegant solution to the problem. Such hard distor-
tions include the skew Jeffreys α-centroids (Nock et al., 2016). This also include the recent class of
total Bregman/Jensen divergences that are examples of conformal divergences (Nielsen & Nock,
2015; Nock et al., 2016). We give an example of the extension of k-variates++to the total Jensen
divergence, to show that k-variates++ can approximate the optimal clustering even without closed
form solutions for the population minimisers (Nielsen & Nock, 2015). For any convex function
ϕ : Rd → R and α ∈ (0, 1), the skew Jensen divergence is

Jα(a,a′)
.

= αϕ(a) + (1− α)ϕ(a′)− ϕ(αa+ (1− α)a′) , (145)

and the total Jensen divergence is

tJα(a,a′)
.

=
1√

1 + U2
· Jα(a,a′) , (146)

42

where U .
= (ϕ(a) − ϕ(a′))/‖a − a′‖2. There is no closed form solution for the population

minimiser of tJα, yet we can prove the following Theorem, which builds upon Theorem 3 in
(Nielsen & Nock, 2015).

Theorem 29 In k-variates++, replace Dt(a) (eq. (1)) by Dt(a)
.

= mina′∈P tJα(a,a′) ans sup-
pose for simplicity that probe functions are identity: ℘t = Id,∀t. Denote φopt the optimal noise-
free potential of the clustering problem using tJα as distortion measure. Then there exists a
constant ω > 0 such that for any choice of densities pµ.,θ. , the expected tJα-potential φ of k-
variates++ satisfies:

E[φ(A;C)] ≤ ω · log k · (6φopt + 2φbias + 2φvar) , (147)

where φvar is defined in Theorem 2 and φbias is defined in eq. (4).

43

Figure 8: Final dataset for the experiments in Table 4 (plot of the two first coordinates (d = 10)).

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 0 5000 10000 15000 20000

m

ε
~

ε

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0 5000 10000 15000 20000

m

ε
~

ε

 9

 10

 11

 12

 13

 14

 15

 16

 0 5000 10000 15000 20000

m

ε
~

ε

ε = 0.1 ε = 1 ε = 10

Table 4: Case d = 10, k = 3 — Plot of ε̃ as in Theorem 12 (see also eq. (148) below) and best fit
for model ε̃ = a+ b logm. Figure 8 displays the final dataset obtained (see text).

9 Appendix on Experiments

Experiments on Theorem 12 and the sublinear noise regime
↪→ comments on ε̃ An important parameter of Theorem 12 is ε̃, which replaces ε in the compu-
tation of the noise standard deviation in σ1: the larger it is compared to ε, the less noise we can put
while still ensuring P[C|A′]/P[C|A] ≤ exp ε in Definition 11. Recall its formula:

ε̃
.

= log

(
exp(ε)− (1 + δw)k−1

f(k) · δw · (1 + δs)
k−1

)
. (148)

The experimental setting is the following one: we repeatedly sample clusters that are uniform in
a subset of the domain (with limited, random size), taken to be a d-dimensional hyperrectangle of
randomly chosen edge lengths. Each cluster contains a randomly picked number of points between

44

-1

 0

 1

 2

 3

 4

 5

 6

 0 5000 10000 15000 20000

m

ε
~

ε

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000

m

ε
~

ε

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 0 5000 10000 15000 20000

m

ε
~

ε

ε = 0.1 ε = 1 ε = 10

Table 5: Case d = 50, k = 3 — Plot of ε̃ as in Theorem 12 (see also eq. (148) below) and best fit
for model ε̃ = a+ b logm. All other parameters are the same as for Table 4.

-8

-6

-4

-2

 0

 2

 4

 0 5000 10000 15000 20000

m

ε
~

ε

-6

-4

-2

 0

 2

 4

 6

 0 5000 10000 15000 20000

m

ε
~

ε

 9

 10

 11

 12

 13

 14

 15

 16

 0 5000 10000 15000 20000

m

ε
~

ε

ε = 0.1 ε = 1 ε = 10

Table 6: Case d = 50, k = 4 — Plot of ε̃ as in Theorem 12 (see also eq. (148) below) and best fit
for model ε̃ = a+ b logm. All other parameters are the same as for Table 4.

1 and 1000. After each cluster is picked, we updated an estimation of δw and δs:

• we compute δw by randomly picking B and N for a total number of nest iterations, with
nest = 5000;

• we compute δs by randomly picking N for a total number of nest iterations. Instead of
computing A then x, we opt for the fast proxy which consists in replacing c(A) by a random
data point, thus without making the N-packed test. This should reasonably overestimate δs
and thus slightly loosen our approximation bounds.

Figure 8 shows the dataset obtained for d = 10 at the end of the process. Predictably, the distribu-
tion on the whole space looks like a highly non-uniform cover by locally uniform clusters. Tables
4, 5 and 6 display results obtained for three different values of ε and three different values for the
couple (d, k). To test the large sample regime intuition and the fact that the the noise dependence
grows sublinearly in m, we have regressed in each plot ε̃ as a function of m for

ε̃(m) = a+ b logm . (149)

The plots obtained confirm a good approximation of this intuition, but they also display some more
good news. The smaller ε, the larger can be ε̃ relatively to ε, by order of magnitudes if ε is small.
Hence, despite the fact that we evetually overestimate δs, we still get large ε̃. Furthermore, if k is
small, this ”large sample” regime in which ε̃ > ε actually happens for quite small values of m.

45

(d, k) = (10, 3) (d, k) = (50, 3) (d, k) = (50, 4)

δw

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0 5000 10000 15000 20000

m

δ
w

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0 5000 10000 15000 20000

m

δ
w

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0 5000 10000 15000 20000

m

δ
w

δs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5000 10000 15000 20000

m

δ
s

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5000 10000 15000 20000

m

δ
s

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5000 10000 15000 20000

m

δ
s

Table 7: Estimations of δw (top row) and δs (bottom row) as a function of m, for three values of
(d, k). We also indicate the best fit for δw(m) = a/m (top row) and δs(m) = b (for m ≥ 4000,
bottom row).

Also, one may remark that the curves all look like an approximate translation of the same curve.
This is not surprising, since we can reformulate

ε̃ = ε+ log

(
1− U

ε

)
+ g(m) , (150)

whene U .
= (1 + δw)k−1 and g do not depend on ε. It happens that δw quickly decreases to very

small values (bringing also a separate empirical validation of its behavior as computed in ineq.
(139) in the proof of Theorem 10). Hence, we rapidly get for small m some ε̃ that looks like

ε̃ ≈ ε+ log

(
1− 1 + o(1)

ε

)
+ g(m)

≈ h(ε) + g(m) , (151)

which may explain what is observed experimentally.
We can sumarise the global picture for ε̃ vs ε by saying that it becomes more and more in

favor of ε̃ as data size (d or m) increase, but become less in favor of ε̃ as the number of clusters k
increases (predictably).

↪→ comments on δw and δs Table 7 presents the estimated values of δw and δs for the settings of
Tables 4, 5 and 6. We wanted to test the intuition as to whether, for m sufficiently large, it would
hold that δw = O(1/m) while δs = O(1). The essential part is on δw, since such a behaviour would
be sufficient for the sublinear growth of the noise dependence. One can check that such behaviours
are indeed observed, and more: δw converges very rapidly to zero, at least for all settings in which

46

Figure 9: Example dataset obtained for p = 50% (d = 50). Each color represents the points held
by a peer (Forgy node) after the process of moving each point from a true cluster to another cluster
with probability p = 0.5. Big black dots are the datapoints that are the closet to the true cluster
centers.

we have tested data generation. Another quite good news, is that δs seems indeed to be θ(1), but for
an actual value which is also not large, so the denominator of eq. (148) is actually driven by f(k),
even when, as we already said, we may have a tendency to overestimate δs with our randomized
procedure.

Experiments with Dk-means++, k-means++ and k-means‖
? Experiments on synthetic data We have generated a set of m ≈20 000 points using the same
kind of clusters as in the experiments related to Theorem 12: we add ”true” clusters until the
total number of points exceeds 20 000. To simulate the spread of data among peers (Forgy nodes)
and evaluate the influence of the spread of Forgy nodes (φFs) for Dk-means++, we have devised
the following protocol: let us name ”true” clusters the hyperrectangle clusters used to build the
dataset. Each true cluster corresponds to the data held by a peer. Then, for some p ∈ [0, 100] (%),
each point in each true cluster moves into another cluster, with probability p. The choice of the
target cluster is made uniformly at random. Thus, as p increases, we get a clustering problem in
which the data held by peers is more and more spread, and for which the spread of Forgy nodes

47

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1e+06 2e+06 3e+06 4e+06 5e+06

-3

-2

-1

 0

 1

 2

 3

 0 1e+06 2e+06 3e+06 4e+06 5e+06

-2

-1

 0

 1

 2

 3

 4

 0 1e+06 2e+06 3e+06 4e+06 5e+06

-3

-2

-1

 0

 1

 2

 3

 4

 0 1e+06 2e+06 3e+06 4e+06 5e+06

-1

 0

 1

 2

 3

 4

 5

 6

 0 1e+06 2e+06 3e+06 4e+06 5e+06

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1e+06 2e+06 3e+06 4e+06 5e+06

-1

 0

 1

 2

 3

 4

 5

 6

 0 1e+06 2e+06 3e+06 4e+06 5e+06

k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

Table 8: Simulated data — Plot of ratio ρφ(k-means++) in eq. (152) as a function of φFs . Points
below the green line correspond to (average) runs in which Dk-means++ beats k-means++.

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 1e+06 2e+06 3e+06 4e+06 5e+06

-2

-1

 0

 1

 2

 3

 4

 5

 0 1e+06 2e+06 3e+06 4e+06 5e+06

-3

-2

-1

 0

 1

 2

 3

 0 1e+06 2e+06 3e+06 4e+06 5e+06

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0 1e+06 2e+06 3e+06 4e+06 5e+06

-4

-3

-2

-1

 0

 1

 2

 3

 0 1e+06 2e+06 3e+06 4e+06 5e+06

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 1e+06 2e+06 3e+06 4e+06 5e+06

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 1e+06 2e+06 3e+06 4e+06 5e+06

k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

Table 9: Simulated data — Plot of ratio ρφ(k-means‖) in eq. (152) as a function of φFs . Points
below the green line correspond to (average) runs in which Dk-means++ beats k-means‖.

φFs increases. Figure 9 presents a typical example of the spread for p = 50%. Notice that in this
case many Forgy nodes have data spreading through a much larger domain than the initial, true
clusters. Figure 10 displays that this happens indeed, as φFs is multiplied by a factor exceeding 20
(compared to φFs at p = 0) for the largest values of p.

We have compared Dk-means++ to k-means++ and k-means‖ (Bahmani et al., 2012). In the
case of that latter algorithm, we follow the paper’s statements and pick the number of outer itera-
tions to be dlog φ1e, where φ1 is the potential for one Forgy-chosen center. We also pick ` = 2k,
considering that it is a value which gives some of the best experimental results in (Bahmani et al.,
2012). Finally, we recluster the points at the end of the algorithm using k-means++. For each algo-
rithm H ∈ {k-means++, k-means‖}, we run it on the complete dataset and its results are averaged
over 10 runs. We run Dk-means++ for each p ∈ {0%, 1%, ..., 50%}. More precisely, for each p,
we average the results of Dk-means++ over 10 runs. We use as metric the relative increase in the
potential of Dk-means++ compared to H:

ρφ(H)
.

=
φ(Dk-means++)− φ(H)

φ(H)
· 100 . (152)

that we plot as a function of φFs , or surface plot as a function of (k, p). The intuition for the former
plot is that the larger φFs , the larger should be this ratio, since the data held by peers spreads across
the domain and each peer is constrained to pick its centers with uniform seeding.

↪→ Dk-means++ vs k-means++ Figure 8 presents results for ρφ(k-means++) = f(φFs) obtained
for various k. First, the intuition is indeed confirmed for k = 8, 9, 10, but an interesting phe-
nomenon appears for k = 5: Dk-means++ almost consistently beats k-means++. The decrease in
the average potential ranges up to 3%. Furthermore, this happens even for large values of φFs . Fi-
nally, for all but one value of k, there exists spread values for which Dk-means++ beats k-means++.

48

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50

Figure 10: Simulated data — Relative increase of spread, φFs (p)/φFs (0), through the runs, as a
function of p.

The surface plot in Figure 3 displays that superior performances of Dk-means++ are probably not
random. One possible explanation to this phenomenon relies on the expression of φbias given in
the proof of Theorem 4 (eq. (43)), recalled here:

φbias
.

=
∑
a∈A

‖µa − copt(a)‖2
2

=
∑
i∈[n]

∑
a∈Ai

‖c(Ai)− copt(a)‖2
2 .

(153)

Recall that φbias can be < φopt, and it can even be zero, in which case Theorem 2 says that the
approximation bound may actually be better than that of k-means++ in (Arthur & Vassilvitskii,
2007) (furthermore, η = 0 for Dk-means++). Hence, what happens is pobably that in several
cases, there exists a union of peers data (the number of peers is larger than k) that gives a at least
reasonably good approximation of the global optimum. In all our experiments indeed, we obtained
a number of peers larger than 30.

↪→ Dk-means++ vs k-means‖ Figure 3 appear to display performances for Dk-means++ that
are even more in favor of Dk-means++, compared to k-variates++. Figure 9 presents results for
ρφ(k-means‖) = f(φFs) obtained for various k. The fact that each of them is a vertical translation
of a picture in Figure 8 comes from the fact that the results of k-means‖ and k-means++ do not
depend on the spread of the neighbors φFs .

? Experiments on real world data We consider the EuropeDiff dataset5 (Dataset characteris-
tics provided in Table 10). Figures 11 and 12 give the results for the equivalent settings of the
experimental data. To simulate N peers with real data, reasonably spread geographically, we have

5http://cs.joensuu.fi/sipu/datasets/

49

http://cs.joensuu.fi/sipu/datasets/

 4
 5

 6
 7

 8
 9

 10
k 0

 10
 20

 30
 40

 50

p

-20
-10
 0
 10
 20
 30
 40
 50
 60

ρφ(k-means++) ρφ(k-means‖)

-10

 0

 10

 20

 30

 40

 50

 0 5000 10000 15000 20000 25000 30000 35000

-10

 0

 10

 20

 30

 40

 50

 60

 0 5000 10000 15000 20000 25000 30000 35000

-10

 0

 10

 20

 30

 40

 50

 0 5000 10000 15000 20000 25000 30000 35000

-20

-10

 0

 10

 20

 30

 40

 50

 0 5000 10000 15000 20000 25000 30000 35000

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

 35

 0 5000 10000 15000 20000 25000 30000 35000

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5000 10000 15000 20000 25000 30000 35000

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000 30000 35000

k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

-20

-10

 0

 10

 20

 30

 40

 0 5000 10000 15000 20000 25000 30000 35000

 0

 10

 20

 30

 40

 50

 60

 0 5000 10000 15000 20000 25000 30000 35000

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

 35

 0 5000 10000 15000 20000 25000 30000 35000

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

 35

 0 5000 10000 15000 20000 25000 30000 35000

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5000 10000 15000 20000 25000 30000 35000

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5000 10000 15000 20000 25000 30000 35000

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5000 10000 15000 20000 25000 30000 35000

k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

Figure 11: Experiments on real world data ”EuropeDiff” with N = 30 simulated peers. Top plot:
Plots corresponding to Figure 3. Middle and bottom plot ranges: plots corresponding respectively
to Figures 8 and 9.

sampled N points (”peer centers”) with k-means++ seeding in data and then aggregated for each
peer the subset of data in the corresponding Voronoi 1-NN cell. We then simulate the spread for
parameter p as in the simulated data. Figures 11 and 12 globally display (and confirm) the same
trends as for the simulated data. They, however, clearly emphasize this time that the spread of
Forgy nodes φFs is one key parameter that drives the performances of Dk-means++. Notice also
that Dk-means++ remains on this dataset competitive up to p ≥ 30%, which means that it remains
competitive when a significant proportion of peers’ data is scattered without any constraint.

To further address the way the spread of Forgy nodes affects results, we have used another real
world data with highly non-uniform distribution, Mopsi-Finland locations5 (m = 13467, d = 2).
We have sampled peers using two different schemes for the peer centers: k-means++ and Forgy. In
this latter initialisation, we just pick peer centers at random. In the former k-means++ initialisation,
the initial peer centers are much more evenly geographically spread before we complete the peers
data with the closest points. They remain more spread after the p% uniform displacement of data
between peers, as shown on the top plots of Figure 13. What is interesting about this data is that
it displays that if peers’ data are indeed geographically located, then Dk-means++ is competitive
up to quite reasonable values of p ≤ 20% (depending on k). That, is Dk-means++ works well

50

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50

Figure 12: Experiments on real world data ”EuropeDiff” with N = 40 simulated peers. Plot
corresponding to Figure 10.

when each peer aggregates 80 % data which is reasonably ”localized in the domain” and 20 % data
which can be located everywhere in the domain.

Experiments with k-variates++ and GUPT
Among the state-of-the-art approaches against which we could compare k-variates++, there are
two major contenders, PINQ (McSherry, 2010) and GUPT (Mohan et al., 2012). Even when PINQ
is a broad system, we switched our preferences to GUPT for the following reasons. The perfor-
mance of k-means based on PINQ relies on two principal factors: the initialisation (like in the
non differentially private version) and the number of iterations. To compete against heavily tuned
specific applications, like k-variates++, this scheme requires substantial work for its optimisation.
For example, if one allocates part of the privacy budget to release a differential private initialisa-
tion, the noise has to be proportional to the domain width, which would release poor centers. Also,
generating points uniformly at random from the domain, to obtain data-independent initial centers,
yields to a poor initialisation. Finally, the number of iterations has to be tuned very carefully: if too
small, the algorithm keeps poor solutions; if too large, the number of iteration increase the added
noise for privacy and harms PINQ’s final accuracy. We thus chose GUPT. k-means implemented
in the GUPT proceeds the following way: the dataset is cut in a certain number of blocks ` (fol-
lowing (Mohan et al., 2012), we fix ` = m0.4 in our experiments), the usual k-means algorithm is
performed on each block. Before releasing the final centroids, results are aggregated and a noise
is applied. Finally, we also compare against the vanilla approach of Forgy Initialisation using the
Laplace mechanism. The noise rate (i.e., standard deviation) is then proportional to ∝ kR/ε (we
do not run k-means afterwards, hence the privacy budget remains “small”). In comparison, GUPT
adds noise ∝ kR/(`ε) at the end of this aggregation process. Note that we disregard the fact that
our data are multidimensional, which should require a finer-grained tuning of `, and choose to rely
on the ` = m0.4 suggestion from (Mohan et al., 2012).

↪→ Comparison on real world domains Our domains consist of 3 real-world datasets5. Lifesci
contains the value of the top 10 principal components for a chemistry or biology experiment. Image

51

Dataset m d k ε̃ ρ′φ(F-DP) ρ′φ(GUPT)

LifeSci 26733 10
2 8.5 311 1.6
3 4.4 172 0.4
4 0.6 6 0.02

Image 34112 3
2 12.6 300 4.8
3 3.2 77 0.9

EuropeDiff 169308 2

2 19.0 1200 46.1
3 21.0 3120 66.5
4 18.0 3750 55.0
5 14.0 4000 51.0
6 10.4 5000 36.0
7 6.6 2600 26.0
8 1.8 350 2.0

Table 10: Comparison of k-variates++, Forgy Initialisation differentially private (F-DP) and GUPT
on the real world domains. On each domain, we compute ratio ρ′φ of the clustering potential of the
contender to that of k-variates++, a value > 1 indicating that k-variates++ is better. The potential
of each algorithm has been averaged over 30 runs. ε̃ is given in eq. (18).

is a 3D dataset with RGB vectors, and finally EuropeDiff is the differential coordinates of Europe
map.

Table 10 presents the extensinve results obtained, that are averaged in the paper’s body. We
have fixed ε = 1 in the differentially privacy parameters. The column ε̃ (eq. (18)) provides the
differential privacy parameter which is equivalent from the protection standpoint, but exploits the
computation of δw, δs (which we compute exactly, and not in a randomized way like in the experi-
ments on Theorem 12 above) and ineq. (80). Therefore, each time ε̃ > ε (=1 in our applications), it
means that our analysis brings a sizeable advantage over “raw protection” by Laplace mechanism
(in our application we chose for pµa,θa a Laplace distribution). R is computed from the data by
an upperbound of the smallest enclosing ball radius. The results display several interesting pat-
terns. First, the largest the domain, the better we compare with respect to the other algorithms. On
EuropeDiff for example, we often have the ratio of the potentials φ(GUPT)/φ(k-variates++) of
the order of dozens. Also, the performances of k-variates++ degrade if k increases, which is again
consistent with the “good” regime of Theorem 10.

↪→ Comparison on synthetic domains The synthetic datasets contain points uniformly sampled
on a unit d-ball, in low dimension d = 2 and higher dimension d = 15 , we generated datasets with
size in {105, 106}.

52

Forgy initial peer centers k-means++ initial peer centers

Figure 13: Mopsi-Finland locations data — Top: peer centers (big black dots) after p = 50% mov-
ing probability changes in data. Remark from the right plot (k-means++ initial peer centers) that
peer data are less ”attracted” towards the highest density regions. Center: plots of ρφ(k-means++).
Bottom: plots of ρφ(k-means‖).

53

vs
F,
d

=
2

vs
F,
d

=
15

vs
G

U
PT

,d
=

2
vs

G
U

PT
,d

=
15

Fi
gu

re
14

:
k

-v
ar

ia
te

s+
+

vs
Fo

rg
y

in
iti

al
is

at
io

n
di

ff
er

en
tia

lly
pr

iv
at

e
an

d
G

U
PT

.W
e

us
e

ra
tio
ρ
′ φ

be
tw

ee
n

th
e

po
te

nt
ia

lo
f

th
e

co
nt

en
de

r
in

(F
-D

P,
G

U
PT

)
ov

er
th

e
po

te
nt

ia
lo

f
k

-v
ar

ia
te

s+
+

(p
ot

en
tia

ls
ar

e
av

er
ag

ed
30

tim
es

).
T

he
m

or
e

re
d,

th
e

be
tte

r
is
k

-v
ar

ia
te

s+
+

w
ith

re
sp

ec
tt

o
th

e
co

nt
en

de
r.

G
re

y
va

lu
es

in
di

ca
te

le
ss

po
si

tiv
e

ou
tc

om
es

fo
rk

-v
ar

ia
te

s+
+;

w
hi

te
va

lu
es

in
di

ca
te

th
at
k

-v
ar

ia
te

s+
+

do
es

no
t

m
an

ag
e

to
fin

d
an
ε′

la
rg

er
th

an
ε,

an
d

th
us

do
es

no
tm

an
ag

e
to

pu
ts

m
al

le
rn

oi
se

ra
te

th
an

in
th

e
L

ap
la

ce
m

ec
ha

ni
sm

.

54

	1 Introduction
	2 k-variates++
	3 Reductions from k-variates++
	4 Direct use of k-variates++
	5 Experiments
	6 Discussion and Conclusion
	7 Acknowledgments
	8 Appendix on Proofs
	9 Appendix on Experiments

