Skip to main content
Log in

Modelling the dynamics of stem cells in colonic crypts

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We present a theoretical and computational framework to model the colonic crypt organisation in the human intestine. We construct a theoretical and computational framework to model the colonic crypt behaviour, using a Voronoi tessellation to represent each cell and elastic forces between them we addressed how their dynamical disfunction can lead to tumour masses and cancer. Our results indicate that for certain parameters the crypt is in a homeostatic state, but slight changes on their values can disrupt this behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Barker, R.A. Ridgway, J.H. van Es, M. van Wetering, H. Begthel, M. van den Born, E. Danenberg, A.R. Clarke, O.J. Sansom, H. Clevers, Crypt stem cells as the cells-of-origin of intestinal cancer, Nature 457, 608 (2009)

    Article  ADS  Google Scholar 

  2. A. d’Onofrio, I.P.M. Tomlinson, A non-linear mathematical model of cell turnover, differentiation and tumorigenesis in the intestinal crypt, J. Theor. Biol. 244, 367 (2007)

    Article  Google Scholar 

  3. I.P.M. Tomlinson, W.F. Bodmer, Failure to programmed cell death and differentiation as causes of tumors: Some simple mathematical models, PNAS 92, 11130 (1995)

    Article  ADS  Google Scholar 

  4. P.A. Beachy, S.S. Karhadkar, D.M. Berman, Tissue repair and stem cell renewal in cancirogenesis, Nature 432, 324 (2004)

    Article  ADS  Google Scholar 

  5. G.R. Mirams, A.G. Fletcher, P.K. Maini, H.M. Byrne, A theoretical investigation of the effect of proliferation and adhesion on monoclonal conversion in the colonic crypt, J. Theor. Biol. 312, 143 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. S.K. Kershaw, H.M. Byrne, D.J. Gavaghan, J.M. Osborne, Colorectal cancer through simulation and experiment, IET Syst. Biol. 7, 57 (2013)

    Article  Google Scholar 

  7. Y. Kagawa, N. Horita, H. Taniguchi, S. Tsuneda, Modeling of stem cell dynamics in human colonic crypts in silico, J. Gastroenterol. 49, 263 (2014)

    Article  ADS  Google Scholar 

  8. B. Creamer, R. Shorter, J. Bamforth, The turnover and shedding of epithelial cells. i. the turnover in the gastro-intestinal tract. Gut 2, 110 (1961)

    Google Scholar 

  9. L.W. Peterson, D. Artis, Intestinal epithelial cells: regulators of barrier function and immune homeostasis, Nature Reviews: Immunology 14, 141 (2014)

    Google Scholar 

  10. A.M. Baker, B. Cereser, S. Melton, A.G. Fletcher, M. Rodriguez-Justo, P.J. Tadrous, A. Humphries, G. Elia, S.A. McDonald, N.A. Wright, B.D. Simons, M. Jansen, T.A. Graham, Quantification of crypt and stem cell evolution in the normal and neoplastic human colon, Cell Rep. 8, 940 (2014)

    Article  Google Scholar 

  11. S.J. Leedham, P. Rodenas-Cuadrado, K. Howarth, A. Lewis, S. Mallappa, S. Segditsas, H. Davis, R. Jeffery, M. Rodriguez-Justo, S. Keshav, S.P.L. Travis, T.A. Graham, J. East, S. Clark, I.P.M. Tomlinson, A basal gradient of wnt and stem-cell number influences regional tumour distribution in human and mouse intestinal tracts, Gut 62, 83 (2013)

    Article  Google Scholar 

  12. S. Frisch, H. Francis, Disruption of epithelial cell-matrix interactions induces apoptosis, J. Cell Biol. 124, 619 (1994)

    Article  Google Scholar 

  13. P. Kaur, C.S. Potten, Circadian variation in migration velocity in small intestinal epithelium, Cell Tissue Kinet. 19, 591 (1986)

    Google Scholar 

  14. S. Tsubouchi, Theoretical implications for cell migration through the crypt and the villus of labelling studies conducted at each position within the crypt, Cell Tissue Kinet. 16, 441 (1983)

    Google Scholar 

  15. D. Cunningham, W. Atkin, H.J. Lenz, H.T. Lynch, B. Minsky, B. Nordlinger, N. Starling, Colorectal cancer, The Lancet 375, 1030 (2010)

    Article  Google Scholar 

  16. X. Liu, J.M.J. Hunt, Kras gene mutation in colorectal cancer is correlated with increased proliferation and spontaneous apoptosis, Am. J. Clin. Pathol. 135, 245 (2011)

    Article  Google Scholar 

  17. A. Humphries, N.A. Wright, Colonic crypt organization and tumorigenesis, Nature Reviews: Cancer 8, 415 (2008)

    Google Scholar 

  18. A.G. Fletcher, P.J. Murray, P.K. Maini, arXiv:1506.05019v1 [q-bio.TO] (2015)

  19. O. Voloshanenko, G. Erdmann, T.D. Dubash, I. Augustin, M. Metzig, G. Moffa, C. Hundsrucker, G. Kerr, T. Sandmann, B. Anchang, K. Demir, C. Boehm, S. Leible, C.R. Ball, H. Glimm, R. Spang, M. Boutros, Wnt secretion is required to mantain high levels of wnt activity in colon cancer cells, Nat. Commun. 4, 13 (2013)

    Article  Google Scholar 

  20. P. Polakis, Wnt signaling and cancer, Genes & Dev. 14, 1837 (2000)

    Google Scholar 

  21. C.H.F. Chan, P. Camacho-Leal, C.P. Stanners, Colorectal hyperplasia and dysplasia due to human carcinoembryonic antigen (cea) family member expression in transgenic mice, Plos One 2, e1353 (2007)

    Article  ADS  Google Scholar 

  22. R.A. Barrio, J.R. Romero-Arias, M.A. Noguez, E. Azpeitia, E. Ortiz-Gutiérrez, V. Hernández-Hernández, Y. Cortes-Poza, E.R. Álvarez-Buylla, Cell pattern emerge from coupled chemical and physical fields with cell proliferation dynamics: The arabidopsis thaliana root as a study system, PLOS: Comput. Biol. 9, e1003026 (2013)

    ADS  Google Scholar 

  23. H. Honda, Description of cellular patterns by dirichlet domains: the two-dimensional case, J. Theor. Biol. 72, 523 (1978)

    Article  MathSciNet  Google Scholar 

  24. N. Saitô, Asymptotic regular pattern of epidermal cells in mammalian skin, J. Theor. Biol. 95, 591 (1982)

    Article  MathSciNet  Google Scholar 

  25. F.A. Meineke, C.S. Potten, M. Loeffler, Cell migration and organization in the intestinal crypt using a lattice-free model, Cell Prolif. 34, 253 (2001)

    Article  Google Scholar 

  26. J. Butcher, Numerical Methods for Ordinary Differential Equations (Wiley, 2003)

  27. R.A. Barrio, C. Varea, J.L. Aragón, P.K. Maini, A two-dimensional numerical study of spatial pattern formation in interacting turing systems, Bull. Math. Biol. 61, 483 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael A. Barrio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirio, OF., Barrio, R.A. Modelling the dynamics of stem cells in colonic crypts. Eur. Phys. J. Spec. Top. 226, 353–363 (2017). https://doi.org/10.1140/epjst/e2016-60177-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60177-8

Navigation