Skip to main content
Log in

Reducing low-frequency noise during reversible fluctuations

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The noise from most materials exhibits a power-spectral density that tends to diverge as S(f) ∝ 1/f at low frequencies, f. A fundamental mechanism for this 1/f noise comes from the thermodynamics of small systems applied to reversible fluctuations of nanometer-sized regions inside bulk samples. Here this “nanothermodynamics” is used to derive a nonlinear correction to Boltzmann’s factor. Specifically: Boltzmann’s factor comes from the first-order (linear) derivative of entropy with respect to energy, whereas the nonlinear correction comes from higher-order terms. The nonlinear correction is applied to Monte Carlo simulations of small regions in the Ising model, yielding a low-frequency crossover to white noise that keeps the power-spectral density finite as f → 0. It is shown that the low-frequency noise in the model is reduced by reducing the size of the regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.T. Rogers, R.A. Buhrman, Phys. Rev. Lett. 53, 1272 (1984)

    Article  ADS  Google Scholar 

  2. E. Vidal Russell, N.E. Israeloff, Nature 408, 695 (2000)

    Article  ADS  Google Scholar 

  3. D. Collin, F. Ritort, C. Jarzynski, S.B. Smith, I. Tinoco Jr, C. Bustamante, Nature 437, 231 (2005)

    Article  ADS  Google Scholar 

  4. S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano, Nat. Phys. 6, 988 (2010)

    Article  Google Scholar 

  5. J. Mehl, B. Lander, C. Bechinger, V. Blickle, U. Seifert, Phys. Rev. Lett. 108, 220601 (2012)

    Article  ADS  Google Scholar 

  6. A. Berut, A. Arkakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Nature 483, 187 (2012)

    Article  ADS  Google Scholar 

  7. J.V. Koski, T. Sagawa, O.P. Saira, Y. Yoon, A. Kutvonen, P. Solinas, M. Möttönen, T. Ala-Nissila, J.P. Pekola, Nat. Phys. 9, 644 (2013)

    Article  Google Scholar 

  8. G. Verley, M. Esposito, T. Willaert, C. Van den Broeck, Nat. Comm. 5, 1 (2014)

    Article  Google Scholar 

  9. G.E. Crooks, Phys. Rev. E 60, 2721 (1999)

    Article  ADS  Google Scholar 

  10. D.J. Evans, E.G.D. Cohen, G.P. Morriss, Phys. Rev. Lett. 71, 2401 (1993)

    Article  ADS  Google Scholar 

  11. G. Gallavotti, E.G.D. Cohen, Phys. Rev. Lett. 74, 2694 (1995)

    Article  ADS  Google Scholar 

  12. R. Kawai, J.M.R. Parrondo, C. Van den Broek, Phys. Rev. Lett. 98, 080602 (2007)

    Article  ADS  Google Scholar 

  13. S. Pressé, K. Ghosh, J. Lee, K.A. Dill, Rev. Mod. Phys. 85, 1115 (2013)

    Article  ADS  Google Scholar 

  14. U. Seifert, Rep. Prog. Phys. 75, 1 (2012)

    Article  Google Scholar 

  15. E.G.D. Cohen, D. Mauzerall, J. Stat. Mech: Theor. Exp. 2004, P07006 (2004)

    Article  Google Scholar 

  16. C. Jarzynski, J. Stat. Mech: Theor. Exp. 2004, P09005 (2004)

    Article  Google Scholar 

  17. R.P. Feynman, Statistical Mechanics (Westview Press, Boulder, CO, 1998)

  18. E. Donth, J. Non-Cryst. Solids 53, 325 (1982)

    Article  ADS  Google Scholar 

  19. V.I. Yukalov, Phys. Rep. 208, 395 (1991)

    Article  ADS  Google Scholar 

  20. R. Böhmer, R.V. Chamberlin, G. Diezemann, B. Geil, A. Heuer, G. Hinze, S.C. Kuebler, R. Richert, B. Schiener, H. Sillescu, H.W. Spiess, U. Tracht, M. Wilhelm, J. Non-Cryst. Solids 235, 1 (1998)

    Article  Google Scholar 

  21. M.D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000)

    Article  ADS  Google Scholar 

  22. R. Richert, J. Phys.: Condens. Matter 14, R703 (2002)

    ADS  Google Scholar 

  23. S.A. Reinsberg, A. Heuer, B. Doliwa, H. Zimmermann, H.W. Spiess, J. Non-Cryst. Sol. 307, 208 (2002)

    Article  ADS  Google Scholar 

  24. L.J. Kaufman, Annu. Rev. Phys. Chem. 64, 177 (2013)

    Article  ADS  Google Scholar 

  25. M. Meissner, K. Spitzmann, Phys. Rev. Lett. 46, 265 (1981)

    Article  ADS  Google Scholar 

  26. P.K. Dixon, S.R. Nagel, Phys. Rev. Lett. 61, 341 (1988)

    Article  ADS  Google Scholar 

  27. R.V. Chamberlin, B. Schiener, R. Böhmer, MRS Bulletin 455, 117 (1997)

    Article  Google Scholar 

  28. R.V. Chamberlin, Phase Transitions 65, 169 (1998)

    Article  Google Scholar 

  29. R.V. Chamberlin, Phys. Rev. Lett. 83, 5134 (1999)

    Article  ADS  Google Scholar 

  30. R. Richert, S. Weinstein, Phys. Rev. Lett. 97, 095703 (2006)

    Article  ADS  Google Scholar 

  31. T.L. Hill, Thermodynamics of Small Systems (Parts I and II) (Dover, Mineola, NY, 1994)

  32. R.V. Chamberlin, Nature 408, 337 (2000)

    Article  ADS  Google Scholar 

  33. R.V. Chamberlin, J.V. Vermaas, G.H. Wolf, Eur. Phys. J. B 71, 1 (2009)

    Article  ADS  Google Scholar 

  34. R.V. Chamberlin, Entropy 17, 52 (2015)

    Article  ADS  Google Scholar 

  35. J.B. Johnson, Phys. Rev. 26, 71 (1925)

    Article  ADS  Google Scholar 

  36. S. Kogan, Electronic Noise and Fluctuations in Solids (Cambridge University Press, Cambridge, 2008)

  37. F. Yoshihara, K. Harrabi, A.O. Niskanen, Y. Nakamura, J.S. Tsai, Phys. Rev. Lett. 97, 167001 (2006)

    Article  ADS  Google Scholar 

  38. A.A. Balandin, Nature Nanotechnology 8, 549 (2013)

    Article  ADS  Google Scholar 

  39. E. Paladino, Y.M. Galperin, G. Falci, B.L. Altshuler, Rev. Mod. Phys. 86, 361 (2014)

    Article  ADS  Google Scholar 

  40. K.S. Nagapriya, A.K. Raychaudhuri, Phys. Rev. Lett. 96, 038102 (2006)

    Article  ADS  Google Scholar 

  41. R.M.M. Smeets, U.F. Keyser, N.H. Dekker, C. Dekker, Proc. Natl. Acad. Sci. U.S.A. 105, 417 (2008)

    Article  ADS  Google Scholar 

  42. J.P. Boon, Adv. Complex Syst. 13, 155 (2010)

    Article  MathSciNet  Google Scholar 

  43. L.M. Ward, P.E. Greenwood, http://www.scholarpedia.org/article/1/f)_noise

  44. R.V. Chamberlin, D.M. Nasir, Phys. Rev. E 90, 012142 (2014)

    Article  ADS  Google Scholar 

  45. R.V. Chamberlin, G.H. Wolf, Eur. Phys. J. B 67, 495 (2009)

    Article  ADS  Google Scholar 

  46. R.V. Chamberlin, Physica A 391, 5384 (2012)

    Article  ADS  Google Scholar 

  47. R.V. Chamberlin, B.F. Davis, Phys. Rev. E 88, 042108 (2013)

    Article  ADS  Google Scholar 

  48. H.M. James, E. Guth, J. Chem. Phys. 11, 455 (1943)

    Article  ADS  Google Scholar 

  49. R.P. Feynman, R.B. Leighton, M. Sands, Lectures on Physics (Pearson Addison Wesley, San Francisco, 2006), Vol. 1, p. 44

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph V. Chamberlin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamberlin, R.V. Reducing low-frequency noise during reversible fluctuations. Eur. Phys. J. Spec. Top. 226, 365–371 (2017). https://doi.org/10.1140/epjst/e2016-60182-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60182-y

Navigation