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Abstract—The Internet-of-Things (IoT) has brought in new
challenges in device identification –what the device is, and
authentication –is the device the one it claims to be. Tradi-
tionally, the authentication problem is solved by means of a
cryptographic protocol. However, the computational complexity
of cryptographic protocols and/or scalability problems related
to key management, render almost all cryptography based
authentication protocols impractical for IoT. The problem of
device identification is, on the other hand, sadly neglected. We
believe that device fingerprinting can be used to solve both these
problems effectively. In this work, we present a methodology to
perform device behavioral fingerprinting that can be employed
to undertake device type identification. A device behavior is
approximated using features extracted from the network traffic
of the device. These features are used to train a machine learning
model that can be used to detect similar device types. We
validate our approach using five-fold cross validation; we report
a identification rate of 86-99% and a mean accuracy of 99%,
across all our experiments. Our approach is successful even
when a device uses encrypted communication. Furthermore, we
show preliminary results for fingerprinting device categories, i.e.,
identifying different device types having similar functionality.

Index Terms—IoT Devices, IoT Network Security, Device Be-
havior, Device Type Fingerprinting, Machine Learning, Network
Traffic Features.

I. INTRODUCTION

A. Motivation
Internet-of-Things (IoT) devices industry is rapidly growing

[1] with an ever-increasing list of manufacturers offering
a myriad of smart devices targeted to enhance end-users’
standard of living. Security is an after-thought in these devices
resulting in vulnerabilities [2] that have been successfully
exploited, for instance, the notorious incident of the Mirai
botnet [3]. Many security problems can be mitigated through
strong identification and authentication of devices, which
enables administrators to enforce appropriate security controls
on a particular device.

As devices are plugged-in and removed from an IoT net-
work, it is essential to identify the type of these devices and
establish a behavioral baseline. Fingerprinting IoT devices is
challenging due to the large variety of devices, protocols,
and control interfaces, across the devices. An IoT device
might respond to queries about its identity and type, which
is a standard way of remotely learning about the device. But,
an untrusted device can masquerade as another device by
providing false information about its identity and type. More
importantly, an untrusted or compromised IoT device might
behave contrary to its baseline behavior, e.g., connecting to
other devices to disrupt their functioning or to gather network

information. Therefore, device fingerprinting IoT devices is
important for achieving security in IoT networks.

B. Problem Description

An IoT device can be fingerprinted at varying levels of
granularity, from a category to a specific instance, as shown
in the sample ontology in Figure 1. A device category cor-

Light Bulb 

Monochrome Hue 

TCP Light TP Link 

A-19 A-21 

Philips AWOX 

Device Type:   
Light Bulb |Monochrome |TCP Light | A-21 

Device Category:  
Light 

Device  
Sub-category:  
Hue Light 

S.No: 1 S.No: 2 Device Instances of A21:  
S.No:1 and S.No:2 

Figure 1. Device Category, Type and Instance

responds to a general grouping of devices having similar
functionality, say, e.g., “Light Bulb”. This category can have
further sub-divisions, like “Monochrome” and “Hue Light”.
Now, a device type is a specific device model within a
general device category. For instance, in Figure 1, a device
type is: “Light Bulb— Monochrome— TCP Light— A21” or
simply “TCP Light — A21”. Finally, a device instance is a
physical device instantiation of a device type, for instance, the
device type “TCP— A21”, has two different bulbs with serial
numbers “A21— S.No: 1” and “A21— S.No: 2”.

Ideally, a security administrator would like the capability
of establishing unforgeable identities, i.e., authenticating, two
device instances, say, “A21— S.No: 1” and “A21— S.No: 2”,
which are of the same device type. Towards this goal, device
type identification is a critical first step.
Problem Statement. We describe the problem of fingerprint-
ing an IoT device type as that of identifying the device type
from a sample network activity of the device. We refer to the
sample network activity of a device, Di, as its fingerprint,
Fi. The collection of all possible network activities of a
Di constitutes the behavioral profile, 〈Bi, Di〉, of the device.
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From this discussion, the problem statement we address is as
follows.

Given a collection of previously recorded behavioral pro-
files, B = {〈B1, D1〉, 〈B2, D2〉, · · · , 〈Bn, Dn〉} of n
devices and the available fingerprint Ft of a target device
Dt, to correctly predict 〈Bt, Dt〉 where Bt(3 Ft) is the
corresponding behavioral profile of Dt.

C. State of Current Research

IoT device type fingerprinting research is in early stages
due to the evolving nature of the IoT industry.

Miettinen et al. in [4] described IoT Sentinel, a framework
for device fingerprinting and securing IoT networks. Their
work focused on machine learning techniques for fingerprint-
ing a device when it first registers on a network. However, their
work does not analyze the behavior of a device as described
the problem statement. Our work is complementary to theirs,
it can be used along with their approach to fingerprint devices
and provide stronger security.

Siby et al. described IoTScanner in [5], an architecture
that passively observes network traffic at the link layer, and
analyzes this traffic using frame header information during
specific observation time windows. This work is more con-
cerned with discerning the distinct devices and their presence
based on the traffic patterns observed during the traffic capture
time window. A shortcoming of this approach is that two
identical device types could be classified as two different
device types due to the variations in traffic generated during
traffic capture time window. Device fingerprinting, wireless
and wired, has received considerable attention in the research
community. General device fingerprinting has been described
in [6], [7], [8], which have explored several techniques ranging
from packet header features to physical features such as clock-
skews. Wireless device finger printing techniques have been
discussed in [9], [10], [11], [12], [13]. These works explored
the device type identification by exploring the implementation
differences of a common protocol such as SIP, across similar
devices. However, IoT devices use numerous protocols and
it would be nearly impossible to attempt such analysis on a
per protocol and per device basis. Physical layer based device
fingerprinting has received considerable attention [14], [15],
[16], [17], [18] where the focus is on analyzing the physical
aspects of devices to fingerprint them. All these works focused
on general wireless devices and their applicability to IoT
devices is an open question.

D. Proposed Approach, Technical Challenges and Solutions

Our fingerprinting approach generates a behavioral profile
that quantifies the behavior of a device type. Behavioral
fingerprinting is quite valuable since it allows us to monitor the
device behavior throughout its life time. If there are deviations
from the device’s initial behavior, due to some malicious
activity, we can detect such activity by periodically observing
and validating against a behavioral profile. To generate such
a behavioral profile, our approach is to model the behavior
of the device approximately as a collection of protocols used,

and the set of observed command and response sequences.
We collect the network traffic that is flowing into and out of
the device and extract features of interest are indicators of
a device behavior. Finally, we aggregate the features using a
statistical model and use it as a reference for identifying the
device. To identify a target device, we observe a few packets
from the device and compare it against the previously recorded
behavioral profiles.

The first technical challenge in our proposed approach
is to be able to observe all possible protocol interactions
and command-responses of the device. Since it may not be
possible to observe all possible interactions, our approach can
only approximately model the device behavior. To solve this
challenge, in the laboratory setting, we use the controlling
smart-phone app to interact with the device to extract the
command-response sequences and this coupled as well as
passively observed the device. Our approach is essentially
simulating the passive observation of network traffic where
the observer could be observing the traffic flows of a new
device to build the behavioral profile.

The second challenge is that the types of interesting be-
havioral features are non-trivial to determine. Therefore, use
available features like packet header feature and payload based
features for this purpose. For packet header based features,
we extract the device specific features such as the protocols
used and communication patterns of the device during the
observational period. Our choice of payload features, coupled
with some preliminary results, show that the our approach can
work on encrypted traffic as well.

The next challenge in our proposed approach is that sta-
tistical models can be very difficult to generate on multi-
variate data. Towards this, we apply general purpose machine
learning tools as machine learning classifiers are very good
at learning local features of interest in a collection of data.
Since, we are modeling the behavior of a device as a collection
of individual fingerprints, the machine learning classifiers are
most suitable for our approach. Typically, one distinguishing
feature is sufficient to classify a given device type against
several other device types and this depends entirely on the
robustness of the machine learning model.

The final and most important challenge is: How much
of the target device data needs to be observed before the
fingerprint can be matched against a stored behavioral profile?
Ideally, a small number of packets allows a fingerprinter to
be able to keep track of the devices periodically and observe
any deviations from its behavior. Our approach therefore
attempts to create a short fingerprint with a few packets being
sufficient to match the fingerprint. Therefore, the problem is
to determine, on an average, the number of device packets that
encapsulate one or more behavioral features of a target device.
To solve this problem, we determined the average number of
packets based on the assumption that an individual protocol
interaction session of a device encapsulates one or more
behavioral features of the device. This is consistent with our
model for the behavioral profile of a device, which maps the
device behavior as collection of protocol interaction sessions.



Using experimental analysis, we establish the approximate
number of packets required for fingerprinting a device.
Key Contributions. (a) For the first time, we describe a
practical approach for behavioral fingerprinting of IoT devices
using machine learning. (b) Our fingerprinting analysis shows
that with a small number of packets we can fingerprint a device
quite accurately. (c) We demonstrate that certain features like
TCP window size, entropy and payload lengths are very
specific to device types and are statistically significant in
fingerprinting. (d) We demonstrate machine learning model
robustness using three different types of experiments on 14
different device types and 9 different device categories. The
first experiment examines the identification of device types
based on a five-fold cross-validation and, we report a mean
identification rate in the range of 93-99%, and a mean accuracy
of 99%. The second experiment examined the identification
of device categories, and using five-fold cross-validation, we
report a mean identification rate of 91-99%, of identifying
a device to its proper category. This result is the first such
success reported in this problem domain and shows that we
can create behavioral profiles for classes of devices. The
final experiment examined identification of different device
instances of same device type, and achieved an excellent mean
identification rate of, 99.7-100%. (e) Finally, with our existing
device set, we show preliminary results that our approach is
successful even when the device uses encryption for some of
the communication.

II. RELATED WORK

In [9], Franklin et al. describe a passive fingerprinting
method for identifying the different types of 802.11 wireless
device driver implementations on clients. The authors explore
the statistical relationship of the active channel scanning
strategy in a particular device driver implementation. The
lack of a standard for the scanning strategy resulted in such
differences and allowed the authors to distinguish between the
devices. This technique is useful for identifying the type of
device driver implementation but not of the type of device. For
instance, a manufacturer might reuse the same device driver
implementation across several device types.

In [14], Vladimir et al. developed a radiometric approach
based on imperfections in analog components for fingerprint-
ing network interface cards (NICs). Such variations result
in imperfect emissions when compared with the theoretical
emissions and manifest in the modulation of the transmitted
signals of the device. They used machine learning approaches
to perform the fingerprinting. However, this work relies on the
availability of the frames, physical layer transmission, from
the given device. This may not be for an IoT network as the
devices are spread overa an area and might be interconnected
via different switches and middle-boxes.

In [11], François et al. describe approaches to fingerprint
devices based on the usage of a common protocol. Broadly,
this work focuses on distinguishing various implementations of
the same protocol. This work describes interesting techniques
to parse protocols and provides an approach for representing

and anlaysing the behavior of a given protocol. However, IoT
devices speak a variety of protocols, which makes it difficult
to apply these techniques.

In [19], François et al. describe a protocol grammar based
approach for fingerprinting. Similar to our work, they char-
acterize a device based on the set of messages emitted. A
message is represented using the protocol grammar syntax.
To classify a given device, the messages emitted by the device
are compared with syntactic trees of the stored fingerprints and
depending on a similarity metric, the device label is assigned.
However, this approach is again specific to protocols that are
well known and whose grammar rules are available.

In [20], Gao et al. developed a wavelet analysis technique
to fingerprint wireless access points based on frame inter-
arrival time deltas. This technique can be seen as a black-box
approach. However, this approach relies on the fingerprinter
being in or near the range of the access point to gather sensitive
time information and needs the access point to route data to
the fingerprinter. The approach does not apply to IoT devices
as these devices are usually end-points and do not forward
data to other devices.

In [16] Radhakrishnan et al. described GTID for device-type
identification on general purpose devices like smartphones,
laptops and tablet PCs. Their work relies on the inter-arrival
times of different packets to extract the relevant features
specific to a particular application like Skype. However, IoT
devices are usually very conservative in terms of traffic gen-
eration and do not generate much traffic, as we have observed
in our laboratory setting. Applying these techniques to IoT
networks will require non-trivial modifications to the original
set of algorithms. In contrast, our work extracts the behavior
of an IoT device on whatever traffic is made available.

In this problem space, IoTSentinel [4] by Miettinen et
al. and IoTScanner [5] by Siby et al. are the currently
known solution frameworks. IoTSentinel focuses on device-
type identification at the time of device registration into a
network. This approach uses packet header based features
to identify a particular device type. IoTSentinel reports a
mean identification rate of 50-100%, whereas our approach
reports a mean identification rate of 93-99%. Our approach
complements IoTSentinel, as our approach can periodically
cross-verify the device fingerprints established at registration
time. IoTScanner [5], is similar to GTID [16], in that they
identify devices by visualizing the MAC (medium access
control) layer traffic of the devices. This approach is useful for
network mapping at a high level, but performing this analysis
periodically can be cumbersome. In contrast, our approach can
re-verify a fingerprint of a device with a short signature of only
5 packets.

III. BEHAVIORAL FINGERPRINTING MODEL

In this section, we describe the building blocks of our
behavioral model of an IoT device. First, we describe the
static behavioral model of an IoT device in terms of the
protocols used by a given device. Second, we describe the



dynamic behavioral model of IoT device in terms of the session
interactions of the device.

A. Static Behavioral Model

IoT devices use different protocols at different stages of
their operation such as may include a subset of ARP, SSL,
LLC, EAPOL, HTTP, MDNS and DNS. Therefore, the list of
protocols used by an IoT device is a good indicator of the
device behavior. In [4], the authors used this notion to capture
the device behavior at registration time. However, the list of
protocols used by the device provides only a static view of
the device’s operations. In addition to this, further modeling
is required to completely understand the dynamic nature of
the device’s behavior.

B. Dynamic Behavioral Model

Our modeling of the dynamics of an IoT device is based on
the notion that an IoT device has several distinct command-
response sequences. We call each of these command response
sequences as a session. For instance, let us consider that a
device responds to (or sends) the following types of con-
trol messages: C1, C2, . . . , Cn and that the responses for
each of these messages are (not necessarily in that order):
R1, R2, . . . , Rm. A typical protocol interaction can be as
follows: C1 → R1 → C2 → R3 → C1 → R1. Therefore,
the device’s behavior can be viewed as a collection of these
sequences. However, the challenge is in estimating the average
number of packets that are part of any given session.

One way to to estimate this average is by considering
the limited scope of IoT devices, which usually have short
sessions consisting of 2 to 10 packets. Given this intuition,
the average number of packets per session, across 5 such
devices, is given by: (2+4+6+8+10)

5 = 6 packets. To check
this theoretical result, we used the data from our experiments
to count the number of sessions and the packets per session
across a variety of devices. To count a session, we considered
all packets exchanged with the same destination and source
ports and we show the results in Table I. For this sample
set of data, the average number of packets per session is:
(3.89+6.18+4.41+5.13+9.48+9.77+8.79)

7 = 6.8, which is very
close to our theoretical estimate. The summary of this result
is that, to fingerprint a given device we need to capture 6± 2
packets for any given device. A limitation is that there are
certain devices that act as conduits, such as Philips Hub, or
devices that do not have sessions, and cannot be modeled
by this approach. However, using experimental analysis, we
demonstrate that such devices can be still be fingerprinted
using our approach due to their limited behavioral profiles.
Based on the models described in this section, we describe
the feature selection for the machine learning models that will
be used to create the behavioral profile of the IoT devices.

IV. MACHINE LEARNING FEATURES FOR BEHAVIORAL
PROFILING

We use two available types of features from the network
packets: packet header features and payload based features.

Broadly speaking, the packet header features are useful in
quantifying the static behavioral model of the device, and the
payload based features are useful in quantifying the dynamic
behavioral model of the device.

A. Packet Header Features

For the static behavioral model, we use a subset of the
features, shown in Table II, from those outlined by Miettinen
et al. in [4]. Essentially, these features are extracted from
the packet headers of the traffic data from the device. These
features are binary, i.e. they have values of 0 or 1 for the
absence or presence of a feature, respectively. Note that, unlike
the work in [4], we do not consider network specific features
like IP addresses, source or destination ports and so on, as
these features are not dependent on the device behavior.

B. Payload Based Features

Primarily, we consider the use of three important features:
entropy of payload, TCP payload length and TCP window
size. To validate the intuition behind each feature, we tested
the empirical cumulative distribution function (ECDF) of the
feature for four different types of devices. The ECDF of a real-
valued random variable X , or just distribution function of X ,
evaluated at x, is the probability that X will take a value less
than or equal to x. For x-axis distribution, we used the feature
values in the dataset, and for y-axis, we used the probability
that feature value will take values less than or equal to x.
Entropy. The entropy of the payload is basically indicative of
the information content inside a packet. To calculate Shannon
entropy of a sequence of m bytes with a symbol length of
8-bits or 1 byte, the following formula is used:

hm = −
256∑
i=1

pi log256 pi

where pi is the probability of the occurrence of byte value
i in the m bytes, i.e., pi = count(i)

m . Using the analysis
described by Khakpour et al. in [21], if a packet is carrying
plain-text then the entropy of the payload is less and, if the
packet is carrying audio data, then the entropy will be high.
In using entropy as a feature, we are only focusing on the
nature of the data and not on the data itself. We performed
a statistical analysis of this feature across a few devices and
show the result in Figure 2(a).

TCP Payload Length. This is the length of the payload
carried inside a TCP message, in other words, this is indicative

Table I
AVERAGE PACKETS PER SESSION

Device Total Sessions’ Packets Sessions Packets/Session
AWOX Speaker 12755 3274 3.89
D-Link Camera 8600 1390 6.18
MUSAIC Speaker 1346 305 4.41
OMNA Camera 8253 1608 5.13
TP Link Light 1660 175 9.48
WEMO Outlet 1994 204 9.77
WINK Hub 739 84 8.79



(a) Entropy (b) Payload Length (c) TCP Window Size

Figure 2. ECDF of Payload Based Features

Table II
PACKET HEADER FEATURES

Protocol Layer/Type Features
Network IP/ICMP/ICMPv6/EAPoL
Transport TCP/UDP
Application HTTP/HTTPS/DHCP/BOOTP/SSDP/DNS/MDNS/NTP
IP Options Padding/Router Alert

of the length of the messages sent by a given device. This is
a very device specific feature and shows significant variation
from device to device as shown in Figure 2(b). Even if
the messages are encrypted, for instance, the video camera
feeds, the underlying block-cipher and padding result in
deterministic patterns in the command and response message
payload lengths. Typically, we observed that most control
message exchanged by the device from the smart phone or
over the local area network are in plain-text. For a given
protocol interaction for a device these are unlikely to change
and therefore, are a good indicator of the device behavior.

TCP Window size. This feature has been suggested by
Alvin et al. in [6] as method to fingerprint general purpose
devices. The intuition behind this feature is that the TCP
window size depends on the memory of the IoT device and
the speed of its processing. Small constrained devices, such
as light bulbs, typically tend to have small window sizes and
more powerful devices, such as video cameras, have variable
and larger window sizes. Figure 2(c) shows the variation of
the TCP window sizes across different categories of devices
and show the variability of this feature among these devices.
Such variability is the key factor for effective machine learning
based classification.
C. Behavioral Profile and Fingerprint

Based on the discussion so far, we now define the structure
of a device type fingerprint. From Section I-B, the behaviorial
profile of a device is defined as a collection of various finger-
prints. Based on the analysis done in Section III-B, the number
of messages in a session contribute to the fingerprint of that
session, which is 6±2. We choose five packets as the number
of session packets whose features correspond to a fingerprint

of the device. This implies that any given set of five session
packets will represent a fingerprint of the device and should
be sufficient to identify the device. For each of the five packets
we extract 20 features, i.e., the 17 packet header features and
the 3 payload based features, and group them together, to give
us a feature vector of 100 features. We consider consecutive
packets, i.e., pi → pi+1 → pi+2 → pi+3 → pi+4, to generate
a single feature vector, as the sequence of the packets is
important to capture the session semantics. This feature vector
represents the fingerprint of the device with respect to the five
chosen packets. Now, to create a behavioral profile from the
network traffic captured from a device, we group the packets
into groups of five and generate the feature vectors. The set of
all such feature vectors corresponds to the observed behavioral
profile of the device. These feature vectors can then be used to
train a machine learning classifier that will be able to predict
the device type when presented with a target feature vector of
the same device type.

V. PERFORMANCE EVALUATION

In this section, we describe our experimental setup and
the various devices on which the fingerprinting tests were
carried out. We report several interesting results with different
variations of features.

A. Experimental Setup and Data Sets

We tested our approach on the latest home IoT devices,
listed in Table III, available in the market. The device label
corresponds to the unique identifier given to this device type.
The category corresponds to the general category under which
one or more devices are grouped, e.g., AWOX light and
iView light are grouped together. The connectivity refers to
the physical layer connectivity supported by these devices.



Table III
DEVICE DESCRIPTIONS

Device Label: Device Model Category Connectivity
1: TCP Light GL30002-TP Light Wi-Fi
2: AWOX Light SLCW13-14:D4:41 Hue light Wi-Fi
3: MUSAIC Music Speaker MP10 Music Player Wi-Fi, Ethernet
4: D-Link Camera DCS-932L Camera Wi-Fi, Ethernet
5: iDevice Socket IDEV0002 Socket Wi-Fi, Bluetooth
6: iView Light R60 Hue light Wi-Fi
7: Lutron Hub L-BDG2 Hub Wi-Fi
8: Netatmo Climate Home Coach Climate Control Wi-Fi
9: Omna Camera DSH-C310 Camera Wi-Fi
10: Philips Hue Light Hue 2.1 Light Wi-Fi
11: TPLink Light Lb100 Hue Light Wi-Fi
12: WEMO Outlet Insight Outlet Wi-Fi
13: Wink Hub 2 Light Wi-Fi
14: SmartThings Hub Hub Wi-Fi

To enable data capture from these devices, we constructed
a software bridge setup as shown in Figure 3, using a general
purpose laptop running Kali Linux on an Intelr processor
with 8 GB RAM. This setup allowed us to capture all traffic,
including the traffic passing through the network switch.

B. Data Set Collection

To collect the necessary data sets for training the machine
learning classifiers, we emulated the normal usage of a device,
i.e., by controlling it with a smart phone app or through a web
interface. Our method for data set collection is as follows.
First, the device is booted up and allowed to perform any
initial configuration or firmware updates. Second, when the
device is in steady state, we contacted the device through its
smart app and started interacting with the device. We also
allowed periods of idle time for the device to perform some
communication without user intervention. Depending on the
device activity, we captured 1000 to 10000 packets of network
traffic from each device. The various device operations are
described in Table V. In a real network environment, our
approach works in a passive manner by observing all traffic
and generating the corresponding behavioral profile of the
device.

Laptop running Kali 
Linux<192.168.42.1> 

HostAPD and OpenVSwitch Service 

tshark) 

Switch 

Figure 3. Packet Capture Setup

To generate a single data instance, based on the discussion in
Section III-B and Section IV-C, we aggregated five consecutive
packets into one feature vector. The resulting data instances
for each device are shown in Table IV.

C. Machine Learning Classifier

We used several classifiers available in Scikit-learn tool [22]
such as k-nearest-neighbors, Decision trees, Gradient boosting
and Majority voting. We describe Gradient boosting here, as
this classifier gave consistently good results across all the
experiments. Gradient boosting [23], [24] is a gradient descent
based learning approach that produces a prediction model as an
ensemble of weak prediction models. The learning starts with
a “weak” model, typically Gradient Boost Regression Tree
(GBRT) that tries to learn the data space and is iteratively
improved by the next model that reduces the error of the
previous model. The goal of gradient boosting is to combine
weak learning models into a single strong model as shown:
F (x) =

∑M
m=1 γmhm(x) where F (x) is the closed function

of the learning model. Typically, hm is GBRT of fixed depth,
which is iteratively improved over M trials and γm is the
regression parameter for that particular iteration. At each step,
the model is improved as follows:

Fm+1(x) = Fm(x) + γm+1hm+1(x)

The hm+1 is chosen to minimize the loss function L in the
current model’s fitting of a data point xi: Fm(xi) as shown:

Fm+1(x) = Fm(x) + argmin
h

n∑
i=1

L(yi, Fm(xi) + h(x))

For implementation we used Scikit-learn library [22]
and we set the tool-kit specific parameters as follows:
n estimators = 100, which denotes the number of weak
learners, and the maximum depth of each tree is controlled by
max depth parameter. We set the learning rate = 1.0 and
max depth = 1.

D. Evaluation Metrics

We use the following metrics to evaluate our approach.



Table IV
DATA PER DEVICE-TYPE

Device Label: Device Data Instances
1: TCP Light 1151
2: AWOX Light 2000
3: MUSAIC Music Speaker 1003
4: D-Link Camera 1991
5: iDevice Socket 415
6: iView Light 571
7: Lutron Hub 108
8: Netatmo Climate 70
9: Omna Camera 1072
10: Philips Hue Light 986
11: TPLink Light 519
12: WEMO Outlet 592
13: Wink Hub 286
14: SmartThings Hub 103

Table V
DEVICE OPERATIONS

Device Label: Device Mode of Operation
1: TCP Light Connects through a Hub
2: AWOX Light Connects with a mobile app
3: MUSAIC Music Speaker Connects with a mobile app
4: D-Link Camera Connects through laptop
5: iDevice Socket Connects with a mobile app
6: iView Light Connects with a mobile app
7: Lutron Hub Connects with a mobile app
8: Netatmo Climate Connects with a mobile app
9: Omna Camera Connects with a mobile app
10: Philips Hue Light Connect through a Hub
11: TPLink Light Connects with a mobile app
12: WEMO Outlet Connects with a mobile app
13: Wink Hub Connects with a mobile app
14: SmartThings Hub Connects with a mobile app

(a) 20 Features (b) 19 Features
Figure 4. Device-type Identification Rate: (a) With all 20 features (b) Without entropy



(a) 20 Features (b) 19 Features
Figure 5. Device-type Classification Accuracy: (a) With all 20 features (b) Without entropy

(a) 20 Features (b) 19 Features
Figure 6. Device Category Identification Rate: (a) With all 20 features (b) Without entropy

• Identification Rate. This is essentially the true positive
rate (TPR) of the classifier, i.e., the number of correctly
identified (classified) data points of a given device-type
from among the actual number of available data points
of this device type.

• Accuracy. This is the ratio of the number of times the
classifier correctly labels a data point to its correct class
to the total number of available data points.

We also evaluated other standard metrics like True negative
rate (TNR) and Positive Predictive Value (PPV), but did not
report them as we implemented one classifier per device-
type. These metrics are more meaningful if there was a single
classifier with multiple classes. Our classification methodology
is “one-vs-all”, i.e., the tested device data is labeled as “1” and
the other data are labeled as “-1”, which could be any device-
type different from the device being tested.

E. Device-type Fingerprinting

In the first experiment, we experimented the accuracy of the
classifier for device-type fingerprinting. The experiment is as
follows. For testing against a given device, we treated the class
label of the device to be 1 and the rest of the 13 devices data as
−1. Therefore, our learning model created an imbalance in the
data wherein the positive labels were less than 10% of the total
data set. We used five-fold cross-validation to avoid issues of

over-fitting and to test the robustness of the classifier learning
against unknown data instance classification. We performed
the experiment under three different conditions.

In the first variation, we included all the 20 features we
described in Section IV. As shown in Figure 4(a), this exper-
iment achieved an high identification rate of 99% for most of
the devices except Lutron Hub, which did not have many data
instances available.

In the second variation, we removed entropy from the fea-
ture set and experimented with the remaining 19 features. The
reason for this experiment is to show that our approach works
even when data is encrypted. By not considering entropy, we
eliminate any possibility that the results are biased due to the
payload content. In this experiment, as shown in Figure 4(b),
we achieved nearly identical results with a slight drop of 1-2%
overall.

We also performed a third variation, which we do not
report here, where we experimented only with the 3 payload
based features. The reason for this experiment was to see how
well these features can perform in isolation. The results were
highly encouraging and there was only a slight drop from the
experiment that used all 20 features.

In Figure 5, we show the average accuracy across the
devices, which is consistently above 99%. This result is very
significant given the skewed nature of our data set, most of



(a) 20 Features (b) 19 Features
Figure 7. Device Category Classification Accuracy: (a) With all 20 features (b) Without entropy

(a) 20 Features (b) 19 Features
Figure 8. Device Recognition Rate: (a) With all 20 features (b) Without entropy

the times the classifier was correctly able to recognize that a
particular data instance did not correspond to the target class
label. In real-world networks, this is the most likely situation
for fingerprinting and it is essential that the classifier does not
generate too many false positives.

Table VI
DEVICE CATEGORY DATA

Device category Data Instances
1: Light 2422
2: Music Player 1003
3: Camera 3063
4: Socket 415
5: Hub 210
6: Outlet 592
7: Colored Light 3090

F. Device category Fingerprinting

In this experiment, we explored the capability of our model
in classifying devices into device-types. For this purpose, we
generated a data set from the original data set by grouping
devices into device-types, e.g., light bulbs. The data set is
shown in Table VI, which consists of categories described in
Table IV.

The device category identification rate ranged from 93-99%
across the different device-types as shown in Figure 6. This

result is very significant as it demonstrates the feasibility of
categorizing devices into common device-types. Our work is
the first to report this kind of result. Furthermore, as shown
in Figure 7, the average accuracy for this experiment is in the
range of 97-99%, which shows the robustness of the classifier
even against noisy data.

G. Cross-instance Recognition

In this experiment, we collected data from different device
instances of Wemo Outlet, iDevice Socket and iView light,
shown in Table VII. The idea was to check how well the
learning model could recognize different device instances.
The training set used for this experiment was from Table
IV, as would be required in a live scenario. The experiments
reported a high recognition rate of 99.7-100%, indicating that
the classifier was very successful in matching instances against
previously stored profiles of the device type.

Table VII
DEVICE-INSTANCE DATA

Device Label: Device Data Instances
5 :iDeviceSockett 415
6: iViewLight 571
12: WemoOutlet 592



(a) 20 Features (b) 20 Features
Figure 9. Device-type Identification Rate: (a) TCP Light (b) D-Link Camera

(a) 20 Features (b) 20 Features
Figure 10. Device-type Classification Accuracy: (a) TCP Light (b) D-Link Camera

H. Performance Across Multiple Classifiers

All the above experiments were repeated across multiple
machine learning classifiers like: k-nearest-neighbors (kNN),
Decision tree and Majority voting. The classifiers still reported
a high identification rate (true positive rate) ranging from 88-
99%, shown in Figure 9, and an average accuracy ranging
from 95-99%, shown in Figure 10. We show the results for
device type experiment on two selected devices: TCP Light
and D-Link camera, for 20 features.

VI. CONCLUSION

In conclusion, we re-affirm that the problem of IoT device
fingerprinting is very important in the context of security. The
identification of IoT device types is a strong step towards
identifying IoT device instances, which will be useful in
establishing strong authentication of a device. The existing
IoT devices have too much variation in protocols/functionality
and it is difficult to come out with one general approach
for fingerprinting. However, as our methodology showed, it
is possible to fingerprint device types with high accuracy. The
high accuracy reported by our experiments show that it is
possible to reduce false positives during device fingerprinting
even in the presence of several other devices. Fingerprinting
categories of devices is an entirely different challenge and we
demonstrated some promising results in this direction. Our

work is the first to report such cross-category identification
of devices. There are many open questions remaining in
fingerprinting and this will continue to be an interesting
research area for the IoT domain for quite some time. One
question is how to leverage device fingerprinting towards the
development of strong authentication schemes for IoT devices
that are difficult to clone. Such schemes should not require
manufacturers to make changes to their device architectures or
enforce unreasonable computational overhead on the devices
themselves.
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