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GeneraAve	Models	

Part	3:	Open	Research	QuesAons	



Unsupervised	Learning	

Non-probabilisAc	Models	
Ø  Sparse	Coding	
Ø  Autoencoders	
Ø  Others	(e.g.	k-means)	

Explicit	Density	p(x)	

ProbabilisAc	(GeneraAve)	
Models	

Tractable	Models	
Ø  Fully	observed	

Belief	Nets	
Ø  NADE	
Ø  PixelRNN	

Non-Tractable	Models	
Ø  Boltzmann	Machines	
Ø  VariaAonal	

Autoencoders	
Ø  Helmholtz	Machines	
Ø  Many	others…	

Ø  GeneraAve	Adversarial	
Networks	

Ø  Moment	Matching	
Networks	

Implicit	Density	



Talk	Roadmap	
• 	Basic	Building	Blocks:	

Ø  Sparse	Coding	
Ø  Autoencoders	

• 	Deep	GeneraAve	Models	
Ø  Restricted	Boltzmann	Machines	
Ø  Deep	Belief	Networks	and	Deep	Boltzmann	Machines	
Ø  Helmholtz	Machines	/	VariaAonal	Autoencoders		

• 	GeneraAve	Adversarial	Networks		

• 	Model	EvaluaAon		



Sparse	Coding	
• 	Sparse	coding	(Olshausen	&	Field,	1996).	Originally	developed	
to	explain	early	visual	processing	in	the	brain	(edge	detecAon).		

• 	ObjecAve:	Given	a	set	of	input	data	vectors																														
learn	a	dicAonary	of	bases																																such	that:					

• 	Each	data	vector	is	represented	as	a	sparse	linear	combinaAon	
of	bases.	

Sparse:	mostly	zeros	



				Natural	Images	

	[0,	0,	…	0.8,	…,	0.3,	…,	0.5,	…]	=	coefficients	(feature	representaAon)		

New	example 

Sparse	Coding	
Learned	bases:		“Edges”	

     x      = 0.8 *       						         +  0.3 *        					
          

+ 0.5 *       	

Slide	Credit:	Honglak	Lee	

= 0.8 *                   + 0.3 *                     + 0.5 * 



Sparse	Coding:	Training	
• 	Input	image	patches:		
• 	Learn	dicAonary	of	bases:	

ReconstrucAon	error	 Sparsity	penalty	

• 	AlternaAng	OpAmizaAon:	

1.  Fix	dicAonary	of	bases																											and	solve	for	
acAvaAons	a	(a	standard	Lasso	problem).			

2.  Fix	acAvaAons	a,	opAmize	the	dicAonary	of	bases	(convex	
QP	problem).		



Sparse	Coding:	TesAng	Time	
• 	Input:	a	new		image	patch	x*	,	and	K	learned	bases			
• 	Output:	sparse	representaAon	a	of	an	image	patch	x*.		

= 0.8 *                   + 0.3 *                     + 0.5 * 

     x*      = 0.8 *       						         +  0.3 *        					
          

+ 0.5 *       	

	[0,	0,	…	0.8,	…,	0.3,	…,	0.5,	…]	=	coefficients	(feature	representaAon)		



Evaluated	on	Caltech101	object	category	dataset.	

Classification 
Algorithm 

(SVM) 

Algorithm	 Accuracy	
Baseline	(Fei-Fei	et	al.,	2004)	 16%	

PCA	 37%	
Sparse	Coding	 47%	

Input	Image Features	(coefficients) 
Learned		
bases 

Image	ClassificaAon	

	9K	images,	101	classes	

(Lee, Battle, Raina, Ng, NIPS 2007)Slide	Credit:	Honglak	Lee	



g(a)	

InterpreAng	Sparse	Coding	

x’	

Explicit	
Linear	
Decoding	

a	

f(x)	
Implicit	
nonlinear	
encoding	

x	

a	

• 	Sparse,	over-complete	representaAon	a.	
• 	Encoding	a	=	f(x)	is	implicit	and	nonlinear	funcAon	of	x.		
• 	ReconstrucAon	(or	decoding)	x’	=	g(a)	is	linear	and	explicit.		

Sparse	features	



Autoencoder	

Encoder Decoder 

Input Image 

Feature Representation 

Feed-back, 
generative, 
top-down 
path	

Feed-forward,  
bottom-up	

• 	Details	of	what	goes	insider	the	encoder	and	decoder	maler!	
• 	Need	constraints	to	avoid	learning	an	idenAty.		



Autoencoder	

z=σ(Wx) Dz 

Input Image x 

 Binary Features z 

Decoder 
filters D 

Linear 
function 
path	

Encoder 
filters W. 

Sigmoid 
function	



Autoencoder	

z=σ(Wx) σ(WTz) 

Binary Input x 

 Binary Features z 

Decoder 
filters D 
path	

Encoder 
filters W. 

Sigmoid 
function	

• 	Relates	to	Restricted	Boltzmann	Machines	(later).		
• 	Need	addiAonal	constraints	to	avoid	learning	an	idenAty.		



Autoencoders	
• 	Feed-forward	neural	network	trained	to	reproduce	its	input	at	the	output	
layer	

Autoencoders
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Math for my slides “Autoencoders”.
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For	binary	units	



Loss Function 
•  Loss function for binary inputs 
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•  Loss function for real-valued inputs 

Ø  sum of squared differences (reconstruction loss) 

Ø  we use a linear activation function at the output 

Ø  Cross-entropy error function (reconstruction loss) 
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Autoencoder	
• 		If	the	hidden	and	output	layers	
are	linear,	it	will	learn	hidden	units	
that	are	a	linear	funcAon	of	the	data	
and	minimize	the	squared	error.	

• 	The	K	hidden	units	will	span	the	
same	space	as	the	first	k	principal	
components.	The	weight	vectors	
may	not	be	orthogonal.		

z=Wx Wz 

Input Image x 

 Linear Features z 

• 	With	nonlinear	hidden	units,	we	have	a	nonlinear	
generalizaAon	of	PCA.	



Denoising Autoencoder 
•  Idea: representation should be robust to introduction of noise: 

Ø  random assignment of subset of 

inputs to 0, with probability 

Ø  Similar to dropouts on the input layer 

Ø  Gaussian additive noise 
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•  Reconstruction     computed 
from the corrupted input 

•  Loss function compares 
reconstruction with the noiseless 
input 
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Denoising Autoencoder 

Extracting and Composing Robust Features with Denoising Autoencoders

p( e
X|X) = qD( e

X|X). p(Y ) is a uniform prior over
Y 2 [0, 1]d
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a variational approximation of the log-likelihood of
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X). Note that we abuse notation to make it lighter,
and use the same letters X, e
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sets of random variables representing the same quan-
tity under di↵erent distributions: p or q

0. Keep in
mind that whereas we had the dependency structure
X ! e
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0, we have Y ! X ! e
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Since p contains a corruption operation at the last
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X) to corrupted
training samples. Performing maximum likelihood fit-
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Figure 2. Manifold learning perspective. Suppose
training data (⇥) concentrate near a low-dimensional man-
ifold. Corrupted examples (.) obtained by applying cor-

ruption process qD( eX|X) will lie farther from the manifold.

The model learns with p(X| eX) to “project them back” onto
the manifold. Intermediate representation Y can be inter-
preted as a coordinate system for points on the manifold.

where we moved the maximization outside of the ex-
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where the third line is obtained because (✓, ✓0)
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4.3. Other Theoretical Perspectives

Information Theoretic Perspective: Consider
X ⇠ q(X), q unknown, Y = f

✓

( e
X). It can easily

be shown (Vincent et al., 2008) that minimizing the
expected reconstruction error amounts to maximizing
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Extracting and Composing Robust Features with Denoising Autoencoders

Table 1. Comparison of stacked denoising autoencoders (SdA-3) with other models.
Test error rate on all considered classification problems is reported together with a 95% confidence interval. Best performer
is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction � of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with � = 0%.

Dataset SVMrbf SVMpoly DBN-1 SAA-3 DBN-3 SdA-3 (�)
basic 3.03±0.15 3.69±0.17 3.94±0.17 3.46±0.16 3.11±0.15 2.80±0.14 (10%)
rot 11.11±0.28 15.42±0.32 14.69±0.31 10.30±0.27 10.30±0.27 10.29±0.27 (10%)
bg-rand 14.58±0.31 16.62±0.33 9.80±0.26 11.28±0.28 6.73±0.22 10.38±0.27 (40%)
bg-img 22.61±0.37 24.01±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
rot-bg-img 55.18±0.44 56.41±0.43 52.21±0.44 51.93±0.44 47.39±0.44 44.49±0.44 (25%)
rect 2.15±0.13 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 24.05±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.82±0.35 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)

(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels �. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to di�erentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish di�erent kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.
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is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction � of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with � = 0%.
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Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels �. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to di�erentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish di�erent kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.

25% corrupted input 

(Vincent et al., ICML 2008)
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Table 1. Comparison of stacked denoising autoencoders (SdA-3) with other models.
Test error rate on all considered classification problems is reported together with a 95% confidence interval. Best performer
is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction � of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with � = 0%.
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(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels �. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to di�erentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish di�erent kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.

50% corrupted input 

Extracting and Composing Robust Features with Denoising Autoencoders

Table 1. Comparison of stacked denoising autoencoders (SdA-3) with other models.
Test error rate on all considered classification problems is reported together with a 95% confidence interval. Best performer
is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction � of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with � = 0%.

Dataset SVMrbf SVMpoly DBN-1 SAA-3 DBN-3 SdA-3 (�)
basic 3.03±0.15 3.69±0.17 3.94±0.17 3.46±0.16 3.11±0.15 2.80±0.14 (10%)
rot 11.11±0.28 15.42±0.32 14.69±0.31 10.30±0.27 10.30±0.27 10.29±0.27 (10%)
bg-rand 14.58±0.31 16.62±0.33 9.80±0.26 11.28±0.28 6.73±0.22 10.38±0.27 (40%)
bg-img 22.61±0.37 24.01±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
rot-bg-img 55.18±0.44 56.41±0.43 52.21±0.44 51.93±0.44 47.39±0.44 44.49±0.44 (25%)
rect 2.15±0.13 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 24.05±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.82±0.35 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)

(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels �. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to di�erentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish di�erent kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.

(Vincent et al., ICML 2008)



PredicAve	Sparse	DecomposiAon	
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(Kavukcuoglu, Ranzato, Fergus, LeCun, 2009)



Stacked	Autoencoders	
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Stacked	Autoencoders	

Input x 

Features 

Encoder Decoder 

Features 

Class Labels 

Encoder Decoder 

Encoder Decoder 

Sparsity 

Sparsity 

Greedy	Layer-wise	Learning.		



Stacked	Autoencoders	

Input x 

Features 

Encoder 

Features 

Class Labels 

Encoder 

Encoder 
• 	Remove	decoders	and	
use	feed-forward	part.		

• 	Standard,	or	
convoluAonal	neural	
network	architecture.		

• 	Parameters	can	be	
fine-tuned	using	
backpropagaAon.		



Deep	Autoencoders	
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Deep	Autoencoders	
• 	25x25	–	2000	–	1000	–	500	–	30	autoencoder	to	extract	30-D	real-
valued	codes	for	Oliver	face	patches.			

• 	Top:	Random	samples	from	the	test	dataset.			
• 	Middle:	ReconstrucAons	by	the	30-dimensional	deep	autoencoder.	

• 	BoBom:	ReconstrucAons	by	the	30-dimenAnoal	PCA.		

(Hinton and Salakhutdinov, Science 2006)



InformaAon	Retrieval	
2-D	LSA	space	

Legal/JudicialLeading          
Economic         
Indicators       

European Community 
Monetary/Economic  

Accounts/
Earnings 

Interbank Markets

Government 
Borrowings 

Disasters and 
Accidents     

Energy Markets

• 	The	Reuters	Corpus	Volume	II	contains	804,414	newswire	stories	
(randomly	split	into	402,207	training	and	402,207	test).	

• 	“Bag-of-words”	representaAon:	each	arAcle	is	represented	as	a	vector	
containing	the	counts	of	the	most	frequently	used	2000	words	in	the	
training	set.	 (Hinton and Salakhutdinov, Science 2006)



SemanAc	Hashing	

• 	Learn	to	map	documents	into	semanFc	20-D	binary	codes.	

• 	Retrieve	similar	documents	stored	at	the	nearby	addresses	with	no	
search	at	all.	

Accounts/Earnings

Government 
Borrowing

European Community 
Monetary/Economic

Disasters and 
Accidents

Energy Markets

Semantically
Similar
Documents

Document 

Address Space

Semantic
Hashing
Function

(Salakhutdinov and Hinton, SIGIR 2007)



Searching	Large	Image	Database	
using	Binary	Codes	

• 	Map	images	into	binary	codes	for	fast	retrieval.	

• 	Small Codes, Torralba, Fergus, Weiss, CVPR 2008
•  Spectral Hashing, Y. Weiss, A. Torralba, R. Fergus, NIPS 2008
•  Kulis and Darrell, NIPS 2009, Gong and Lazebnik, CVPR 2011
•  Norouzi and Fleet, ICML 2011,



Unsupervised	Learning	

Non-probabilisAc	Models	
Ø  Sparse	Coding	
Ø  Autoencoders	
Ø  Others	(e.g.	k-means)	

Explicit	Density	p(x)	

ProbabilisAc	(GeneraAve)	
Models	

Tractable	Models	
Ø  Fully	observed	

Belief	Nets	
Ø  NADE	
Ø  PixelRNN	

Non-Tractable	Models	
Ø  Boltzmann	Machines	
Ø  VariaAonal	

Autoencoders	
Ø  Helmholtz	Machines	
Ø  Many	others…	

Ø  GeneraAve	Adversarial	
Networks	

Ø  Moment	Matching	
Networks	

Implicit	Density	



Talk	Roadmap	
• 	Basic	Building	Blocks:	

Ø  Sparse	Coding	
Ø  Autoencoders	

• 	Deep	GeneraAve	Models	
Ø  Restricted	Boltzmann	Machines	
Ø  Deep	Belief	Networks	and	Deep	Boltzmann	Machines	
Ø  Helmholtz	Machines	/	VariaAonal	Autoencoders		

• 	GeneraAve	Adversarial	Networks		

• 	Model	EvaluaAon		



25,000	characters	from	50	
alphabets	around	the	world.	

• 	3,000	hidden	variables	
• 	784		observed	variables	
			(28	by	28	images)	
• 	About	2	million	parameters	

Model	P(image)	

Bernoulli	Markov	Random	Field	

Sanskrit	

Deep	GeneraAve	Model	



P(image|parAal	image)	 Bernoulli	Markov	Random	Field	

Deep	GeneraAve	Model	

CondiAonal	
SimulaAon	



CondiAonal	
SimulaAon	

P(image|parAal	image)	

Why	so	difficult?	

28	

28	

possible	images!	

Bernoulli	Markov	Random	Field	

Deep	GeneraAve	Model	



Fully	Observed	Models	

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood
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• 	Explicitly	model	condiAonal	probabiliAes:	

Each	condiAonal	can	be	a	
complicated	neural	network	

• 	A	number	of	successful	models,	including		

Ø  NADE,	RNADE	(Larochelle,	et.al.	

20011)	

Ø  Pixel	CNN	(van	den	Ord	et.	al.	2016)	

Ø  Pixel	RNN	(van	den	Ord	et.	al.	2016)	

Pixel	CNN	



Restricted	Boltzmann	Machines	

RBM	is	a	Markov	Random	Field	with:	

• 	StochasAc	binary	hidden	variables																							
• 	BiparAte	connecAons.	

Pair-wise	 Unary	

• 	StochasAc	binary	visible	variables																										

Markov random fields, Boltzmann machines, log-linear models. 

Image						visible	variables	

		hidden	variables	
Feature	Detectors	



Learned	W:		“edges”	
Subset	of	1000	features	

Learning	Features	

=	 ….	

New	Image:	

LogisAc	FuncAon:	Suitable	for	
modeling	binary	images	

Observed		Data		
Subset	of	25,000	characters	



Model	Learning	

Difficult	to	compute:	exponenAally	many		
configuraAons	

Image						visible	units	

		Hidden	units	

Given	a	set	of	i.i.d.	training	examples		
	 	 	 														,	we	want	to	learn		

model	parameters 	 	 						.				

Maximize	log-likelihood	objecAve:	

DerivaAve	of	the	log-likelihood:	



Model	Learning	

Image						visible	variables	

		hidden	variables	

DerivaAve	of	the	log-likelihood:		

Easy	to	
compute	exactly	

Difficult	to	compute:	
exponenAally	many	
configuraAons.		

Approximate	maximum	likelihood	learning	

Use	MCMC	



Approximate	Learning	
• 	An	approximaAon	to	the	gradient	of	the	log-likelihood	objecAve:		

• 	Run	MCMC	chain	(Gibbs	sampling)	starAng	from	the	observed	
examples.	

• 	Replace	the	average	over	all	possible	input	configuraAons	by	samples.	

• 	IniAalize	v0	=	v		
• 	Sample	h0	from	P(h	|	v0)		
• 	For	t=1:T		

-	Sample	vt	from	P(v	|	ht-1)	
	-	Sample	ht	from	P(h	|	vt)	



Approximate	ML	Learning	for	RBMs	
Run	Markov	chain	(alternaAng	Gibbs	Sampling):	

…	
Data	 T=1	 T=	infinity	

Equilibrium	
DistribuAon	



ContrasAve	Divergence	
A	quick	way	to	learn	RBM:	

Data	 Reconstructed	Data	

(Hinton, Neural Computation 2002)

• 	Start	with	a	training	vector	
on	the	visible	units.	

• 	Update	the	hidden	units	
again.	

• 	Update	all	the	hidden	units	
in	parallel.		
• 	Update	the	all	the	visible	
units	in	parallel	to	get	a	
“reconstrucAon”.	

Update	model	parameters:	

ImplementaAon:	~10	lines	of	Matlab	code.	



Gaussian-Bernoulli	RBM:	

• 	StochasAc	real-valued	visible	variables																		
• 	StochasAc	binary	hidden	variables																						
• 	BiparAte	connecAons.	

Pair-wise	 Unary	

Image						visible	variables	

		hidden	variables	

RBMs	for	Real-valued	Data	



Pair-wise	 Unary	

Image						visible	variables	

		hidden	variables	

RBMs	for	Real-valued	Data	

Learned	features	(out	of	10,000)	
4	million	unlabelled	images	



RBMs	for	Real-valued	Data	

=  0.9 *            +  0.8 *            + 0.6 *            … 
New	Image	

Learned	features	(out	of	10,000)	
4	million	unlabelled	images	



RBMs	for	Word	Counts	

Replicated	Sowmax	Model:	undirected	topic	model:	

• 	StochasAc	1-of-K	visible	variables.	
• 	StochasAc	binary	hidden	variables																							
• 	BiparAte	connecAons.	

Pair-wise	 Unary	
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(Salakhutdinov & Hinton, NIPS 2010, Srivastava & Salakhutdinov, NIPS 2012)



RBMs	for	Word	Counts	
Pair-wise	 Unary	
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Learned	features:	``topics’’	

russian	
russia	
moscow	
yeltsin	
soviet	

clinton	
house	
president	
bill	
congress	

computer	
system	
product	
sowware	
develop	

trade	
country	
import	
world	
economy	

stock	
wall	
street	
point	
dow	

Reuters	dataset:	
804,414	unlabeled	
newswire	stories	
Bag-of-Words		



RBMs	for	Word	Counts	

One-step	reconstrucAon	from	the	Replicated	Sowmax	
model.		



Learned	features:	``genre’’	

Fahrenheit	9/11	
Bowling	for	Columbine	
The	People	vs.	Larry	Flynt	
Canadian	Bacon	
La	Dolce	Vita	

Independence	Day	
The	Day	Awer	Tomorrow	
Con	Air	
Men	in	Black	II	
Men	in	Black	

Friday	the	13th	
The	Texas	Chainsaw	Massacre	
Children	of	the	Corn	
Child's	Play	
The	Return	of	Michael	Myers	

Scary	Movie	
Naked	Gun		
Hot	Shots!	
American	Pie		
Police	Academy	

Nezlix	dataset:		
480,189	users		
17,770	movies		
Over	100	million	raAngs	

CollaboraAve	Filtering	

(Salakhutdinov, Mnih, Hinton, ICML 2007)

h

v

W1

MulAnomial	visible:	user	raAngs	

Binary	hidden:	user	preferences	



Different	Data	ModaliAes	

• 	It	is	easy	to	infer	the	states	of	the	hidden	variables:		

• 	Binary/Gaussian/Sowmax	RBMs:	All	have	binary	hidden	
variables	but	use	them	to	model	different	kinds	of	data.	

Binary	

Real-valued	 1-of-K	

0	
0	
1	
0	

0	



Product	of	Experts	

Marginalizing	over	hidden	variables:	 Product	of	Experts	

The	joint	distribuAon	is	given	by:	

Silvio	Berlusconi	

government	
authority	
power	
empire	
federaAon	

clinton	
house	
president	
bill	
congress	

bribery	
corrupAon	
dishonesty	
corrupt	
fraud	

mafia	
business	
gang	
mob	
insider	

stock	
wall	
street	
point	
dow	

…	

Topics	“government”,	”corrupAon”	
and	”mafia”	can	combine	to	give	very	
high	probability	to	a	word	“Silvio	
Berlusconi”.	



Product	of	Experts	

Marginalizing	over	hidden	variables:	 Product	of	Experts	

The	joint	distribuAon	is	given	by:	

Silvio	Berlusconi	

government	
authority	
power	
empire	
federaAon	

clinton	
house	
president	
bill	
congress	

bribery	
corrupAon	
dishonesty	
corrupt	
fraud	

mafia	
business	
gang	
mob	
insider	

stock	
wall	
street	
point	
dow	

…	

Topics	“government”,	”corrupAon”	
and	”mafia”	can	combine	to	give	very	
high	probability	to	a	word	“Silvio	
Berlusconi”.	
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Talk	Roadmap	
• 	Basic	Building	Blocks	(non-probabilisAc	models):	

Ø  Sparse	Coding	
Ø  Autoencoders	

• 	Deep	GeneraAve	Models	
Ø  Restricted	Boltzmann	Machines	
Ø  Deep	Boltzmann	Machines	
Ø  Helmholtz	Machines	/	VariaAonal	Autoencoders		

• 	GeneraAve	Adversarial	Networks		



Deep	Belief	Network		

• 	ProbabilisAc	GeneraAve	model.		h3

h2

h1

v

W3

W2

W1

• 	Contains	mulAple	layers	of	nonlinear	
representaAon.	

• 	Fast,	greedy	layer-wise	pretraining	
algorithm.		

• 	Inferring	the	states	of	the	latent	
variables	in	highest	layers	is	easy.		

• 	Inferring	the	states	of	the	latent	variables	in	highest	layers	
is	easy.		

(Hinton et al. Neural Computation 2006)



Image	

Low-level	features:	
Edges	

Input:	Pixels	

Built	from	unlabeled	inputs.		

Deep	Belief	Network		

(Hinton et al. Neural Computation 2006)



Image	

Higher-level	features:	
CombinaAon	of	edges	

Low-level	features:	
Edges	

Input:	Pixels	

Built	from	unlabeled	inputs.		

Deep	Belief	Network	

Internal	representaAons	capture	
higher-order	staAsAcal	structure	

(Hinton et al. Neural Computation 2006)



Deep	Belief	Network	

Hidden	
Layers	

Visible	Layer	

RBM	

Sigmoid	
Belief	
Network	



Deep	Belief	Network	

RBM	

Sigmoid		
Belief		
Network	

The	joint	probability	
distribuAon	factorizes:	

Deep	Belief	Network	

RBM	Sigmoid	Belief		
Network	



Deep	Belief	Network	
GeneraAve	
Process	

Approximate	
Inference	

v

h2

h1

h3

W1

W3

W2



DBN	Layer-wise	Training	
•  Learn	an	RBM	with	an	input	
layer	v	and	a	hidden	layer	h.	

h

v

W1



DBN	Layer-wise	Training	

h1

h2

v

W1

W1⊤

•  Learn	an	RBM	with	an	input	
layer	v	and	a	hidden	layer	h.	

•  Treat	inferred	values																																
	 	 	 	 			as	the	data	

for	training	2nd-layer	RBM.	

•  Learn	and	freeze	2nd	layer	
RBM.	



DBN	Layer-wise	Training	

v

h2

h1

h3

W1

W3

W2

•  Proceed	to	the	next	layer.	

•  Learn	an	RBM	with	an	input	
layer	v	and	a	hidden	layer	h.	

•  Learn	and	freeze	2nd	layer	
RBM.	

•  Treat	inferred	values																																
	 	 	 	 			as	the	data	

for	training	2nd-layer	RBM.	

Unsupervised	Feature	Learning.	



DBN	Layer-wise	Training	

v

h2

h1

h3

W1

W3

W2

•  Proceed	to	the	next	layer.	

•  Learn	an	RBM	with	an	input	
layer	v	and	a	hidden	layer	h.	

•  Learn	and	freeze	2nd	layer	
RBM.	

•  Treat	inferred	values																																
	 	 	 	 			as	the	data	

for	training	2nd-layer	RBM.	

Unsupervised	Feature	Learning.	

Layerwise	pretraining		improves	
variaAonal	lower	bound	



Why	this	Pre-training	Works?	
•  Greedy	training	improves	variaAonal	lower	bound!	

h

v

W1

•  For	any	approximaAng	
distribuAon			



Why	this	Pre-training	Works?	
•  Greedy	training	improves	variaAonal	lower	bound.	

•  RBM	and	2-layer	DBN	are	equivalent	
when																				

•  For	any	approximaAng	
distribuAon			

h1

h2

v

W1

W1⊤
•  The	lower	bound	is	Aght	and	
the	log-likelihood	improves	by	
greedy	training.	

Train	2nd-layer	RBM	



Learning	Part-based	RepresentaAon	
ConvoluAonal	DBN	

Faces	

v

h2

h1

h3

W1

W3

W2

Trained	on	face	images.	

Object	Parts	

Groups	of	parts.	

(Lee, Grosse, Ranganath, Ng, ICML 2009)



Learning	Part-based	RepresentaAon	
Faces	 Cars	 Elephants	 Chairs	

(Lee, Grosse, Ranganath, Ng, ICML 2009)



Learning	Part-based	RepresentaAon	

Trained	from	mulAple	
classes	(cars,	faces,	
motorbikes,	airplanes).	

Class-specific	object	
parts	

Groups	of	parts.	

(Lee, Grosse, Ranganath, Ng, ICML 2009)


