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MAJOR ARCS FOR GOLDBACH’S PROBLEM

H. A. HELFGOTT

ABSTRACT. The ternary Goldbach conjecture states that every odd number
n > 7 is the sum of three primes. The estimation of the Fourier series
Zp<z e(ap) and related sums has been central to the study of the problem
since Hardy and Littlewood (1923).

Here we show how to estimate such Fourier series for a in the so-called
major arcs, i.e., for a close to a rational of small denominator. This is part of
the author’s proof of the ternary Goldbach conjecture.

In contrast to most previous work on the subject, we will rely on a finite
verification of the Generalized Riemann Hypothesis up to a bounded conduc-
tor and bounded height, rather than on zero-free regions. We apply a rigorous
verification due to D. Platt; the results we obtain are both rigorous and un-
conditional.

The main point of the paper will be the development of estimates on para-
bolic cylinder functions that make it possible to use smoothing functions based
on the Gaussian. The generality of our explicit formulas will allow us to work
with a wide variety of such functions.
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1. INTRODUCTION

The ternary Goldbach conjecture (or three-prime problem) states that every
odd number n greater than 5 can be written as the sum of three primes. Hardy
and Littlewood (1923) were the first to treat the problem by means of the circle
method, i.e., Fourier analysis over Z. (Fourier transforms of functions on Z live
on the circle R/7Z.)

I. M. Vinogradov [Vin37] showed in 1937 that the ternary Goldbach conjecture
is true for all n above a large constant C. The main innovation in his work
consisted in the estimation of sums of the form

(1.1) > A(n)e(an)

n<N

for « outside the so-called “major arcs” — these being a union of short intervals
in R/Z around the rationals with small denominator. (Here A(n) is the von
Mangoldt function, defined as A(n) = logp for n a power of a prime p and
A(n) = 0 for n having at least two prime factors, whereas e(t) = e2™)

The estimation of such sums for « in the major arcs is also important, and
goes back to Hardy and Littlewood [HL23]. In some ways, their work is rather
modern — in particular, it studies a version of (II]) with smooth truncation:

Syla,x) = An)e(an)n(n/z),

where 1 : Rt — C is a smooth function; in [HL23], n(t) = e~

We will show how to estimate sums such as S,(«,x) for o in the major arcs.
We will see how we can obtain good estimates by using smooth functions 7 based
on the Gaussian e~t°/2. This will involve proving new, fully explicit bounds for
the Mellin transforml] of the twisted Gaussian, or, what is the same, parabolic
cylindrical functions in certain ranges. It will also require explicit formulae that
are general and strong enough, even for moderate values of x.

Any estimate on S, (a,x) for a in the major arcs relies on the properties of
L-functions L(s,x) = >, x(n)n™%, where x : (Z/qZ)* — C is a multiplicative
character. In particular, what is key is the location of the zeroes of L(s,x) in
the critical strip 0 < R(s) < 1 (a region in which L(s,x) can be defined by
analytic continuation). In contrast to most previous work, we will not use zero-
free regions, which are too narrow for our purposes. Rather, we use a verification
of the Generalized Riemann Hypothesis up to bounded height for all conductors
g < 300000 (due to D. Platt [Plabl).

1See §2.3] for definitions.
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The bounds we will obtain have shown themselves to be strong enough to prove
the ternary Goldbach conjecture. See [Helb]. A key feature of the present work
is that it allows one to mimic a wide variety of smoothing functions by means
of estimates on the Mellin transform of a single smoothing function — here, the
Gaussian e~t"/2,

1.1. Results. Write no(t) = e~t/2. Let us first give a bound for exponential
sums on the primes using no as the smooth weight.

Theorem 1.1. Let z be a real number > 10%. Let x be a primitive character
mod q, 1 < g < r, where r = 300000.
Then, for any 6 € R with |0| < 4r/q,

> 5 _ (/)2 -
ZA(”)X(n)e e 2 == no(=0) -z + E -z,
n=1

where Iy—1 =1 ifq=1, I,—1 =0if ¢ # 1, and

1 /650400
|E| <5.281-107%2 + — < + 112) .

Vi \Va

We normalize the Fourier transform f as follows: f(t) = 7 e(—at) f(z)da.
252

Of course, 7o (—4) is just v/2me ™27
As it turns out, smooth weights based on the Gaussian are often better in
applications than the Gaussian no itself. Let us give a bound based on 7n(t) =

1o (t).

Theorem 1.2. Let n(t) = t2¢=*/2 Let © be a real number > 108. Let X be a
primitive character mod q, 1 < g < r, where r = 300000.
Then, for any § € R with |§| < 4r/q,

> Atnxtne (2n) ntna) = fyms () -+ B
n=1

where Iy—1 =1 ifq=1, I,—1 =0if ¢ # 1, and
4269107 1 /276600
+ 56 ) .

Bl < ——
121 q N3 V4

The advantage of 7(t) = t?no(t) over 1o is that it vanishes at the origin (to
second order); as we shall see, this makes it is easier to estimate exponential
sums with the smoothing 7 *ps g, where *,; is a Mellin convolution and g is
nearly arbitrary. Here is a good example that is used, crucially, in [Helc].

Corollary 1.3. Let n(t) = 267812 5y, n2(t), where ng = my *pr M and M =
2-Ij21)- Let x be a real number > 108. Let x be a primitive character mod q,
1 < g <r, where r = 300000.

Then, for any 6 € R with |0| < 4r/q,

> Anpxtnje (2 nn/a) = Iyes (-0 o+ -z
n=1

where Iy—1 =1ifqg=1, I,—1 =01if ¢ # 1, and
4.269 - 10~ 14 1 /380600
ol — < 4—76).
V4

G
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Let us now look at a different kind of modification of the Gaussian smoothing.
Say we would like a weight of a specific shape; for example, for the purposes of
[Helc|, we would like an approximation to the function

32— t)3e= (=12 for t €[0,2
(1.2) No i t ( ) o [ 2,

0 otherwise.
At the same time, what we have is an estimate for the Mellin transform of the
Gaussian e‘t2/2, centered at ¢ = 0.

The route taken here is to work with an approximation 7, to 7,. We let

(1.3) e (t) = hp(t) - te™ /2,

where Ay is a band-limited approximation to

(1.4) Wt = t2(2 —t)3et=1/2 ift €0,2],
' 0 otherwise.

By band-limited we mean that the restriction of the Mellin transform of hy to
the imaginary axis is of compact support. (We could, alternatively, let hy be a
function whose Fourier transform is of compact support; this would be techni-
cally easier in some ways, but it would also lead to using GRH verifications less
efficiently.)
To be precise: we define
Fy(t) = sin(H log y)
mlogy

(1.5) o d
pa(®) = (e F)o) = [ ey~ Fi)

and H is a positive constant. It is easy to check that M Fy(it) = 1 for —H <
T < H and MFy(it) = 0 for 7 > H or 7 < —H (unsurprisingly, since Fpy
is a Dirichlet kernel under a change of variables). Since, in general, the Mellin
transform of a multiplicative convolution f *3; g equals M f - Mg, we see that
the Mellin transform of hg, on the imaginary axis, equals the truncation of the
Mellin transform of h to [—iH,iH]. Thus, hy is a band-limited approximation
to h, as we desired.

The distinction between the odd and the even case in the statement that follows
simply reflects the two different points up to which computations where carried
out in [Plab]; these computations, in turn, were tailored to the needs of [Hela]
(as was the shape of 7, itself).

Theorem 1.4. Let n(t) = n.(t) = hy(t)te /2, where hy is as in (L5) and
H =200. Let x be a real number > 10'2. Let x be a primitive character mod g,
where 1 < ¢ < 150000 if ¢ is odd, and 1 < g < 300000 if g is even.

Then, for any 6 € R with |6| < 600000 - ged(q,2)/q,

Z A(n)x(n)e (gn> nn/x) =I,=1 -N(—0) -z + E -z,
n=1

where Iy—1 =1 ifq=1, I,—1 =0if ¢ # 1, and
6.18 - 10712 N 1.14 - 10710 N 1 (499100 N 52)
Va q VT \ V4 '

Bl <
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If ¢ = 1, we have the sharper bound
251100

Vv

This is a paradigmatic example, in that, following the proof given in §4.4] we
can bound exponential sums with weights of the form hH(t)e_tz/ 2 where hy
is a band-limited approximation to just about any continuous function of our
choosing.

Lastly, we will need an explicit estimate of the ¢5 norm corresponding to the
sum in Thm. [[4] for the trivial character.

|E| <3.34-1071 +

Proposition 1.5. Let n(t) = n4(t) = hy(t)te /2, where hy is as in ({I3) and
H = 200. Let x be a real number > 1012
Then

ZA (logn)n (n/x):a:/ n3(t)logxt dt + Ey - xlogx
0

= 0.640206x log x — 0.021095x + E» - xlog x,

where
310.84 310.84

By <2.107¢
\/5 ‘2’_ + \/5

1.2. Main ideas. We will be working with smoothed sums

(1.6) ZA Ye(n/x)n(n/z).

|E1] <1.536-10715 +

Our integral will actually be of the form

(1.7) LRSU+(a,x)QSn* (o, z)e(—Na)da,

where 14 and 7, are two different smoothing functions to be discussed soon.
Estimating the sums (L6]) on 9% reduces to estimating the sums

(1.8) Sy(d/x,x) ZA Ye(on/z)n(n/x)

for x varying among all D1r1c:hlet characters modulo ¢ < 7y and for |§| < erg/q,
i.e., |0| small. Sums such as ([.8]) are estimated using Dirichlet L-functions L(s, x)
(see §2.2)). An explicit formula gives an expression

(1.9) Syx(6/2, ) = Iymaf(—0)x — > Fs(p)a” + small error,

P
where I,—; = 1if ¢ =1 and I,—; = 0 otherwise. Here p runs over the complex
numbers p with L(p, x) = 0 and 0 < R(p) < 1 (“non-trivial zeros”). The function
F;s is the Mellin transform of e(dt)n(t) (see §2.3]).

The questions are then: where are the non-trivial zeros p of L(s, x)? How fast
does Fs(p) decay as J(p) — +oo?

Write 0 = R(s), 7 = (s). The belief is, of course, that o = 1/2 for every
non-trivial zero (Generalized Riemann Hypothesis), but this is far from proven.
Most work to date has used zero-free regions of the form o < 1—1/Clogq|t|, C
a constant. This is a classical zero-free region, going back, qualitatively, to de la
Vallée-Poussin (1899). The best values of C' known are due to McCurley [McC84]
and Kadiri [Kad05].
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These regions seem too narrow to yield a proof of the three-primes theorem.
What we will use instead is a finite verification of GRH “up to 13", i.e., a com-
putation showing that, for every Dirichlet character of conductor ¢ < ro (rg a
constant, as above), every non-trivial zero p = o + i with |7| < T, satisfies
R(o) = 1/2. Such verifications go back to Riemann; modern computer-based
methods are descended in part from a paper by Turing [Turb3]. (See the histori-
cal article [Boo0G].) In his thesis [Plall], D. Platt gave a rigorous verification for
ro = 10°, T, = 10%/q. In coordination with the present work, he has extended
this to

e all odd ¢ < 3-10°, with T, = 108/,
e all even ¢ <4105, with T, = max(10%/¢, 200 + 7.5 - 107 /q).

This was a major computational effort, involving, in particular, a fast implemen-
tation of interval arithmetic (used for the sake of rigor).

What remains to discuss, then, is how to choose 7 in such a way Fj(p) decreases
fast enough as |7| increases, so that (L9) gives a good estimate. We cannot hope
for F5(p) to start decreasing consistently before || is at least as large as a multiple
of 2m|d|. Since 0 varies within (—cro/q, cro/q), this explains why T, is taken
inversely proportional to ¢ in the above. As we will work with rg > 150000, we
also see that we have little margin for maneuver: we want Fj(p) to be extremely
small already for, say, |7| > 80|0]. We also have a Scylla-and-Charybdis situation,
courtesy of the uncertainty principle: roughly speaking, Fs(p) cannot decrease
faster than exponentially on |7|/|d| both for |§| < 1 and for § large.

The most delicate case is that of ¢ large, since then |7|/|d] is small. It turns
out we can manage to get decay that is much faster than exponential for § large,
while no slower than exponential for § small. This we will achieve by working
with smoothing functions based on the (one-sided) Gaussian no(t) = e~**/2,

The Mellin transform of the twisted Gaussian e(ét)e_t2 /2 is a parabolic cylinder
function U (a, z) with z purely imaginary. Since fully explicit estimates for U(a, z),
z imaginary, have not been worked in the literature, we will have to derive them
ourselves.

Once we have fully explicit estimates for the Mellin transform of the twisted
Gaussian, we are able to use essentially any smoothing function based on the
Gaussian no(t) = e 1/2. As we already saw, we can and will consider smoothing
functions obtained by convolving the twisted Gaussian with another function
and also functions obtained by multiplying the twisted Gaussian with another
function. All we need to do is use an explicit formula of the right kind — that
is, a formula that does not assume too much about the smoothing function or
the region of holomorphy of its Mellin transform, but still gives very good error
terms, with simple expressions.

All results here will be based on a single, general explicit formula (Lem. [.T])
valid for all our purposes. The contribution of the zeros in the critical trip can
be handled in a unified way (Lemmas [4.3] and [.4]). All that has to be done for
each smoothing function is to bound a simple integral (in (4£.24])). We then apply
a finite verification of GRH and are done.

1.3. Acknowledgments. The author is very thankful to D. Platt, who, work-
ing in close coordination with him, provided GRH verifications in the necessary
ranges, and also helped him with the usage of interval arithmetic. Warm thanks
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and the Ecole Normale Supérieure for providing pleasant working environments.

The present work would most likely not have been possible without free and
publicly available software: PARI, Maxima, Gnuplot, VNODE-LP, PROFIL /
BIAS, SAGE, and, of course, WTEX, Emacs, the gcec compiler and GNU /Linux in
general. Some exploratory work was done in SAGE and Mathematica. Rigorous
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Crlibm) or the PROFIL/BIAS interval arithmetic package underlying VNODE-
LP.

The calculations contained in this paper used a nearly trivial amount of re-
sources; they were all carried out on the author’s desktop computers at home
and work. However, D. Platt’s computations [Plab] used a significant amount
of resources, kindly donated to D. Platt and the author by several institutions.
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2. PRELIMINARIES

2.1. Notation. As is usual, we write u for the Moebius function, A for the von
Mangoldt function. We let 7(n) be the number of divisors of an integer n and
w(n) the number of prime divisors. For p prime, n a non-zero integer, we define
vp(n) to be the largest non-negative integer a such that p®|n.

We write (a, b) for the greatest common divisor of a and b. If there is any risk
of confusion with the pair (a,b), we write ged(a,b). Denote by (a,b>) the divisor
Hp‘b p»(@ of a. (Thus, a/(a,b>®) is coprime to b, and is in fact the maximal
divisor of @ with this property.)

As is customary, we write e(x) for 2™, We write |f|, for the L, norm of a
function f.

We write O*(R) to mean a quantity at most R in absolute value.

2.2. Dirichlet characters and L functions. A Dirichlet character x : Z — C
of modulus ¢ is a character y of (Z/qZ)* lifted to Z with the convention that
x(n) =0 when (n,q) # 1. Again by convention, there is a Dirichlet character of
modulus ¢ = 1, namely, the trivial character xr : Z — C defined by xr(n) =1
for every n € Z.

If x is a character modulo ¢ and x’ is a character modulo ¢'|q such that x(n) =
X'(n) for all n coprime to ¢, we say that X" induces x. A character is primitive if
it is not induced by any character of smaller modulus. Given a character y, we
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write x* for the (uniquely defined) primitive character inducing y. If a character
x mod ¢ is induced by the trivial character xp, we say that x is principal and
write xo for y (provided the modulus ¢ is clear from the context). In other words,
xo(n) =1 when (n,q) =1 and xo(n) = 0 when (n,q) = 0.

A Dirichlet L-function L(s,x) (x a Dirichlet character) is defined as the ana-
lytic continuation of )" x(n)n™*% to the entire complex plane; there is a pole at
s = 1if x is principal.

A non-trivial zero of L(s, x) is any s € C such that L(s, x) = 0 and 0 < R(s) <
1. (In particular, a zero at s = 0 is called “trivial”, even though its contribution
can be a little tricky to work out. The same would go for the other zeros with
R(s) = 0 occuring for x non-primitive, though we will avoid this issue by working
mainly with x primitive.) The zeros that occur at (some) negative integers are
called trivial zeros.

The critical line is the line R(s) = 1/2 in the complex plane. Thus, the gen-
eralized Riemann hypothesis for Dirichlet L-functions reads: for every Dirichlet
character y, all non-trivial zeros of L(s, x) lie on the critical line. Verifiable finite
versions of the generalized Riemann hypothesis generally read: for every Dirichlet
character x of modulus ¢ < @, all non-trivial zeros of L(s, x) with [J(s)| < f(q)
lie on the critical line (where f : Z — RT is some given function).

2.3. Mellin transforms. The Mellin transform of a function ¢ : (0,00) — C is
(2.1) Mo(s) = / p(z)x* " da.
0

If ¢(z)z°~! is in £ with respect to dt (i.e., [;°|¢(z)|z7 tdx < oo), then the
Mellin transform is defined on the line o + iR. Moreover, if ¢(z)z° ! is in ¢; for
o = o1 and for ¢ = 09, where o9 > o1, then it is easy to see that it is also in
¢y for all o € (01,02), and that, moreover, the Mellin transform is holomorphic
on {s: 01 < R(s) < o2}. We then say that {s : 01 < R(s) < o2} is a strip of
holomorphy for the Mellin transform.

The Mellin transform becomes a Fourier transform (of n(e™2™)e=2™7) by
means of the change of variables z = e~2™. We thus obtain, for example, that
the Mellin transform is an isometry, in the sense that

oo 2, 20 0T L[ V12
(2.2) /0 f@Pe = 5o [ S it
Recall that, in the case of the Fourier transform, for |f|2 = |f|2 to hold, it is
enough that f be in #1 N¥¢s. This gives us that, for (2.2]) to hold, it is enough that
f(z)z°! be in £, and f(z)z" /2 be in ¢y (again, with respect to dt, in both
cases).
We write f *,s g for the multiplicative, or Mellin, convolution of f and g:

o x\ dw
(23 Feuale) = [ s (2) 5
In general,
(2.4) M(f*ng)=Mf- Mg
and

1 o+100
(2.5) M(f-g)(s) = —/ Mf(z)Mg(s — z)dz [GROO, §17.32]

211 —ioo
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provided that z and s—z are within the strips on which M f and M g (respectively)
are well-defined.

We also have several useful transformation rules, just as for the Fourier trans-
form. For example,

M(f'(t)(s) = —(s = 1) - Mf(s— 1),
(2.6) M(tf'(t))(s) = —s - M f(s),
M((logt) f(t))(s) = (M[)'(s)
(as in, e.g., [BBOI10L Table 1.11]).
Since (see, e.g., [BBO10), Table 11.3] or [GRO0) §16.43])

b* —a®

(MIjgp)(s) = P

we see that

(27) Min(s) = (4 ‘82_8)2, Mn(s) = (4 ‘32_3)4

Let f, = e *!, where ®(z) > 0. Then

o0 1 o0
(Mf)(s) = / et g = / et
0 z>Jo

1 [#° 1 [ T
= — e utdu = —/ et d = —(s),
25 Jo 25 Jo 25

where the next-to-last step holds by contour integration, and the last step holds
by the definition of the Gamma function I'(s).

3. THE MELLIN TRANSFORM OF THE TWISTED (GAUSSIAN

Our aim in this section is to give fully explicit, yet relatively simple bounds for
the Mellin transform Fs(p) of e(dt)no(t), where no(t) = e~*/2 and § is arbitrary.
The rapid decay that results will establish that the Gaussian no is a very good
choice for a smoothing, particularly when the smoothing has to be twisted by an
additive character e(dt).

Gaussian smoothing has been used before in number theory; see, notably,
Heath-Brown’s well-known paper on the fourth power moment of the Riemann
zeta function [HB79]. What is new here is that we will derive fully explicit bounds
on the Mellin transform of the twisted Gaussian. This means that the Gaussian
smoothing will be a real option in explicit work on exponential sums in number
theory and elsewhere from now on.

(There has also been work using the Gaussian after a logarithmic change of
variables; see, in particular, [Leh66]. In that case, the Mellin transform is simply
a Gaussian (as in, e.g., [MVO07, Ex. XI1.2.9]). However, for § non-zero, the Mellin
transform of a twist e(dt)e (o8 0)?/2 decays very slowly, and thus would not be in
general useful.)

Theorem 3.1. Let f5(t) = et*/2 e(dt), 6 € R. Let Fs be the Mellin transform of
fs. Let s=o+ir, 0 >0, 7#0. Let £ = —275. Then, if sgn(d) # sgn(7),

e Y,
|F5(s)] < Core-e B ) 17

(3.1)
+Cir- e 0-47987| 4 Corp-€ min(é(%f’%w)

)
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where
(3.2)

E(p) = - <arccos

2<“<f2 - 1))

l—0o

Cor¢ = min (

(p)
> (1 + max(7.83'77,1.63771)) w
min 27r‘5| |7'|>
OI,T - < )

/1-1—
C min ﬂ §\/’T‘
2,70 — 27_[_‘5‘74 ’

where Py(x) = 2772 if 0 € [0,2], Py(z) = 2772+ (0 — 2)2° % if 0 € (2,4] and
Py (x) =224 (0 —2)z" 4 + ... + (6 — 2k)xo2:+D) 4f 5 € (2k,2(k + 1)].
If sgn(d) = sgn(7) (or 6 =0) and |7| > 2,

(3.3) |F3(s)| < CF e 517,
where
w/2|-|0/2 1 27/ 2m/715| 0.1
, e™?|7| ' + NG for o €[0,1],
T,é _ 2 .
I'(c/2) for o > 0 arbitrary.
t2/2

As we shall see, the choice of n(t) = e~ can be easily motivated by the
method of stationary phase, but the problem is actually solved by the saddle-
point method. One of the challenges here is to keep all expressions explicit and
practical. This turns out to require the use of validated numerics (Appendix [Al);
in particular, the bisection method (implemented using interval arithmetic) gets
combined with a closer examination at infinity and near extrema.

The expressions in Thm. 3] can be easily simplified further in applications
with some mild constraints, especially if one is ready to make some sacrifices in
the main term.

Corollary 3.2. Let f5(t) = e */2¢(6t), & € R. Let Fy be the Mellin transform
of f5. Let s = o +ir, where o € [0,1] and |7| > max(100,472|5|). Then, for
0< k<2,

7l \* —0.1065(Z)* 3(18)2
(3.4) |Fs(s+k)|+|Fs(k+1—35)] <cp- 27r|5\) e o/ if |t < 5(md)”,
|7 |}+/2¢—01598]| if |7 > %(ms)Q,

where ¢y = 4.226, ¢; = 3.516, co = 3.262.

It is natural to look at |Fs(s+ k)| + |Fs(k + 1 — s)| with s in the critical strip
R(s) € [0, 1], since such expressions are key to the study of exponential sums with
a smoothing function equal to or based on the=t?/2,

Let us end by a remark that may be relevant to applications outside number
theory. By (3.8]), Thm. B.1] gives us bounds on the parabolic cylinder function
U(a,z) for z purely imaginary and [R(a)| < 1/2. The bounds are useful when
|S(a)| is at least somewhat larger than |J(z)| (i.e., when |7| is large compared
to £). While the Thm. [3.1]is stated for ¢ > 0 (i.e., for R(a) > 0), extending the
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result to larger half-planes for a is not too hard — integration by parts can be
used to push a to the right.

As we shall see in §3.2] the literature on parabolic cylinder functions is rich
and varied. However, it stopped short of giving fully explicit expressions for a
general and z imaginary. That precluded, for instance, the use of the Gaussian
in explicit work on exponential sums in number theory. Such work will now be
possible.

3.1. How to choose a smoothing function? The method of stationary phase
([O1v74l §4.11], [Won01l §I1.3])) suggests that the main contribution to the inte-
gral

* dt
(35 Fy(t) = [ eCotme
0
should come when the phase has derivative 0. The phase part of ([B.5]) is
6((5t) — t%(s) — e27ri5t+7- logt
(where we write s = o + i7); clearly,
216t + 7logt) = 276 + = =0
( g ;

when ¢t = —7/2m0. This is meaningful when ¢ > 0, i.e., sgn(7) # sgn(d). The
contribution of ¢t = —7 /27§ to (3.3 is then

(3.6) n()e(@t)e" =1 (%) s <%>"+i7—1

multiplied by a “width” approximately equal to a constant divided by

V] (@27ist + 7logt)"| = /| — 7/t2| = _27T‘5‘_

The absolute value of ([B.0]) is

o1 (o)

In other words, if sgn(7) # sgn(d) and 4 is not too small, asking that Fs(o+i7)
decay rapidly as |7| — oo amounts to asking that n(t) decay rapidly as ¢ — 0.
Thus, if we ask for Fs(o +i7) to decay rapidly as |7| — oo for all moderate J, we
are requesting that

—T

216

(1) n(t) decay rapidly as t — oo,
(2) the Mellin transform Fy(o + i7) decay rapidly as 7 — +oo.

Requirement (2]) is there because we also need to consider Fs(o + it) for § very
small, and, in particular, for 6 = 0.

There is clearly an uncertainty-principle issue here; one cannot do arbitrarily
well in both aspects at the same time. Once we are conscious of this, the choice
n(t) = e~! in Hardy-Littlewood actually looks fairly good: obviously, n(t) = e~
decays exponentially, and its Mellin transform I'(s+47) also decays exponentially
as T — +oo. Moreover, for this choice of 7, the Mellin transform Fj(s) can be
written explicitly: Fy(s) =T'(s)/(1 — 2mwid)®.
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It is not hard to work out an explicit formula] for n(t) = e~*. However, it is
not hard to see that, for Fs(s) as above, F5(1/2 4+ it) decays like e #2711 just as
we expected from ([B7). This is a little too slow for our purposes: we will often
have to work with relatively large ¢, and we would like to have to check the zeroes
of L functions only up to relatively low heights t. We will settle for a different
choice of n: the Gaussian.

The decay of the Gaussian smoothing function 7(t) is much faster than
exponential. Its Mellin transform is I'(s/2), which decays exponentially as S(s) —
+o00. Moreover, the Mellin transform Fjs(s) (6 # 0), while not an elementary or
very commonly occurring function, equals (after a change of variables) a relatively
well-studied special function, namely, a parabolic cylinder function U(a, z) (or,
in Whittaker’s [Whi03] notation, D_,_/2(2)).

For 6 not too small, the main term will indeed work out to be proportional to
e=(7/2m0)?/ 2 as the method of stationary phase indicated. This is, of course, much
better than e~7/27%l, The “cost” is that the Mellin transform T'(s/2) for § = 0
now decays like e~ (™/DI7l rather than e~ ("/2I7|. This we can certainly afford.

)
— o—t?/2

3.2. The Mellin transform of the twisted Gaussian. We wish to approxi-
mate the Mellin transform

> t
Fa(s) = / e‘t2/2e(5t)tsd?,
0

where § € R. The parabolic cylinder function U : C? — C is given by
.2
: 12—/4 /oo 10 5em 3t A gy
L' (3+a) o
for R(a) > —1/2; this can be extended to all a,z € C either by analytic con-

tinuation or by other integral representations ([AS64l §19.5], [Tem10) §12.5(i)]).
Hence

(3.8) Fy(s) = ™’ (5)U <s - % —2m'5> .

Ula,z) =

The second argument of U is purely imaginary; it would be otherwise if a Gaussian
of non-zero mean were chosen.

Let us briefly discuss the state of knowledge up to date on Mellin transforms of
“twisted” Gaussian smoothings, that is, e~ t*/2 multiplied by an additive character
e(dt). As we have just seen, these Mellin transforms are precisely the parabolic
cylinder functions U(a, z).

The function U(a, z) has been well-studied for a and z real; see, e.g., [Tem10].
Less attention has been paid to the more general case of ¢ and z complex. The
most notable exception is by far the work of Olver [Olv5g], [Olv59], [Olv61],
[O1v65]; he gave asymptotic series for Ul(a, z), a,z € C. These were asymptotic
series in the sense of Poincaré, and thus not in general convergent; they would
solve our problem if and only if they came with error term bounds. Unfortunately,
it would seem that all fully explicit error terms in the literature are either for a

2There may be a minor gap in the literature in this respect. The explicit formula given in
[HL23, Lemma 4] does not make all constants explicit. The constants and trivial-zero terms
were fully worked out for ¢ = 1 by [Wig20] (cited in [MVO07, Exercise 12.1.1.8(c)]; the sign of
hyp,. ,(z) there seems to be off). As was pointed out by Landau (see [Har66l p. 628]), [HL23]
Lemma 4] actually has mistaken terms for x non-primitive. (The author thanks R. C. Vaughan
for this information and the references.)
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and z real, or for a and z outside our range of interest (see both Olver’s work and
[TV03].) The bounds in [Olv61] involve non-explicit constants. Thus, we will
have to find expressions with explicit error bounds ourselves. Our case is that of
a in the critical strip, z purely imaginary.

3.3. General approach and situation. We will use the saddle-point method
(see, e.g., [dB81, §5], [Olv74l, §4.7], [WonO1l, §II.4]) to obtain bounds with an
optimal leading-order term and small error terms. (We used the stationary-phase
method solely as an exploratory tool.)

What do we expect to obtain? Both the asymptotic expressions in [Olv59] and
the bounds in |Olv61] make clear that, if the sign of 7 = () is different from that
of §, there will a change in behavior when 7 gets to be of size about (27§)2. This is
unsurprising, given our discussion using stationary phase: for |3(a)| smaller than
a constant times |¥(z)|?, the term proportional to e~ (7/4I7l = ¢=IS(@)I/2 ghould
be dominant, whereas for |3(a)| much larger than a constant times |3(z)|?, the

1 T
term proportional to ¢=2(55)" should be dominant.

3.4. Setup. We write

2

(3.9) o(u) = 5 (2mid)u — it logu

for u real or complex, so that

Fg(s):/ e_‘f’(“)u"d;u.
0

We will be able to shift the contour of integration as we wish, provided that
it starts at 0 and ends at a point at infinity while keeping within the sector
arg(u) € (—m/4,7/4).
We wish to find a saddle point. At a saddle point, ¢'(u) = 0. This means that
. T . 2 . .
(3.10) u— 2mid — v 0, ie, w4 ilu—ir =0,

where ¢ = —276. The solutions to ¢'(u) = 0 are thus

—il £ =02+ diT

(3.11) uy = 5

The second derivative at ug is
1 1

(3.12) ¢" (uo) = — (ug + i) = —5 (—ilug + 2i7).
Up Up

Assign the names ug 4, up,— to the roots in [B.11]) according to the sign in front
of the square-root (where the square-root is defined so as to have argument in

(=m/2,7/2]).
We assume without loss of generality that 7 > 0. We shall also assume at first
that £ > 0 (i.e., 6 <0), as the case ¢ < 0 is much easier.

3.5. The saddle point. Let us start by estimating

(3.13)

s 2 o —arg(u T 2
u0’+ey/ ‘: lug,+ |7 &0, +)7ey/2.
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where y = R(—Liug). (This is the main part of t